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INTRODUCTION
TO DIGITAL FILTERS

A digital filter is a digital signal processor that converts a sequence of
numbers called the input to another sequence of numbers called the output.
Many theoretical concepts of digital filtering have been known since the days
of Laplace. However, the technology of that time could not utilize this body
of knowledge. As digital computers came onto the scene, digital filters began
to proliferate. Seismic scientists made notable use of digital filtering concepts
to solve many interesting problems. Picture processing uses digital filtering
techniques to improve the clarity of pictures obtained from remote sensings,
interplanetary communications, and x-ray films. Other areas of applications
include speech processing, mapping, radar, sonar, and various fields of
medical technology.

A digital filter can be implemented as software, such as a subroutine on a
digital computer, or as hardware, such as a circuit containing registers,
multipliers, and summers. For a number of years, software implementation
was the only possible mode of performing digital filtering. Today, software
implementation is still the dominant mode. Large-scale digital filters are
invariably implemented on a general-purpose or a special-purpose digital
computer. However, the rapid development of very large-scale integrated
circuit technologies have opened up the area of hardware implementation
of digital filters. Currently, the industry can produce adders, shift registers,
and multiplier chips needed for the hardware implementation of digital
filters at reasonable cost. In addition, general-purpose digital signal pro-
cessing chips and number-crunching microprocessors are on the horizon.
In view of the past history of the IC industry, it is foreseeable that these
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components may cost much less and perform much better in the future.
Consequently, hardware and software implementations may be combined
together to yield low-cost and yet efficient digital filters.

11-1 DIGITAL SIGNALS AND SYSTEMS

As mentjoned in Chapter 1, a filter is a signal processor that enhances
some signals and attenuates others. A signal may be a continuous function of
an independent variable, which we usually call time, such as voltage and cur-
rent waveforms in analog filters. These signals are called continuous-time
signals. On the other hand, a signal may be defined for a finite or at most a
countably infinite number of time instants only. This type of signal is called a
discrete-time signal. Some examples of discrete-time signals are: the annual
GNP of a nation shown in Fig. 11-1(a), the monthly unemployment rate in
Fig. 11-1(b), the population chart of a small village shown in Fig. 11-1(c),
and the monthly automobile production of a company in Fig. 11-1(d). Among
the main sources of discrete-time signals are those obtained by sampling a
continuous-time signal. A case in point is shown in Fig. 11-2.

Digital signals are discrete-time signals whose values are quantized. The
output of an A/D converter, which samples a continuous-time input signal
and generates a sequence of finite-length binary numbers, is a typical digital
signal. The essence of an A/D converter is shown in Fig. 11-3(a). If the sam-
pler samples at the rate of one sample per usec. and the quantizer has an
input-output relationship as given by Fig. 11-3(b), then given a continuous-
time signal %(¢) as in Fig. 11-3(c), the corresponding discrete-time signal
x,(nT) and the output digital signal x(nT) are shown, respectively, in Figs.
11-3(d) and (€). Some other typical digital signals are those shown in Fig.
11-1(c) and (d), where the quantized levels are respectively per person and
per car. Strictly speaking, digital computers can handle digital signals only.

Because there are only a finite number of quantized signal levels, errors
arise in any system that handles digital signals. Consequently, one of the
design considerations of a digital filter is the number of bits or the number
of quantized levels needed to represent a digital signal. The larger the number
of bits used, the more accurate the representation of the signal and the
costlier the filter. Clearly, there is a trade-off between accuracy and cost.

In this book, we do not consider the quantization effect of a digital filter.
This essentially means that we have an infinite-bit representation of numbers.
Thus, we treat digital signals as if they are discrete-time signals. In other
words, we make no distinction between the words “discrete-time” and
“digital,” and we use the word “digital” hereafter.
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Fig. 11-2 Sampling of a continuous signal. (a) A con-
tinuous signal, (b) Its corresponding sampled sequence.

No matter how they arise, digital signals can be considered as sequences
of numbers. The notations used to describe digital signals are!

x(n) or {x(n)} (11-1a)

1Strictly speaking, {x(n)} denotes the complete sequence, and x(#) denotes the sequence
value at the nth point. However, for convenience, we use both x(#) and {x(#n)} to denote the
sequence of x.

