
Appendix B

Spectre Netlist Language

B.1 Introduction

In addition to accepting Spice netlists, Spectre also supports a sim-
ple, powerful, and extensible language for describing netlists. This
appendix describes the basics of Spectre’s netlist language only to
the level of detail needed to allow you to understand the netlists
given in this book.

B.2 The Language

When reading a netlist, Spice determines the type of a component
by the first letter in its name. For example, R1 must be a resis-
tor and Vin must be a voltage source. This approach follows engi-
neering convention and fits well with Spice’s original goal of being
a simulator for integrated circuits. However, this convention has
two unfortunate limitations. First, it limits the simulator to only
supporting only 25 component types (X is reserved for subcircuits).
Second, it does not allow the representation type of the components
to change. For example, Q1 must refer to a built-in model for a
bipolar transistor. It might also be convenient use a macromodel for
the transistor. Indeed, integrated transistors often have other junc-
tions near-by that can form parasitic transistors. The built-in model
does not include parasitic transistors, but it is easy to construct a
macromodel using a subcircuit that contains the original transistor

357

kundert
Text Box
Excerpted from "The Designer's Guide to SPICE and Spectre" by Kundert .
For more information, go to www.designers-guide.org/Books.



358 Appendix B. Spectre Netlist Language

along with the parasitic transistor. However, because of the con-
straints on the first letter, one cannot change the type of a transistor
from built-in model to macromodel without changing the transistors
name. This might not seem like a serious problem until you consider
a circuit with thousands of transistors. If you would like to change
just the NPN transistors from the built-in model to the subcircuit
macromodel that includes the parasitic transistor, you have to make
perhaps thousands of hand edits on the netlist.

Spectre’s native netlist language is modeled after the Spice language,
but is more uniform. It provides several important features that are
unavailable in Spice due to limitations of its language, including the
ability to support an arbitrary number of primitives and the ability
to switch representation type.

There are three basic types of primary statements, along with some
secondary control statements. The primary statements include com-
ponent instance, component model, and analysis statements. The
control statements include those for specifying initial conditions,
nodesets, outputs, etc, and are not discussed further here. In ad-
dition, Spectre provides statments used to define parameterized sub-
circuits.

Basic Language Attributes The Spectre parser has two modes.
By default, Spectre is configured to expect Spice netlists unless told
otherwise. When it reads

simulator lang=spectre

it switches off Spice compatibility. When doing so, it makes the
following changes:

1. Spectre no longer accepts Spice statements and constructs.

2. The language becomes case-sensitive, with all keywords being
lower case.

3. Standard SI scale-factors are used as a convenient way of spec-
ifying either very large or very small numbers. The SI scale



B.2. The Language 359

P = 1015 T = 1012 G = 109 M = 106 K = 103

k = 103 = 1 % = 10−2 c = 10−2 m = 10−3

u = 10−6 n = 10−9 p = 10−12 f = 10−15 a = 10−18

Table B.1: SI scale factors.

t = 1012 g = 109 meg = 106 k = 103 m = 10−3

mil = 25.4×10−6 u = 10−6 n = 10−9 p = 10−12 f = 10−15

Table B.2: Spice scale factors.

factors are different than those used by Spice. For example,
with SI, m = 10−3 and M = 106, whereas with Spice both m and
M = 10−3, while MEG = 106. The SI scale factors are detailed in
Table B.1 while the Spice scale-factors are shown in Table B.2.

To switch back to accepting Spice netlists, use

simulator lang=spice

When Spectre includes one file from another using the include state-
ment, it automatically switches to Spice mode at the beginning of
the new file, and returns to the previously active mode when it fin-
ishes reading it. For this reason, all Spectre netlists must begin with
a lang=spectre statement.

Model Statements Often, certain characteristics are common to
a large number of instances of components of the same type. For
example, the saturation current of a diode is a function of the pro-
cess used to construct the diode and also of the area of the diode.
Rather than describing the process on each diode instantiation, that



360 Appendix B. Spectre Netlist Language

description is done once in a model statement and many diode in-
stances refer to it. The area, which can be different for each compo-
nent, is included on each instance statement. Though it is possible
to have several model statements for a particular type of component,
each instance can only reference at most one model. Not all types of
components support model statements.

Model statements have the form

model dnp diode is=3.1e-10 n=1.12 cjo=3.1e-8 vj=.914

In this example, dnp is the model name, and diode is the primitive
name. The primitive name is either the name of a built-in primitive
or a user designed behavioral model.

Instance Statements The instance statement consists of an in-
stance name, the nodes to which the terminals of the instance are
connected, the name of the master, and the parameters. It takes the
form,

M1 (4 pin 1 1) nmos w=402.4u l=7.6u

where M1 is the instance name, ‘(4 pin 1 1)’ is the node list (paren-
theses are optional), nmos is the master name, in this case a model
name, and ‘w=402.4u l=7.6u’ are the parameters. The master field
contains either the name of a built-in component type (for example,
capacitor), the name of a user-defined behavioral model, a model
name, or a subcircuit definition name. The nodes must appear in
the order defined by the master. Unlike Spice, the first character in
the instance names is not fixed to any particular value by the type
field.

The list of Spectre’s available built-in components is shown in Ta-
ble B.3 on the facing page and Table B.4 on page 362. Further
information on these components and their parameters is found by
using Spectre’s -help command-line option.




