
 

1  Basics
Verilog-A/MS is a case sensitive language.

Spaces, tabs, and newlines are considered white space and are ignored except when
found in strings.

1.1  Comments

Comments are text added to the model for purposes of documentation. They are
ignored by the simulator that implements the model.

Single line comments start with // and end at the end of the line. 

// this is a single line comment

Block comments begin with /∗  and end with ∗ /.

/∗
∗  This is a block comment
∗ /

Block comments may not be nested.

1.2  Identifiers

An identifier is used to give an object a unique name so it can be referenced. An iden-
tifier can be any sequence of letters, digits, dollar signs ‘$’, and the underscore char-
acters ‘_’. The first character of an identifier cannot be a digit or ‘$’; it can be a letter
or an underscore.

Examples: clk, out_p, bus2, n$12

Escaped identifiers start with the backslash character ‘\’ and end with white space
(space, tab or newline). They provide a means of including any of the printable ASCII
characters in an identifier. Neither the leading back-slash character nor the terminat-

5
Language
Reference

kundert
Text Box
Excerpted from "The Designer's Guide to Verilog-AMS" by Kundert and Zinke.For more information, go to www.designers-guide.org/Books.



Chapter 5  Language Reference

150

ing white space is considered to be part of the identifier. Therefore, an escaped identi-
fier \out is treated the same as a non-escaped identifier out.

Examples: \out+, \/x1/n1, \\x1\n1, \{a,b}, \V(p,n)

1.3  Keywords
Keywords are predefined non-escaped identifiers that are used to define the language 

constructs. The list of reserved keywords for Verilog-AMS is shown in Table 1. Pre-

ceding a keyword with an escape character (\) causes it to be interpreted as an escaped 

identifier.

TABLE 1  Reserved words in Verilog-AMS

above cross forever ln pulldown time
abs ddt fork log rcmos timer
absdelay deassign from macromodule real tran
ac_stim default function max realtime tranif0
acos defparam generate medium reg tranif1
acosh disable genvar min release transition
always discipline ground module repeat tri
analog driver_update highz0 nand rnmos tri0
analysis edge highz1 nature rpmos tri1
and else hypot negedge rtran triand
asin end idt net_resolution rtranif0 trior
asinh endcase idtmod nmos rtranif1 trireg
assign endconnectrules if noise_table scalared vectored
atan enddiscipline ifnone nor sin wait
atan2 endfunction inf not sinh wand
atanh endmodule initial notif0 slew weak0
begin endnature initial_step notif1 small weak1
branch endprimitive inout or specify while
buf endspecify input output specparam white_noise
bufif0 endtable integer parameter sqrt wire
bufif1 endtask join pmos strong0 wor
case event laplace_nd posedge strong1 wreal
casex exclude laplace_np potential supply0 xnor
casez exp laplace_zd pow supply1 xor
ceil final_step laplace_zp primitive table zi_nd
cmos flicker_noise large pull0 tan zi_np
connectrules flow last_crossing pull1 tanh zi_zd
cos force limexp pullup task zi_zp
cosh



1 Basics

151

1.4  Compiler Directives

The ` character (referred to as a tick, an open quote, or a grave accent) introduces a
language construct used to implement compiler directives. The behavior dictated by a
compiler directive takes effect as soon as the compiler reads the directive. The direc-
tive remains in effect for the rest of the compilation unless a different compiler direc-
tive specifies otherwise. A compiler directive in one file can therefore control
compilation behavior in multiple description files. 

Verilog-AMS supports the following compiler directives.
`default_discipline `else `resetall
`default_transition `endif `timescale
`define `ifdef `undef

`include

Defines (`define) give a name to a string that can substitute for a string of characters.
The name is then referred to as a macro. Any valid identifier, including keywords
already in use, can be used as a name. Once defined, the macro is referenced using its
name preceded by a tick. Undefines (`undef) remove the macro.