In this book, we consider one-dimensional digital sequences only. That is, the values of
the sequences depend on one independent variable only.
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Fig. 11-3 The function of an A/D converter. (a) Schematic.
(b) Input—output relationship of the quantizer.

and
x(nT) or {x(nT)} (11-1b)

Note that (11-1b) applies to signals with uniform time intervals, whereas
(11-1a) applies to signals with uniform as well as nonuniform time spacings.?
Some important sequences are:

1. the unit impulse sequence d(n) defined by
om)=0 n+~0

11-2
=1 whenn=20 ( )

2We consider exclusively digital signals with uniform time spacings ounly. For those
who are interested in systems where the time intervals between signal samples are not
identical, please consult Reference {23].
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Legend: Q(t) = continuous-time signal, input to the A/D converter.
x{nT) = discrete-time signal, output of the sampler.
x{nT) = digital signal, output of the A/D converter.

Fig. 11-3 (c), (d), and (e) An example.

Observe that a sequence x(n) given by

x(m} ={. .., x(=1), x(0), x(1), ...}

can be written in terms of the unit impulse sequence as
x(n) = k_i x(k) 6(n — k) (11-3)
2. the unit step sequence u(n) defined by

u(n) =1 whenn>0

11-4
=0 whenn <0 ( )
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Based on the definitions in (11-2) and (11-4), the relationships be-
tween the unit impulse and the unit step sequences are
um) = 3 6k , (11-52)
k=—ca
8(n) = u(n) — u(n — 1)  (11-5b)
3. an exponential sequence

x(n) = a" whenn>0
(11-6a)

=0 whenn<0

where a may be real or complex. Note that an exponential sequence
can be expressed as

x(n) = a™u(n) (11-6b)
4. sinusoidal sequences with period P

x,(n) = A, cos 2nn/P) (11-7a)

X,(ny = A, sin 2nn/P) (11-7v)

If P is a positive rational number, say P = a/f, where both & and f
are two relatively primed positive integers, then the sequences in (11-7)
repeat every o sample. That is,

x,(n) = x,(n + ma) (11-8)

where k = 1,2 and m is an integer. On the other hand, if P is an
irrational positive number, then the sequences in (11-7) do not repeat
themselves. Therefore, sinusoidal digital sequences are nof necessarily
periodic sequences.

Just like continuous-time functions, digital signals or sequences are sub-
jected to arithmetic operations. Let x £ {x(n)} and y 2 {y(n)} be two se-

quences, and let o be a scalar. Then we define:

1. sum and difference of two sequences

x £ y £ {x(n) £ y(m)} (11-9a)
2. multiplication of a sequence by a scalar
ax 2 {ax(n)} (11-9b)
3. multiplication and division of two sequences
xy £ {x(n) y(n)} (11-9¢)
2 x(m)y(m)} (11-94)

J
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In the “time” domain, a digital system is characterized by a set of dif-
ference equations.® This means that given an input sequence and the initial
conditions of the system, the set of difference equations will yield a unique
output sequence.* For example, consider the system characterized by

ym) —ay(n — 1) = x(n) (11-10a)
y(0) =1 (11-10b)

where }c(n) and y(n) are, respectively, the input and the output sequences as
shown in Fig. 11-4. If the input sequence is a unit step

x(n)=1 forn>0

11-11)
=0 forn<0 (
Input sequence x(n)
o yin) =ay(n—1) + x(n) >
y(0) =1 Output sequence y(n)
(a)
y(n)
> S >
x(n)
(b)

Fig. 11-4 A digital system. (a) A specific case. (b) A general case.

then the output sequence can be computed from (11-10) for n= 1,2,
.as

y() = ay(0) + x(1) = a 4 1
y@) =ay() +x@@Q) =a(a+1)+1
=a>+a+1
(11-12)

y(k) = ay(k — 1) + x(k)

i=0

=ak+ak"+ak‘2+...—i—1=(ia")

3Recall that a continuous-time system such as that of an active or a passive RLC circuit
is characterized by a set of differential equations in the time domain.

