
The Designer’s Guide Community downloaded from www.designers-guide.org

paramset:
A Verilog-A/MS Implementation of
Spice .model Statements

Ken Kundert
Designer’s Guide Consulting, Inc.
Version 5, December 2004 The promise that comes from supporting compact modeling in Verilog-A/MS is the
release of the designers from the tyranny of proprietary models. However, that promise
is only half satisfied if we only support the model equations in Verilog-A/MS. While
having a industry standard language for expressing model equations is critically impor-
tant, it does not address the problem of proprietary .model files. To completely fulfill the
promise, we must provide non-proprietary industry standard equivalents to all of the
capabilities currently used in SPICE .model files. That includes support for the .model
statements themselves, plus support for process corners, Monte Carlo analysis, etc.

This proposal is geared at providing the capabilities in Verilog-A/MS needed to replace
the SPICE .model files, but in a way that is substantially more flexible.

This document contains the original paramset proposal that was used as the starting
point for the new paramset capability in Verilog-AMS vers. 2.2 (available from
www.verilog-ams.com). This proposal differs somewhat from what was eventually
implemented in the standard and so should only be used for guidance on what was orig-
inally intended.

Last updated on May 16, 2006. You can find the most recent version at www.designers-
guide.org. Contact the author via e-mail at ken@designers-guide.com.

Permission to make copies, either paper or electronic, of this work for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage and that the copies are complete and unmodified. To distribute other-
wise, to publish, to post on servers, or to distribute to lists, requires prior written permission.
Copyright © 2006, Kenneth S. Kundert – All Rights Reserved 1 of 17

http://www.designers-guide.org
http://www.designers-guide.org
mailto:ken@designers-guide.com
http://www.verilog-ams.com
http://www.verilog-ams.com
http://www.verilog-ams.com
http://www.designers-guide.org/
http://www.designers-guide.org/
mailto:ken@designers-guide.com
http://www.designers-guide.com/home.html

paramset: A Verilog-A/MS Implementation of Spice .model Statements SPICE .model statements
1.0 SPICE .model statements

SPICE provides the venerable .model statement to allow users to specify parameters that
would be common to many components once in one place. Generally it is used for semi-
conductor components, where there are a large number of process parameters that are
shared with all components of a certain type. On the individual instances of these com-
ponents, the user would generally only give geometrical parameters (such as width and
length). For efficiency, SPICE allows a .model statement to be associated with only one
type of component and hard-codes the parameters that it may take. That way the compo-
nent models may be compiled to expect parameters to be stored in a common place,
decreasing evaluation time and increasing storage efficiency.

Increasingly situations arise that the .model statement is not capable of handling effi-
ciently. The causes of the limitations are described next.

1.1 Inflexible partition between instance and model parameters

The implementor of the model decides a priori which parameters should be instance
parameters and which should be model parameters. This works in most cases, but the
increasing need for Monte Carlo analysis is causing problems. Monte Carlo analysis
generally requires a different partition. Typically one enters the ‘as drawn’ geometry
parameters on the instance, and then the parameters that are used to convert from the ‘as
drawn’ to the ‘effective’ geometry on the .model. Unfortunately, with Monte Carlo, you
want to model the instance-to-instance variation of things like undercut, which is
described using model parameters. This need for model parameters to vary on a per-
instance basis implies that the .model data structures must be duplicated for each
instances, with only a small number of parameters differing between all of the struc-
tures. This is tremendously expensive in terms of storage. It also adversely affects the
simulators initialization time and cache performance. With Monte Carlo, one would like
to re-partition the parameters, making some of the model parameters instance parame-
ters.

1.2 Parameters shared between many types of components

There are situations where users would like to specify parameters once to be shared
between many different types of components. This is true in electrical circuits, but has
not been a burning issue because there are generally only a small number of basic com-
ponent types, so it is not a burden to duplicate the shared parameters. However, there are
some situations where the number of component types that need the shared parameters
is very large and it would be too much of a burden to copy the shared parameters into
model statements for every type of component that would possibly be used. There are
two examples of this. First is the substrate parameters for distributed interconnect mod-
els. Here the shared information is the layer thicknesses, material properties of the sub-
strate, etc. The various models that might be supported include lines, bends, tees,
crosses, couplers, spirals, splitters, etc. The second example is MEMS. Again, it the
substrate parameters that need to be shared, but this time it includes the mechanical and
perhaps thermal properties of the substrate, along with the electrical and common geo-
metrical properties of the substrate needed by the distributed components. The type of
MEMS components include beams, gaps, anchors, and plates.
2 of 17 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Proposal paramset: A Verilog-A/MS Implementation of Spice .model Statements
1.3 Model levels

As a variation of the above, one might want to implement a collection of distinct but
related modules. Consider providing a family of MOS modules that all use the same
parameters, but are for different applications. One might provide a simple model for
digital circuits, and more accurate model for analog circuits, and a comprehensive
model for RF circuits. Currently, these would all have to be implemented in a single
model today if they are to share a model statement.

