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Modeling Jitter in PLL-based Frequency Synthesizers Introduction
1 Introduction 
Phase-locked loops (PLLs) are used in wireless receivers to implement a variety of 
functions, such as frequency synthesis, clock recovery, and demodulation. One of the 
major concerns in the design of PLLs is noise or jitter performance. Jitter from the PLL 
directly acts to degrade the noise floor and selectivity of a transceiver. 

Demir proposed an approach for modeling PLLs whereby a PLL is described using high 
level behavioral models [1,2]. The models are written such that they include jitter in an 
efficient way. He also devised a powerful new simulation algorithm that is capable of 
characterizing the circuit-level noise behavior of blocks that make up a PLL that is 
based on solving a set of nonlinear stochastic differential equations [3,5]. Finally, he 
gave formulas that can be used to convert the results of the noise simulations on the 
individual blocks into values for the jitter parameters for the corresponding behavioral 
models [6]. This approach provides accurate and efficient prediction of PLL jitter 
behavior once the noise behavior of the blocks has been characterized. However, it 
requires the use of an experimental simulator that is not readily available.

This paper presents the relevant ideas of Demir, but while he focussed on presenting the 
conceptual aspects of modeling and simulating jitter in PLLs, this paper concentrates 
more on the practical aspects. It presents all the information a designer would need to 
predict the noise and jitter of a PLL synthesizer. This paper is an enhanced version of 
two previous papers [14,15]. The jitter extraction methodology is based on the commer-
cially available Spectre®RF1 simulator [24,25] and presents behavioral models for Ver-
ilog-A2, a standard, non-proprietary analog behavioral modeling language [12,27]. Both 
SpectreRF and Verilog-A are options to the Spectre circuit simulator [11], available 
from Cadence Design Systems.3

1.1 Predicting Noise in PLLs

There are two different approaches to modeling noise in PLLs. One approach is to for-
mulate the models in terms of the phase of the signals, producing what are referred to as 
phase-domain models. In the simplest case, these models are linear and analyzed easily 
in the frequency domain, making it simple to use the model to predict phase noise, even 
in the presence of flicker noise or other noise sources that are difficult to model in the 
time domain. Phase domain models are described more fully in the companion to this 
manuscript [16].

The other approach formulates the models in terms of voltage, and so are referred to as 
voltage-domain models. The advantage of voltage-domain models is that they can be 
refined to implementation. In other words, as the design process transitions to being 

1. Spectre is a registered trademark of Cadence Design Systems.
2. Verilog is a registered trademark of Cadence Design Systems licensed to Accellera.
3. SpectreRF is currently the only commercial simulator that is well suited for characterizing the 

jitter of the blocks that make up a PLL. SPICE and its descendants are not suitable because they 
only perform noise analysis about a DC operating point and so do not take into account the 
time-varying nature of these circuits. Harmonic balance simulators do perform noise analysis 
about a periodic operating point, which is a critical prerequisite, but they have convergence, 
accuracy, and performance problems with blocks such as the PFD/CP, FD and VCO that are 
strongly nonlinear.
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Frequency Synthesis Modeling Jitter in PLL-based Frequency Synthesizers
more of a verification process, the abstract behavioral models initially used can be 
replaced with detailed gate- or transistor-level models in order to verify the PLL as 
implemented. 

Voltage-domain models are strongly nonlinear and never have quiescent operating 
points, making them incompatible with a SPICE-like noise analysis. Often they do have a 
periodic operating point and so can be analyzed with small-signal RF noise analysis 
(SpectreRF), but it is also common for that not to be the case. For example, a fractional-
N synthesizer does not have a periodic operating point. Occasionally, the circuit is sensi-
tive enough that the noise affects the large-signal behavior of the PLL, such as with 
bang-bang clock-and-data recovery PLLs, which invalidates any use of small-signal 
noise analysis.

Modeling large-signal noise in a voltage-domain model as a voltage or a current is prob-
lematic. Such signals are very small and continuously, and generally rapidly varying. 
Extremely tight tolerances and small time steps are required to accurately resolve such 
signals with simulation. To overcome these problems, the noise is instead represented 
using the effect it has on the timing of the transitions within the PLL. In other words, the 
noise is added to the circuit in the form of jitter. In this case there is no need for either 
small time steps or tight tolerances. 