4In this book, all difference equations are assumed to be linear and time-invariant.
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If | a| < 1, then (11-12) can be written as

0= (%)= () - (£,)

_ (; ai) gk (Jz::o af> (11-13)
=(1-e) (S ) =

Basically, a single-input single-output digital system S is an algorithm
for converting one sequence of numbers to another sequence of numbers, as
shown in Fig. 11-4(b), where the input sequence is called x(n) and the output
sequence is called y(n). Let y,(n) and y,(n) be, respectively, the zero-state
responses’® due to the input sequences x,(#) and x,(7). Then S is said to be
linear if the zero-state output sequence y(n) due to the input sequence

x(n) & a,x,(n) + a,x,(n) (11-14a)
is given by
y) & a,y,(n) + a,y,(n) (11-14b)

S is said to be time-invariant if the zero-state output y(n) due to the input
sequence

x() A x,(n — n,) (11-152)
is given by

y(m) & y(n — ny) (11-15b)

Let A(n) be the zero-state response to d(n). The time-invariant property
of the system leads us to conclude that A(n — k) is the zero-state response
to d(n — k). By (11-3) and by the linearity property of the system, the zero-
state output sequence due to an input sequence of x(n) written as

x(n) = ki@ x(k) (n — k) (11-16)

is given by
y(n) = kjj x(k) h(n — k) (11-17a)

This means that a linear and time-invariant digital system S can be char-
acterized by an impulse response h(n), which is the output sequence of S when
the input is a unit impulse sequence and all initial conditions of S are zero.
By a change of variable, (11-17a) can also be written as

y(n) = kiw x(n — k) h(k) (11-17b)

5A zero-state response is an output of the system when all initial conditions of the sys-
tem are zero.
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Both equations of (11-17) are called the convolution sum of the two sequences
x(n) and A(n) and are denoted by

»(r) = x(n) * h(n) (11-17¢)

Finally, a linear and time-invariant digital system S is szable if its impulse
response A(n) satisfies the condition

5 1k < oo (11-18)

and is causal if i
hn)=0 forn<O (11-19)

Note that if (11-18) is violated, then we can find a bounded input sequence
x(n), where

> [xw)P = K < oo, (11-20a)
to yield an unbounded output sequence y(n) such that

DROES (11-20b)

Example 11-1 Let the system S be characterized by®
y(n) — ay(n — 1) = x(n) (11-21a)
y(—1) =0 (11-21b)

Find the impulse response h(n) of S, and discuss the stability and causality
conditions of S.

Solution: Because the initial condition of .S is zero, as given by (11-21b), when
x(n) = 6(n) (11-22)

the output sequence y(n) will be the impulse response h(n). From (11-21), we
obtain

y0) =ay(~1) +60)=0+1=1
y() =ay(0) +6(1) =a +0=a
y(2) = ay(1) +96(2) = a? + 0 = a?
Progressing inductively, we obtain
y(n)y=a* forn>0 (11-23a)
To consider the case when # < —1, we write (11-21) and (11-22) as

yn—1) =a"![y(n) — é(n)]

6The zero initial condition of the system S is given by (11-21b), where we have assumed
that the initial time is when n = 0. Recall that for the continuous-time case, the initial
conditions are given at the point t = 0—.
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with
¥ (=1 =0
This gives .
H=2) = a ' H(=1) — §(~1D] = a (0 — 0) = 0
W(=3)=ay(~2) — 6(=2)1 =0
Clearly, we have
y(n) =0 forn<O (11-23b)
Hence, the impulse response h(n) of the system S characterized by (11-21) is
given by
h(n) = a™u(n) 11-24)

In view of (11-24), the system Sis causal for all a and is stable when|a| < 1. |}

11-2 Z-TRANSFORM

The z-transform method is a very useful tool in solving linear difference
equations. It reduces the solutions of such equations into those of algebraic
equations. The application of z-transforms to a set of difference equations is
analogous to the application of Laplace transforms to a set of differential
equations.

The z-transform X(z) of a sequence x(n) is defined to be?

i, x(n)z" (11-25)

X@ 4
where z is a complex variable. Hence, X(z) is complex.

Example 11-2 Find the z-transform of the sequence x(n) given by
x(n) = (cos n¢ + sin n)u(n) (11-26)
Solution: From (11-25), we have

X(z) = _iw x(mz = ’g‘,o (cos ng + sin nd)z ™"

= 5 [P eme] + § [P eme]
If
[z71] <1 or |z]>1 (11-28a)
then
letisz=1| < 1 (11-28b)

7We use the convention that the z-transform of a time sequence x(x) is denoted by
X (z); a time sequence is denoted by a lower-case letter, and its z-transform is denoted by
the corresponding upper-case letter.
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and (11-27) can be simplified to

1 1. 14/ 1
X@) =75 y—gmm1 T 3 T—emT

1 —(cos §)z~! 4 (sin ¢)z~!