1.4 Binning

With binning, users would like to automatically select the model statement to be used
based on the value of various instance parameters. In this case, multiple model state-
ments must have the same name and must include a mechanism that will distinguish
between the model statements based on the values given for instance parameters.

1.5 Hierarchy

Recently, important effects that need to be modeled have been identified only after the
models have been released, and the groups that are responsible for defining the models
have been unable to enhance the models in a timely manner. For this reason, the models
have been supplemented by combining a collection of components into a model defined
hierarchically (as a subcircuit). In SPICE, subcircuits cannot accept model statements,
and so a subcircuit must be defined for every set of model statements that might be
needed to implement a distinct hierarchical model. While this is not a big problem, it
does represent extra work for the modeling group, especially when it comes time to
update the structure of the model.

2.0 Proposal

In this proposal, the concept of a model statement is introduced into Verilog-A/MS, but
in a way that is inherently more powerful than the approach used in SPICE. The goal is to
develop a set of extensions to Verilog-A/MS so that all of the fundamental capabilities
provided by way of a SPICE model file today can be provided by Verilog-A/MS.

2.1 Paramset

The proposal assumes that the model equations are contained in a module for which no
distinction is made between instance and model parameters. The SPICE model statement
will be formulated in a more Verilog-like syntax and renamed paramset. The name has
been changed from model to try to reduce the confusion that results when talking about
the model definition and the model parameters1. In addition, the SPICE model statement
is substantially enhanced by adding the concept of user defined parameters for the
paramset. These parameters will play the role of instance parameters.

1. The name paramset can be changed, however using model would create considerable
confusion because the parameters of the paramset become the instance parameters. If
the name were changed from paramset to model, then the model parameters would
become the instance parameters, which would be terribly confusing to SPICE users.
3 of 17The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

paramset: A Verilog-A/MS Implementation of Spice .model Statements Proposal
Each paramset will be associated with a particular module, and the parameters of the
module are accessible within the paramset. The paramset itself may have parameters,
which become instance parameters for those instances that reference the paramset. The
parameters of the module would be assigned values in the paramset. They might be con-
stants or constant expressions, as in Spice model cards. Or they could be functions of the
parameters of the module or the paramset.

Assume that a behavioral MOS model is defined called BSIM6 and consider the follow-
ing example:

paramset n180nm bsim6;
parameter real l=0.18u;
parameter real w=0.25u;

.as = .ad = 1u∗w;

.ps = .pd = 2∗(0.15u + w);

.type = “n”;

.vto = 0.25;

.kp = 20u;

.tox = 100n;

.nsub = 6.02e23;

.xj = 4e–7;

.vsat= 200k;

...
endparamset

In this example, I have defined a new composite statement in Verilog-A and Verilog-
AMS called a paramset. It contains parameter and variable declarations and assignment
statements. The first line of the statement contains the keyword paramset, the name of
the paramset, and the name of the underlying module for the paramset. The opening line
of the paramset is followed by the parameter declarations and then a series of state-
ments. As mentioned previously, all of the module parameters are accessible from
within the paramset. Any name preceded by a period (other that parameter names in
argument lists) is considered a module parameter. The paramset itself may have local
variables and parameters defined. The paramset can contain any type of statement that is
allowed in functions. In particular, it may contain assignments, conditionals, and itera-
tors.

To use a paramset, one simply uses the name of the paramset in lieu of the name of a
module when instantiating an instance of the underlying module. So in this case, rather
than using

l = 200n;
w=1u;
a = 1u∗w;
p = 2∗(0.15u + w);
bsim6 #(.l(l), .w(w), .as(a), .ad(a), .ps(p), .pd(p)) M1 (.d(n1), .g(n2), .s(n3), .b(n4));

one would use

n180nm #(.l(200n), .w(1u)) M1 (.d(n1), .g(n2), .s(n3), .b(n4));

The paramset parameters completely replace the module parameters (one cannot specify
module parameters on an “instance” of a paramset).
4 of 17 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Proposal paramset: A Verilog-A/MS Implementation of Spice .model Statements
With the proposal as it currently exists, we have a proposal that adds the concept of
SPICE model parameters to Verilog-A/MS. In addition, it offers the following advan-
tages:

1. Rather than a hard coded partition of the parameters between instance and model,
the user can specify which parameters should be available to be specified on the
instance statements.

