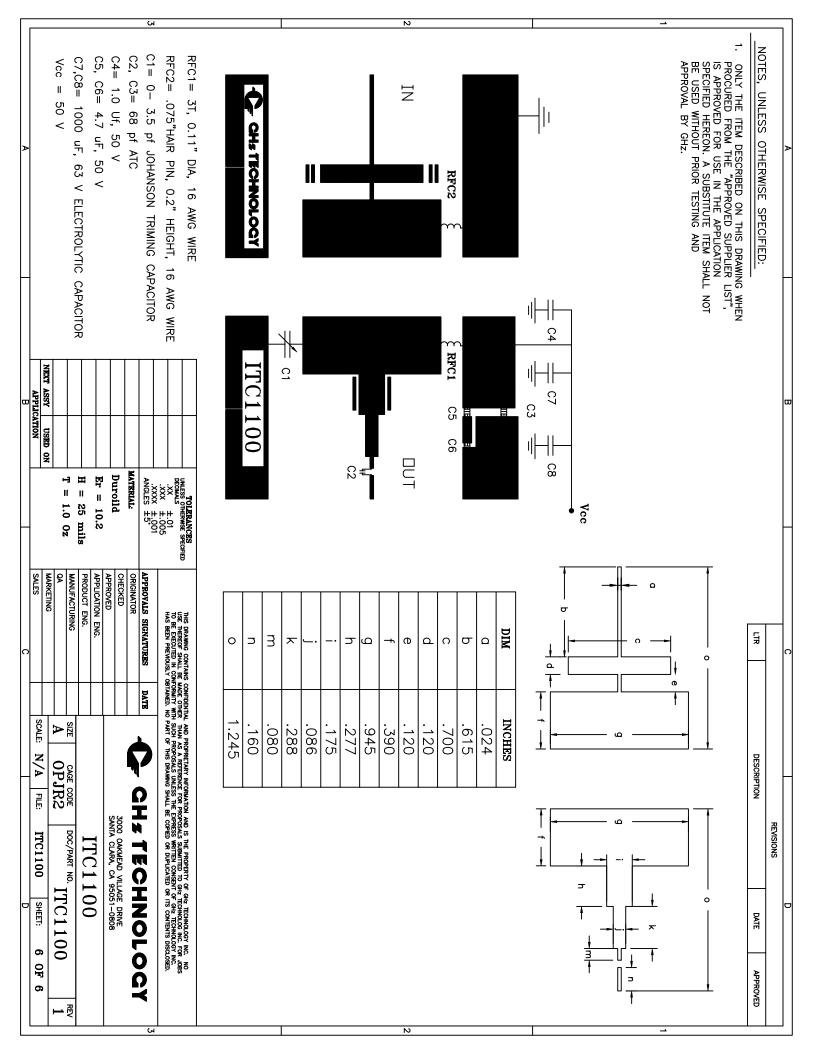


ITC1100 1000 WATT, 50V, Pulsed Avionics 1030 MHz

GENERAL DESCRIPTION CASE OUTLINE 55SW, Style 1 The ITC1100 is a common base bipolar transistor. It is designed for pulsed **Common Base** interrogator systems in the frequency band of 1030 MHz. The device has gold thin-film metallization for proven high MTTF. The transistor includes input returns for improved output rise time . Low thermal resistance package reduces junction temperature which extends the life time of the product. **ABSOLUTE MAXIMUM RATINGS Power Dissipation** Device Dissipation¹ @25°C (P_d) 3400 W Thermal Resistance¹ (θ_{IC}) .08°C/W Voltage and Current Collector-Base Voltage 65V Emitter-Base Voltage 3.5V Collector Current¹ 80A **Temperatures** -40 to +150°C Storage Temperature Operating Junction Temperature¹ +200°C

ELECTRICAL CHARACTERISTICS @ 25°C


SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
BVebo ²	Emitter-Base Breakdown(open)	Ie=50mA	3.5			V
BVces	Collector-Emitter Breakdown(shorted)	Ic=30mA	65			V
BVceo ²	Collector-Emitter Breakdown (open)	Ic=30mA	30			V
${h_{\rm FE}}^2$	DC Current Gain	Ic=5A, Vce=5V	20		100	β

FUNCTIONAL CHARACTERISTICS @ 25°C

G _{PB}	Common Base Power Gain	$V_{cc} = 50V, F = 1030MHz,$	10	10.5		dB
		Pout=1000W Peak Min, PW=1µS, DF=1%				
η_{c}	Collector Efficiency	$V_{cc} = 50V, F = 1030MHz,$	45	50		%
		Pout=1000W Peak Min, PW=1µS, DF=1%				
t _r	Rise Time	$V_{cc} = 50V, F = 1030MHz,$		50	80	nS
-		Pout=1000W Peak Min, PW=1µS, DF=1%				
VSWR	Output Load Mismatch	$V_{cc} = 50V, F = 1030MHz,$			4:1	Ψ
		Pout=1000W Peak Min, PW=1µS, DF=1%				
Z_{in}	Series Input Impedance (Circuit	$V_{cc} = 50V, F = 1030MHz,$	0.89 – j2.3		Ω	
	source impedance @ test cond.)	Pout=1000W Peak Min, PW=1µS, DF=1%	5			
Z _{out}	Series Output Impedance (Circuit load impedance @ test cond.)	$V_{cc} = 50V, F = 1030MHz,$	0.54 - j2.64		Ω	
		Pout=1000W Peak Min, PW=1µS, DF=1%	3			

¹ At rated output power and pulse conditions

² Not measurable due to EB Returns