T 1= (e Fe 791 L g2 (11-29)
1+ (sing — cos p)z!
"1 —2(cos )zt + 22 ]

Clearly, X(2) is defined for those values of z or z=! for which the power
series in (11-25) converges. For example, X(z) of (11-27) is defined only if
(11-28a) is satisfied. By writing z in its polar form

z = ref? (11-30)
(11-25) becomes

o0

X2y = 3 x(n)r-re-ion (11-31)

R=—o00

Hence, X(z) is defined for those values of z with radius r in the z-plane such
that

3 x| < oo (11:32)

The totality of all z such that (11-32) holds is called the region of convergence
for the sequence x(r). In the case of Example 11-2, the region of convergence
is ¥ > 1 in the z-plane.

Example 11-3 Find the region of convergence for the pulse sequence

ny=a 0<n<N-—1

(11-33)
=0 elsewhere
where a is real,
Solution:
oo N—-1
H(iz)= 3 HWmzn"= 3 az™
n=-—oco n=0
Hence,
N-—1
H(re/®y = Y, arne—ion (11-34)
nrn=0

Because (11-34) involves only a finite sum (the number of terms in the summa-
tion is finite), H(z) is defined for all » < co. Hence, the region of convergence is
the entire z-plane. B

Example 11-4 Find the region of convergence for the exponential sequence

hn) =a" for0<n<co (11-35)
=0 forn<0O
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Solution: Because
H(re?)) = 3 h(n)rre~on = io arr et = éo (ar~tye=Jon  (11-36)
the region of convergence is the values of z with radius r such that
ngo

Clearly, (11-37) is satisfied if and only if

| < (11-37)

a
r

a

r

<1 (11-38)

Hence, the region of convergence of A(n) of (11-35) is the exterior of a circle with
radius | ¢ | in the z-plane, as shown in Fig. 11-5(2). B

z '-plane

Re(z7"]

(b)

Fig. 11-5 Region of convergence for
an exponential sequence. (a) In the
z-plane. (b) In the z~1-plane.
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The region of convergence for a causal sequence x(n)—with x(n) = 0 for
n < 0—is everywhere outside a certain circle with radius R in the z-plane.?
A case in point is given by Example 11-4. The value of R depends on the pole
locations of X(z).® For the sequence considered in Example 11-4, the z-
transform H(z) of the sequence A(n) is given by

H(z) = i arz™"
n=0

. 1
1 —az!

(11-39)

Hence, the pole of H(z) is located at the point z = g, which is the boundary
of the region of convergence for the sequence.

In most physical digital systems including digital filters, causal sequences
form the basis of all signals involved in the processing. For convenience,
the z-transforms of some of the frequently used causal sequences are listed
in Table 11-1, together with their regions of convergence. In general, we will
assume that we are working within the area in the z-plane where the z-
transforms of all sequences involved are defined, and hence we can ignore
the problems associated with the regions of convergence.

From Table 11-1, we observe that the z-transform of a sequence is a
rational function of either z or z~!. Thus, if we know the poles and zeros of
the z-transform X(z) of a sequence x(n), we can construct X(z) up to a con-
stant multiple rather easily. For example, if X(z) has poles p,,p,,...,Pn

and zeros z,, z,, . . . , Zy, then X(z) can be written in the factored form as:
M
o [ —zz7Y)
X@)=—4"t—u-—— (11-402)
II (A —pez®)
k=1
or

M
azW =M 11 (z — z,)
i=1

_ (11-40b)
11 ¢ —p)

X(2) =

where o is a constant. In digital filter applications, (11-40a) is preferred,
because a shift register or a unit of a tapped delay line is an implementation

8The region of convergence can be located in the z~!-plane also. For a causal sequence,
the region of convergence is everywhere inside a certain circle with radius R in the z-1-
plane. For example, the region of convergence of the exponential sequence in Example 11-4
is everywhere inside the circle with radius |a{~! in the z-1-plane, as shown in Fig. 11-5(b).

9A pole {zero} of a z-transformed function X(z) is the location z; in the z-plane, where
X(z1) = oo {X(z1) = O}