2. Since the number of instance parameters can be minimized, the memory require-
ments are reduced.

Despite these advantages, the proposal so far does not address all of the issues described
in Section 1.0. However, it can be enhanced. First consider the problem of defining a set
of parameters that can be shared with devices of different type.

2.2 Constants Module

Consider the case of trying to model a system constructed from MEMS components.
Here there are technology parameters that ideally would be shared between multiple
components; parameters such as material and layer information (mechanical, thermal,
and electrical properties). To implement this, assume that a module is created at the top-
level of the design that contains only constants. Then, one could use Verilog’s “out-of-
module references,” or OOMRs, to access these values from the various paramsets and
modules that define the available component models.

As a simple example of how this might work, assume that the following module

module semico250nmCMOS;
localparam real tox=100n;
localparam real nsub=6.02e23;
...

endmodule;

is defined and is instantiated at the top level using

semico250nmCMOS process;

This creates a common place to place the technology parameters. They can be used
through out the language, and particularly in paramsets and module definitions, by giv-
ing the full path to the constants. For example,

tox = process.tox;

This proposal use the localparam modifier as a way of indicating that the value is a con-
stant. Localparams act like parameters in the sense that their value must be given when
defined and that value cannot be changed within the module, but they cannot be set by
passing values into the module when instantiating it. Parameters must be used because
variables are not set at elaboration time. In addition, variables currently cannot be the
target for OOMRs, because in other situations they could create ambiguous results since
the value they export would depend on when the module was evaluated relative to when
the OOMR was evaluated. The use of localparams is not required. One could instead use
input parameters, which would allow their value to be overwritten when instantiated.

This same approach can be used to support Monte Carlo simulations. Here we assume
that the random variables are defined in a block that externally looks like a constants
module. Additional information would be needed to describe the statistics of the random
5 of 17The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

paramset: A Verilog-A/MS Implementation of Spice .model Statements Proposal
variables, such as variance, distribution, correlation, etc. Whether that block is defined
inside the Verilog-A/MS or outside, the values can be accessed using a hierarchical
name.

2.3 Output Variables

With the proposed extensions to Verilog-A/MS to support compact modeling, one can
declare certain variables to be output variables by giving them a description. In other
words, the act of giving a variable a description marks the variable as interesting and
makes it available for output. This is done as follows,

real gm ---“Transconductance”;

Once marked for output its name and value is now available to the simulator for inclu-
sion into operating point reports, etc.

This same idea is also available within paramsets. Additional output variables can be
defined within a paramset, and their values can be made functions of module and
paramset parameters or of output variables from either the module or the paramset. This
implies that it is possible to read the value of an output variable for the module from
within the paramset, but it is not possible to write it. As such, a module output variable
must not be the target of an assignment statement within a paramset. However, it is pos-
sible to declare a local variable within the paramset that has the same name as an output
variable of the module, and in doing so the local variable will take the value of the out-
put variable, but it can be locally overwritten. Whether the local variable is an output
variable will depend on whether it has a description. So, this provides a mechanism for
either hiding undesired module output variables or modifying the values and descrip-
tions of the module’s output variables.

The following example assumes that gm, cpi, and cmu are output parameters for the
base module and the following statements are found within a paramset to create an addi-
tional output parameter ft. They declare ft as being output parameters for the paramset
and then computes its value.

real ft ---“Transition frequency”;
ft = .gm/(2∗‘M_PI∗(.cpi+.cmu));

2.4 Binning

In order to support different versions of a model, such as might be the case when param-
eter binning is employed, make the following enhancements to the existing proposal

1. Assume that different paramsets with the same name, yet different parameter decla-
rations, can coexist in the same design.

2. Assume that the parameters to the paramset can take range limits, and that if more
than one paramset exists with the same name and parameters, range limits must be
provided on the parameters so that the domain of each paramset can be distin-
guished.

3. That paramsets can hierarchically refer to other paramsets. In this way a paramset
refers to a master, which may be either a module or another paramset.

The idea is that an instance will point to a “group” of paramsets (all of which have the
same name), and that the paramset used can be determined by the value of the parame-
6 of 17 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Proposal paramset: A Verilog-A/MS Implementation of Spice .model Statements
ters specified on the instance. Consider the following paramset, and assume that it is one
of many with the same name, and that each has the same parameters, but different range
limits for at least some of those parameters.

paramset n180nm bsim6;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
localparam real area=l∗w from [0.0,5p);

.as = .ad = 1u∗w;

.ps = .pd = 2∗(0.15u + w);

.type = “n”

.vto = 0.25;

.kp = 20u;

.tox = 100n;

.nsub = 6.02e23;

.xj = 4e–7;

.vsat= 200k;

...
endparamset

This is the same paramset given on page 4 except that range limits have been added to
several parameters, and that a new parameter has been defined. In particular, range lim-
its were added to l and w and a new localparam area has been added.