Example:
`define size 8
electrical [0:`size–1] out;

Includes (`include) are replaced by the contents of a file. It takes the filename as an
argument, which can either be specified with a relative or absolute path to the file.
Included files may include other files, etc.

Example: `include “disciplines.vams”

Sections of code can be conditionally ignored using the `ifdef directive. It takes a
macro name as an argument. If the argument is currently undefined, the text that fol-
lows is ignored up to a matching `else or `endif and accepted otherwise. If `else is
used, then the text between it and the matching `endif is ignored if the argument is
defined, and accepted otherwise.

Verilog-AMS supports a predefined macro to allow modules to be written that work
with both IEEE 1364-1995 Verilog HDL and Verilog-AMS. The predefined macro is
called __VAMS_ENABLE__.



Chapter 5  Language Reference

152

Example:
`ifdef __VAMS_ENABLE__

parameter integer del = 1 from [1:100];
`else

parameter del = 1;
`endif

When the `resetall compiler directive is encountered during compilation, all compiler
directives are set to their default values. This is useful for ensuring that only those
directives that are desired when compiling a particular source file are active. To do so,
place `resetall at the beginning of each source text file, followed immediately by the
directives desired in the file.

The `timescale compiler directive defines the time unit and the time precision for the
modules that follow it. The time unit and time precision is specified using either 1, 10,
or 100 followed by a measurement unit of either s, ms, us, ns, ps, or fs, which repre-
sents seconds, milliseconds, microseconds, nanoseconds, picoseconds, or femptosec-
onds.

Example:
`timescale 10ns / 1ns

The first value given specifies the units of time and the second specifies the precision.
The values affect the way delays are specified and the return value from the $realtime
function. Both are rounded to the time resolution and given in multiples of the time
unit. Thus, with the specification given in the example above, #55.79 corresponds to a
delay of 558ns (55.79 ×  10 ns rounded to the nearest 1 ns).

2  Data Types
This section starts with a discussion of the various types of constants and variables
available in Verilog-A/MS, and then presents signal types, including a discussion of
natures and disciplines.

2.1  Constants

2.1.1  Integers

Underscores are ignored in numbers, so 42_839 is equivalent to 42839.

Examples: 124, +124, –124, 42_839



2 Data Types

153

Except in Verilog-A, integer constants can be expressed in decimal, hexadecimal,
octal, or binary. To do so, use sb'fn; where s is an optional sign, either ‘+’ or ‘–’; b is
an optional decimal number that indicates the size of the constant in bits; f is the base
format and is either ‘d’, ‘h’, ‘o’, or ‘b’ for decimal, hexadecimal, octal, or binary; and
n is the number in the specified base. In hexadecimal numbers the letters ‘a’ through
‘f’ represent the digits 10 through 15. Letters in integer constants can be either lower
or upper case.

Examples:
63 unsized decimal number
'd63 unsized decimal number
'h3f unsized hexadecimal number
'o77 unsized octal number
'b11_1111 unsized binary number
12'h3f 12 bit hexadecimal number
–'h3f negative unsized hexadecimal number

The letters ‘x’ and ‘z’ can be given to denote unknown and high impedance digits in
all but decimal numbers, and ‘_’ is ignored. Sized constants for which the size is
larger than the given number are padded on the left with zeros unless the first digit of
the given number is an x or z, which are padded with the x or z. The number is trun-
cated on the left if the size is smaller than the given number.

Examples:
12'hx a 12 bit unknown hexadecimal number
64'o0 a 64 bit octal 0 (zero padded)
8'hfx equivalent to 8'b1111_xxxx
8'hfffx equivalent to 8'b1111_xxxx (truncated)
8'hx equivalent to 8'bxxxx_xxxx (x padded)

2.1.2  Reals

Real numbers must either include a decimal point or a scale factor. If a decimal point
is present, there must be digits on both sides. So .12, 9., 4.eE3, and .2e–7 are not valid
numbers. Underscores are ignored in real numbers. Scale factors are given in Table 2.