The process of predicting the jitter of a PLL described in this paper involves:
1. Using SpectreRF to predict the noise of the individual blocks that make up the PLL.
2. Converting the noise of the block to jitter.
3. Building high-level behavioral models of each of the blocks that include jitter.
4. Assembling the blocks into a model of the PLL.
5. Simulating the PLL, including the effect of jitter, to find the noise of the overall sys-

tem.

The simple linear phase-domain model described in the companion paper [16], and the 
nonlinear voltage-domain model described here represent the two ends of a continuum 
of models. Generally, the phase-domain models are considerably more efficient, but the 
voltage-domain models do a much better job of capturing the details of the behavior of 
the loop, details such as the signal capture and escape processes. The phase-domain 
models can be made more general by making them nonlinear and by analyzing them in 
the time domain. It is common to use such models with fractional-N synthesizers. Con-
versely, simplifications can be made to the voltage-domain models to make them more 
efficient. It is even possible to use both voltage- and phase-domain models for different 
parts of the same loop. One might do so to retain as much efficiency as possible while 
allowing part of the design to be refined to implementation level. In general it is best to 
understand both approaches well, and use ideas from both to construct the most appro-
priate approach for your particular situation. 

2 Frequency Synthesis
The block diagram of a PLL operating as a frequency synthesizer is shown in 
Figure 1 [7].4 It consists of a reference oscillator (OSC), a phase/frequency detector 
(PFD), a charge pump (CP), a loop filter (LF), a voltage-controlled oscillator (VCO), 
and two frequency dividers (FDs). The PLL is a feedback loop that, when in lock, forces 
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Modeling Jitter in PLL-based Frequency Synthesizers Jitter
ffb to be equal to fref. Given a reference frequency fin, the frequency at the output of the 
PLL is

. (1)

By choosing the frequency divide ratios and the input frequency appropriately, the syn-
thesizer generates an output signal at the desired frequency that inherits much of the sta-
bility of the reference oscillator. In RF transceivers, this architecture is used to generate 
the local oscillator (LO) at a programmable frequency, which tunes the transceiver to 
the desired channel by adjusting the value of N.

3 Jitter
The signals at the input and output of a PLL are often binary signals, as are many of the 
signals within the PLL. The noise on binary signals is commonly characterized in terms 
of jitter. 

Jitter is an undesired perturbation or uncertainty in the timing of events. Generally, the 
events of interest are the transitions in a signal. One models jitter in a signal by starting 
with a noise-free signal v and displacing time with a stochastic process j. The noisy sig-
nal becomes

(2)

with j assumed to be a zero-mean process and v assumed to be a T-periodic function. j
has units of seconds and can be interpreted as a noise in time. Alternatively, it can be 
reformulated as a noise is phase, or phase noise, using

φ(t) = 2πfo  j(t), (3)

where fo = 1/T and

. (4)

4. Frequency synthesis is used as an example, but the concepts presented are easily applied to 
other applications, such as clock recovery and FM demodulation. In addition, they are also 
applicable to other types of PLL-based synthesis, such as fractional-N synthesis.

FIGURE 1 The block diagram of a frequency synthesizer.
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Jitter Modeling Jitter in PLL-based Frequency Synthesizers
3.1 Jitter Metrics

Define {ti} as the sequence of times for positive-going threshold crossings, henceforth 
referred to as transitions, that occur in vn. Various jitter metrics characterize the statis-
tics of this sequence.5

The simplest metric is the edge-to-edge jitter, Jee, which is the variation in the delay 
between a triggering event and a response event. When measuring edge-to-edge jitter, a 
clean jitter-free input is assumed, and so the edge-to-edge jitter Jee is

. (5)

Edge-to-edge jitter assumes an input signal, and so is only defined for driven systems. It 
is an input-referred jitter metric, meaning that the jitter measurement is referenced to a 
point on a noise-free input signal, so the reference point is fixed. No such signal exists 
in autonomous systems. The remaining jitter metrics are suitable for both driven and 
autonomous systems. They gain this generality by being self-referred, meaning that the 
reference point is on the noisy signal for which the jitter is being measured. These met-
rics tend to be a bit more complicated because the reference point is noisy, which acts to 
increase the measured jitter.