If an instance statement like the following were encountered

n180nm #(.w(1u)) m1 (.d(n1), .g(n2), .s(n3), .b(n4));

it would use the paramset given above because the value given for w=1μ is within the
specified range for that parameter. If w were set to a value outside the range of this
paramset, say to 30μ, then another paramset would be used. If no paramset with the
name n180nm supports this value, an error is issued. In this way, binning is provided.

The localparam area shows how a more sophisticated form of binning is implemented.
In this case, the selection is based not just on the values of individual parameters, but
based on some function of multiple parameters. For example, the following instance

n180nm #(.l(0.25u), .w(25u)) m1 (.d(n1), .g(n2), .s(n3), .b(n4));

would not use the paramset given above because the area is not within the specified lim-
its.

Following this approach directly might result in many of the same parameter values
given in multiple paramsets. To avoid this, the paramsets can be arranged hierarchically,
with the common parameters given in the common paramset, and only those parameters
that are different between the various bins given on the top-level paramsets. Then, a
paramset may refer to either a module or another paramset.

2.5 Model Levels

The current trend with models is to make them more accurate and more complete, but
this also results in them being more expensive in terms of both the time required to eval-
uate them and the memory they require. To address this, the models themselves are
becoming partitioned into multiple versions with a varying capabilities. A relatively
7 of 17The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

paramset: A Verilog-A/MS Implementation of Spice .model Statements Proposal
simple stripped down version might be used early in the design process or in less
demanding parts of the circuit. More complicated and comprehensive versions would be
used during the verification process, particularly on more sensitive circuits. In addition,
one can imagine models being tailored for particular applications. There might be a ver-
sion where the temperature effects are modeled in great detail that is preferred for bias
circuits, and one in which the dynamic behavior is carefully modeled for high frequency
or high speed applications.

There are two way in which one might want to support different versions of a model. In
the first, the model itself is developed as a family of models, and it is simply a matter of
passing in a parameter, such as a level parameter, into the model to indicate which ver-
sion should be used. In the second, one might wish to use different models for each ver-
sion. For example, one might want to use MOS0 for the simplest and fastest model and
BSIM4 for the most complex. Of course, the user could do this today by specifying the
master name for each instance such that they get the desired level, but such is a very bur-
densome and error prone process. Ideally, the user would give one master name that
refers to a family of models, and the actual model used would depend on instance
parameters, global parameters, etc. This can be done with paramsets if we extend them
in the following way:

1. Assume that different paramsets with the same name can associated with different
modules. For example, there could be two paramsets named nmos, one of which is
associated with a module named MOS0 and the other is associated with a module
named BSIM4.

2. Assume that the parameters to the paramset can take discrete values from a finite
range. For example, the parameters could be of string type, and that the range could
be a list of legal strings.

3. Assume that the default value for a parameter may fall outside the valid range given
for that parameter.

4. Assume that when multiple paramsets are present that share the same name, the
presence or absence of parameter can be used to determine which paramset is used.

Consider the situation where one wants to use either MOS0 or BSIM4 based on a param-
eter passed in by the user. In this case one might use ...

paramset n250nm mos0;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
parameter string vers=“analog” from {“digital”};
...

endparamset

paramset n250nm bsim4;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
parameter string vers=“analog” from {“analog”};
...

endparamset

Here we have two paramsets with the same name that both accept a parameter vers that
takes a default value of analog. When the user creates an instance that refers to n250nm,
then one of these two paramsets will be used depending on whether vers was given, and
8 of 17 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Proposal paramset: A Verilog-A/MS Implementation of Spice .model Statements
if so, what value was used. If vers was given as analog, then the BSIM4 version is used as
it is the only paramset that will accept analog as a legal value for vers. If vers is given as
digital, then the MOS0 version is used. And if vers is not given, then again the BSIM4
version is used as it is the only paramset for which the default value for vers is a legal
value.