Examples: 3.14, 0.1, 1.2E12, 1.30e–2, 236.123_763_e–12, 1.3u, 5.46K  

Predefined numbers in the form of compiler directives are included in the file con-
stants.vams and listed in Table 3. Mathematical constants are denoted with a `M_ pre-
fix and physical constants use the `P_ prefix.



Chapter 5  Language Reference

154

2.1.3  Strings

Strings are a sequence of characters enclosed in double quotes. Table 4 lists the
escape sequences used to enter special characters into strings.

Example: “Hello World!\n” 

2.1.4  Vectors

A constant vector is created using the concatenate operator, which consists of bal-
anced braces surrounding a sequence of arguments given as expressions. It simply
combines its arguments into an array. The individual arguments may be scalars or
vectors, and the end result is a vector whose length equals the sum of the lengths of
each argument.

Examples:
{4, 8, 12, 16, 20}
{4, 2∗ 4, 3∗ 4, 4∗ 4, 5∗ 4}
{4.0, 8.0, {12.0, 16.0, 20.0}}

In addition, the replicate operator can be used to specify a sequence of repeated val-
ues. The replication operator is similar to the concatenation operator, except the lead-
ing brace is preceded with an integer count and then the whole construct is
surrounded with another set of braces. So {0, {2{1, 2}}} is equivalent to {0, 1, 2, 1,
2}

Vectors come in many forms. The examples above are numeric vectors, which can
consist of either integers or real numbers. One can also have vectors of bits, nets,
branches, instances and registers (referred to as memories).

TABLE 2  Scale factors for real numbers.

Multiplier Name Symbol Multiplier Name Symbol

1012 tera T 10–3 milli m

109 giga G 10–6 micro u

106 mega M 10–9 nano n

103 kilo K or k 10–12 pico p

10–15 fempto f

10d exponent ed or Ed 10–18 atto a



2 Data Types

155

2.2  Variables

Variables can be thought of as named registers that contain a value of a particular
type. They are initialized at the beginning of simulation to either zero or unknown as
appropriate and cannot be explicitly initialized when declared. They retain their value
until changed by way of an assignment statement. As such, they are different from
variables in programming languages such as C in that they retain their value even
when the flow of execution appears to leave their context (5§6.2.1p197).

TABLE 3  Predefined constants in constants.vams

Mathematical Constants

`M_PI π 3.14159265358979323846

`M_TWO_PI 2π 6.28318530717958647652

`M_PI_2 π/ 2 1.57079632679489661923

`M_PI_4 π/ 4 0.78539816339744830962

`M_1_PI 1/ π 0.31830988618379067154

`M_2_PI 2/ π 0.63661977236758134308

`M_2_SQRTPI 1.12837916709551257390

`M_E e 2.7182818284590452354

`M_LOG2E log2e 1.4426950408889634074

`M_LOG10E log10e 0.43429448190325182765

`M_LN2 loge2 0.69314718055994530942

`M_LN10 loge10 2.30258509299404568402

`M_SQRT2 1.41421356237309504880

`M_SQRT1_2 0.70710678118654752440

Physical Constants

`P_Q charge of an electron 1.602176462×10–19 C

`P_C speed of light 2.99792458×108 m/s

`P_K Boltzmann’s constant 1.3806503×10–23 J/K

`P_H Planck’s constant 6.626076×10–34 J-s

`P_EPS0 permittivity of a vacuum 8.854187817×10–12 F/m

`P_U0 permeability of a vacuum π ×  4.0×10–7 H/m

`P_CELSIUS0 0 Celsius 273.15 K

2 π⁄

2

1 2⁄

kundert
Text Box
Excerpted from "The Designer's Guide to Verilog-AMS" by Kundert and Zinke.For more information, go to www.designers-guide.com/Books.