Alternatively, one might want to choose which model to use based on the current phase
of the design process, with the idea that simpler models are used early in the design pro-
cess and more complete models used later. In this case one might use ...

module design;
parameter string phase=“initial design” from {“initial design”, “final verification”};
...

endmodule;

paramset n250nm mos0;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
localparam string phase=design.phase from {“initial design”};
...

endparamset

paramset n250nm bsim4;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
localparam string phase=design.phase from {“final verification”};
...

endparamset

Finally, one might want to use a different paramset based on the presence or absence of
parameters. For example, before layout one can generally just specify w and l for tran-
sistors, with things like as, ad, ps, and pd being approximated from w and l. However,
after layout the actually values for as, ad, ps, and pd are known and should be accepted
by the model. In this case, supporting the extra parameter increases the memory
required to represent each instance, which acts to slow simulations and reduce the
capacity of the simulator. One can avoid this extra expense when it is not needed using

paramset n180nm bsim6;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);

.as = .ad = 1u∗w;

.ps = .pd = 2∗(0.15u + w);

...
endparamset

paramset n180nm bsim6;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
parameter real as=50f from [0,inf);
parameter real ad=50f from [0,inf);
parameter real ps=1u from [0,inf);
parameter real pd=1u from [0,inf);
...
9 of 17The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

paramset: A Verilog-A/MS Implementation of Spice .model Statements Proposal
endparamset

In this case, an instance for which a value was specified for either as, ad, ps, and pd
would use the second paramset, all others would use the first.

2.6 Paramset Resolution Criteria

When providing several paramsets with the same name, it may happen that several
would be suitable for use with a particular instance. This may occur when the parame-
ters specified on an instance are compatible with multiple paramsets. An example would
be if an instance of n180nm, whose paramsets are defined immediately above, were
specified with only values given for l and w. In this case, the instance would be compat-
ible with either of the two paramsets given above. A different situation would be if mul-
tiple paramsets supported the same parameters, but had range limits on those parameters
whose ranges overlapped. In either case a single instance would be compatible in multi-
ple paramsets. However, in the second case the developer of the paramsets has the abil-
ity to eliminate the ambiguity if so desired by eliminating the overlap in the range limits.
It is not possible to avoid the ambiguity in the first case. As such, additional paramset
resolution rules are enforced to allow the ambiguity to be eliminated if desired.

The paramset resolution algorithm is:

For each instance,

1. Find all paramsets for which

a) the parameters overridden on the instance are parameters of the paramset

b) the parameters of the paramset, with overrides and defaults, are all within the
allowed ranges

c) the localparams of the paramset, computed from parameters, are within the
allowed range

2. choose the paramset which has the fewest number of un-overridden parameters

3. choose the paramset with the greatest number of range limited localparams

Even with this algorithm, there is no assurance that the ambiguities of the type given in
the first case are eliminated. For example, an instance with a parameter α might be asso-
ciated with two paramsets, the first accepts instances with parameters α and β, and the
second with parameters α and γ. In this case, either paramset could be used. However
the ambiguity can be eliminated if desired by adding a third paramset that only accepted
instances with a parameter α.

2.7 Corners

Providing different model parameter sets for different process corners is possible using
the concepts already presented. Consider adding a corner field to the design constants
module defined above (page 10).

module design;
parameter string corner=“tt” from {“ss”, “tt”, “ff”, “sf”, “fs”};
...

endmodule;

paramset n250nm bsim4;
10 of 17 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Proposal paramset: A Verilog-A/MS Implementation of Spice .model Statements
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
localparam string corner=design.corner from {“tt”};
...

endparamset

In this case, the paramset would be used because the value of design.corner is allowed
by the range limit for the corner localparam in the paramset.

2.8 Paramsets of Paramsets

As defined so far, paramsets reference modules. Paramsets can also refer to other
paramsets. In this way, on can define a base paramset and then use another paramset to
refine it. For example, one could define a paramset for a MOS model that defines the
traditional instance parameters, w, l, as, ad, ps, pd, etc. Then, another paramset could be
defined that offers only w and l as instance parameters, with as, ad, ps, and pd being
computed from w and l.

Another application would be to reduce the amount of redundant specification of model
parameters when supplying a set of corners. In this case, a base paramset gives all
parameter values that are shared between all the corners, and then a paramset is used to
specify each corner, as follow

paramset n250nm n250nm_base;
...
localparam string corner=design.corner from {"tt"};
.vth0 = vth0_tt;
...

endparamset

paramset n250nm n250nm_base;
...
localparam string corner=design.corner from {"ff"};
.vth0 = vth0_ff;
...

endparamset
...

paramset n250nm_base bsim4;
...
parameter vth0 = 0.3;
...

endparamset

2.9 Hierarchy

With SPICE, a .model statement can only be associated with a primitive component (a
built-in). With Verilog-A/MS a module can contain both behavior and structure, so it has
combined the concept of a subcircuit and a primitive. As such, paramsets (the proposed
equivalent to .model statements for Verilog-A/MS) can be naturally applied to both
structural and behavioral models. In addition, since the paramsets are used to implement
model levels, models at different levels could have a different character. For example,
11 of 17The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

paramset: A Verilog-A/MS Implementation of Spice .model Statements Proposal
the simpler models could be purely behavioral whereas the more complicated models
could be composites of other models, or in fact, they could be small circuits.

2.10 Monte Carlo

With Monte Carlo, the parameter values are taken to be functions of some random vari-
ables. For the moment I will assume that some mechanism it defined to allow us to
define those random variables, with the actual mechanism described later. I will further
assume that from the paramset, the values of the random variables are accessed in the
same manner as one would access the values given in a constants module.

Start by assuming that object named statistics is defined that contains the declaration for
a collection of random variables (described in the next section), partitioned between
process variables (value is shared for all instances where it is used) and mismatch vari-
ables (each use of the variable gets draws a different value). Assume further that the sta-
tistics object declares the statistical averages, the distributions associated with each
variable, and the correlation between variables. Then, providing instances whose param-
eters vary as a function of these random variables is simply a matter of using the vari-
ables when specifying the paramsets.

paramset n180nm bsim6;
parameter real l=0.18u from [0.1u,0.25u);
parameter real w=0.25u from [0.1u,25u);
localparam real area=l∗w from [0.0,5p);

.as = 1u∗w + statistics.da;

.ad = 1u∗w + statistics.da;

.ps = 2∗(0.15u + w) + statistics.dp;

.pd = 2∗(0.15u + w) + statistics.dp;

.ld = 50nm + statistics.dld

.type = “n”

.vto = 0.25 + statistics.dvto;
kp = 20u + statistics.dkp;
.tox = 100n;
.nsub = 6.02e23;
.xj = 4e–7;
.vsat= 200k;
...

endparamset

Several, but not all, of the random variables used in the above paramset, would be mis-
match variables. As the value for these would be different for every instance, they would
be identified and treated internally in a way that is very similar to paramset parameters
as they will be different for every instance.

2.11 Statistics Blocks

Statistics blocks are used to define random variables that are used to describe the statis-
tical variations in component parameters. A statistics block can contain any statement
that can be found in a function declaration. In addition, it contains named or unnamed
“process” and “mismatch” blocks. Process blocks are used to specify values for random
variables that exhibit a batch-to-batch type variations, and mismatch blocks specify the
12 of 17 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Proposal paramset: A Verilog-A/MS Implementation of Spice .model Statements
values for random variables that exhibit on-chip or device mismatch variations. Gener-
ally one declares a collection of variables within the statistics block and give those vari-
ables within the process or mismatch blocks. These variables are accessed from foreign
modules with their hierarchical name. The process blocks are reevaluated once every
simulation run whereas the mismatch blocks are reevaluated every time one of its vari-
able values is accessed. Generally the values of the variables are the result of a call to a
random function, and every evaluation of the block changes the values of its variables.

During a Monte Carlo analysis, the variables specified in the process block are updated
once per Monte Carlo iteration, and are used to represent batch-to-batch or process vari-
ations, whereas the variables specified in the mismatch block are updated on a per-use
basis and are typically used to represent device-to-device mismatch for devices on the
same chip.

statistics sh3stats;
real vto, rsh, tox, kdxl, rshsp, xisn, xisp;
integer seed;
seed = 5430932;
process begin

vto=rdist_normal(seed, 0.5, 0.1);
rsh=rdist_normal(seed, 100, 12);
tox=ln(rdist_normal(seed, 1e–8, 1e–9));
kdxl=rdist_uniform(seed, 15e–9, 25e–9);

end
mismatch begin

rshsp=rdist_normal(seed, 25, 2);
xisn=rdist_normal(seed, 10, 0.5);
xisp=rdist_normal(seed, 10, 0.5):

end
endstatistics

It is possible to create correlated random variables by using linear combinations of inde-
pendent random variables.

2.12 Hierarchical Virtual Parameters

In addition to the parameters that are declared on a paramset, 7 hierarchical virtual
parameters are accepted and accessible. In Verilog-A/MS, any parameter that begins
with a $ shall be considers a virtual parameter. These are parameters that are accepted
by instances of all types of modules, but are not explicitly declared in the module defin-
tion. Currently, 7 such parameters are accepted: $m, $n, $x, $y, $angle, $vflip, and
$hflip.

1. The value of $m is intended to contain the shunt multiplicity factor for a module (the
number of identical devices that should be combined in parallel and modeled). $n is
the serial multiplicity factor (the number of identical devices that should be com-
bined in series and modeled; this may only make sense for two terminal devices). $x
and $y are the offsets of the location of the center of the device relative to the center
of the context in which it exists (in meters). $angle is the rotation of the device rela-
tive to the context in which it exists (in degrees CCW). Finally, $vflip and $hflip
specify the device is flipped either vertically or horizontally ($vflip specifies a verti-
cal flip which would be about a horizontal axis (before rotation)).
13 of 17The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

paramset: A Verilog-A/MS Implementation of Spice .model Statements Proposal
2. These parameters are predefined and have values for all instances. If not otherwise
set, the values are $m = 1, $n = 1, $x = 0, $y = 0, $angle = 0, $vflip = 1, and $hflip =
1.

3. The values of $m, $n, x, y, and $angle are all real numbers. The value of $vflip and
$hflip are either –1 or +1.

4. The values are available within paramset or a module. The values are a function of
both the value of the parameters specified on the associated instance statement and
on the value of the parameter within the hierarchical context in which the instance is
found. The resolved values within the paramset or module are given by the following
relationships

$mresolved = $mspecified × $mhier (1)

$nresolved = $nspecified × $nhier (2)

$xresolved = $xspecified + $xhier (3)

$yresolved = $yspecified + $yhier (4)

$angleresolved = mod360 ($anglespecified + $anglehier) (5)

$vflipresolved = $vflipspecified × $vfliphier (6)

$hflipresolved = $hflipspecified × $hfliphier (7)

5. The output of every current source in the analog blocks is multiplied by the resolved
value of $m of the paramset/module that contains the block. The value returned by
every current probe within an analog block is divided by the resolved value of $m
associated with that block.

6. The output of every voltage source in the analog blocks is multiplied by the resolved
value of $n of the paramset/module that contains the block. The value returned by
every voltage probe within an analog block is divided by the resolved value of $n
associated with that block.

7. Parameters are applied to an instance in the following manner,

M1 #(..., .$m(2)) bsim6 (...)

(we also should consider using $m(2) rather than .$m(2) as a way of shortening the
parameter list).

8. The value of hierarchical parameters are accessed from within a module or paramset
in the following manner,

real m = $m;

The idea with these parameters is that the size, location, and orientation of every
instance can be specified relative to the size, location, and orientation of the block in
which it is found. In this way, once the size, location, and orientation its parent is know,
then its size, location, and orientation is also known.

The parameters $m and $n directly affect the behavior of the modules by implicitly
affecting the behavior of the access functions. The other hierarchical parameters would
only affect the behavior of the module if their values were explicitly included in the
behavioral description.
14 of 17 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Proposal paramset: A Verilog-A/MS Implementation of Spice .model Statements
2.13 Statistical Descriptions from Layout

With the constructs available it is possible to describe statistical mismatch variations in
component parameters as a function of size, location, and orientation of devices as
placed in the layout. Consider the parameter drho which is assumed to vary linearly
across the die, with a random slope. This can be modeled using 4 random variables,
drho00, drho01, drho10, and drho11. Then the value of drho at x and y would be

drho(x, y) = (1 – x)drho00 + x × drho10 + (1 – y)drho01 + y × drho11 (8)

This would be an approximation to the value of drho that would be used for a device
with a center that falls at x, y. This approximation can be improved by including correc-
tions for size (m and n) and orientation (angle). For example, drho(x, y) might become

drho(x, y) = [(1 – x)drho00 + x × drho10 + (1 – y)drho01 + y × drho11]/sqrt(m × n) (9)

This could be described with statistics blocks and paramsets in the following way

statistics rhostats;
process begin

rho00=gauss(.mean(100), .std(20));
rho01=gauss(.mean(100), .std(20));
rho10=gauss(.mean(100), .std(20));
rho11=gauss(.mean(100), .std(20));

end
mismatch begin

drho=gauss(.mean(0), .std(5));
end

endstatistics

paramset n180nm bsim6;
...
rho = rhostats.drho/sqrt($m∗$n) + (

(1 – $x)∗(1 – $y)∗rhostats.rho00 + $x∗(1 – $y)∗rhostats.rho10 +
(1 – $x)∗$y∗rhostats.rho01 + $x∗$y∗rhostats.rho11

);
...

endparamset

Then a matched quad of devices in the configuration shown on the
right can be instantiated as follows,

n180nm #(..., .$x(–2), .$y(4), .$angle(0)) I1 (...)
n180nm #(..., .$x(4), .$y(2), .$angle(90)) I2 (...)
n180nm #(..., .$x(2), .$y(–4), .$angle(180)) I3 (...)
n180nm #(..., .$x(–4), .$y(–2), .$angle(270)) I4 (...)

In this way the matching of the 4 devices as a function of their placement and orienta-
tion is automatically determined. In this example, the orientation is never used. This is
because rho varies linearly across the chip. It would come into play if the variation were
more a more complicated function of location.

I1
I2

I3

I4
15 of 17The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

paramset: A Verilog-A/MS Implementation of Spice .model Statements Implementation
3.0 Implementation

In SPICE, component parameters were partitioned into instance and model parameters
for reasons of both user convenience and for efficiency. The efficiency came from the
fact that many parameters can be placed in a single data structure that is shared between
many instances, thereby reducing the memory required for the simulation. The model
flow for this methodology is shown in Figure 1.

In this proposal, the partition is determined by the paramset, which is independent of the
module description. It is the paramset parameters that act as the instance parameters, all
others are model parameter. So given that the partition between instance and model
parameters is not specified when the module is written, how is the efficiency of SPICE
maintained? One possible way is to compile a version of the model for each paramset
used as shown in Figure 2. Thus, the behavioral model description would be combined
with each of its paramsets and compiled generating a implementation of the model for
each paramset. This has the benefit of creating smaller more efficient model implemen-
tations as paramsets generally have many fewer parameters than the underlying model
description. The values of the extra parameters of the model description are constants,
and so can be “compiled away”. Thus, their values need not be saved in the internal data
structure for the instance and many of the model equations that use these values can be
simplified by pre-evaluation using the known values.

4.0 Compatibility with Existing Model Files

To assure rapid adoption, it will be necessary for Verilog-A/MS to be compatible with
existing SPICE model files. There is a tremendous amount of investment in those files,
and they will not be replaced quickly, if ever. So from a practical perspective a Verilog-
A/MS simulator must be able to either directly read existing model files, or it must be

FIGURE 1 Traditional SPICE model flow.

FIGURE 2 Proposed model flow.

Model
Description Compiler

Model
Implementation

Model
Parameters

Netlist

Simulator
Engine

Netlist

Model
Description Compiler

Model
Implementation

Simulator
Engine

Model
Parameters
16 of 17 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Summary paramset: A Verilog-A/MS Implementation of Spice .model Statements
possible to write an automatic translator. Fundamentally it should be possible to do
either as long as Verilog-A/MS does not need information that is not available from in
the model files. And in fact, there is one such piece of information, and that is the choice
of which parameters should be instance (paramset) parameters. In SPICE, this informa-
tion is contained within the simulator and is not available from the model files. As such,
in order to enable the translation of SPICE model files, an extra file is needed, one that
contains the list of instance parameters. This file should be very small and easy to cre-
ate, and so is not considered a material barrier. Since it is not needed in a purely Verilog-
A/MS implementation, the format of this file is not described. Instead, the format would
be defined for each implementation by the vendor. It is hoped that easily translation of
SPICE model files to Verilog-A/MS files will encourage a quick migration away from
proprietary formats to industry standard formats.

5.0 Summary

In this proposal, the larger issue of the SPICE modeling infrastructure is addressed. A
proposal is made that attempts to support all of the capabilities needed in today’s SPICE
model files. This was needed to assure that modeling infrastructure in the future is as
simulator neutral as possible. The ideas is that once Verilog-A/MS becomes a viable
language for compact modeling (once efficient robust implementations of the Verilog-
A/MS extensions for compact modeling become available and are adopted), then found-
ries would provide model parameters that support all of the normal capabilities (bin-
ning, corners, Monte Carlo, levels, etc.) as they do today, but they would do it in an
industry standard simulator neutral format that includes the definition of the models
themselves. In this way, the models would be released with the process, would likely be
tailored for the process, and would be usable in a wide variety of simulators, and each of
the simulators would interpret the models in the same way and would have access to all
of the model’s features.
17 of 17The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

	1.0 Spice .model statements
	1.1 Inflexible partition between instance and model parameters
	1.2 Parameters shared between many types of components
	1.3 Model levels
	1.4 Binning
	1.5 Hierarchy

	2.0 Proposal
	2.1 Paramset
	2.2 Constants Module
	2.3 Output Variables
	2.4 Binning
	2.5 Model Levels
	2.6 Paramset Resolution Criteria
	2.7 Corners
	2.8 Paramsets of Paramsets
	2.9 Hierarchy
	2.10 Monte Carlo
	2.11 Statistics Blocks
	2.12 Hierarchical Virtual Parameters
	2.13 Statistical Descriptions from Layout

	3.0 Implementation
	4.0 Compatibility with Existing Model Files
	5.0 Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