Edge-to-edge jitter is also a scalar jitter metric, and it does not convey any information 
about the correlation of the jitter between transitions. The next metric characterizes the 
correlations between transitions as a function of how far the transitions are separated in 
time.

Define Jk(i) to be the standard deviation of ti+k – ti,

. (6)

Jk(i) is referred to as k-cycle jitter or long-term jitter 6. It is a measure of the uncertainty 
in the length of k cycles and has units of time. J1, the standard deviation of the length of 
a single period, is often referred to as the period jitter, and it denoted J, where J = J1. 

Another important jitter metric is cycle-to-cycle jitter. Define Ti = ti+1 – ti to be the 
period of cycle i. Then the cycle-to-cycle jitter Jcc is

. (7)

Cycle-to-cycle jitter is a metric designed to identify large adjacent cycle displacements. 
It is like edge-to-edge jitter in that it is a scalar jitter metric that does not contain infor-
mation about the correlation in the jitter between distant transitions. However, it differs 
in that it is a measure of short-term jitter that is relatively insensitive to long-term jitter 
[10]. As such, cycle-to-cycle jitter is the only jitter metric that is suitable for use when 
flicker noise is present. All other metrics are unbounded in the presence of flicker noise.

If j(t) is either stationary or T-cyclostationary, then {ti} is stationary, meaning that these 
metrics do not vary with i, and so Jee(i), Jk(i), and Jcc(i) can be shortened to Jee, Jk, and 
Jcc.

5. There is some variability in the jitter metrics that are used and their definitions. The work by 
Lee documents some other ways of characterizing jitter [17].

6. Some people distinguish between k-cycle jitter and long-term jitter by defining the long-term 
jitter J∞ as being the k-cycle jitter Jk as k → ∞.

Jee i( ) var ti( )=

Jk i( ) var ti k+ ti–( )=

Jcc i( ) var Ti 1+ Ti–( )=
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Modeling Jitter in PLL-based Frequency Synthesizers Jitter
These jitter metrics are illustrated in Figure 2.

3.1.1 RMS versus Peak-to-Peak Jitter

All the jitter metrics given so far have been RMS metrics. If you assume that the noise 
sources have Gaussian distributions, then strictly speaking the metrics do not have peak-
to-peak values because the noise is unbounded. However, one can define the peak-to-
peak jitter as the magnitude that the jitter exceeds only a for specified fraction of the 
time, known as the error rate [18]. Once the acceptable error rate is specified, then it 
can converted to α using Table 1, which is the ratio between the peak-to-peak deviation 
and the standard deviation. Then the RMS jitter can be converted to peak-to-peak jitter 
using

JPP = αJRMS. (8)

FIGURE 2 The various jitter metrics.

TABLE 1 The ratio of the peak-to-peak deviation of a Gaussian process to its standard deviation where the 
peak-to-peak deviation is defined as the magnitude that is not exceeded more often than the given 
error rate.

Error Rate α

10–3 6.180
10–4 7.438
10–5 8.530
10–6 9.507
10–7 10.399
10–8 11.224
10–9 11.996
10–10 12.723
10–11 13.412
10–12 14.069
10–13 14.698
10–14 15.301

δtiJee i( ) var δti( )=
edge-to-edge jitter

ti ti+kk cycles
Jk i( ) var ti k+ ti–( )=
k-cycle jitter

Ti Ti+1

Jcc i( ) var Ti 1+ Ti–( )=
cycle-to-cycle jitter
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Synchronous Jitter Modeling Jitter in PLL-based Frequency Synthesizers
3.2 Types of Jitter

The type of jitter produced in PLLs can be classified as being from one of two canonical 
forms. Blocks such as the PFD, CP, and FD are driven, meaning that a transition at their 
output is a direct result of a transition at their input. The jitter exhibited by these blocks 
is referred to as synchronous jitter, it is a variation in the delay between when the input 
is received and the output is produced. Blocks such as the OSC and VCO are autono-
mous. They generate output transitions not as a result of transitions at their inputs, but 
rather as a result of the previous output transition. The jitter produced by these blocks is 
referred to as accumulating jitter, it is a variation in the delay between an output transi-
tion and the subsequent output transition. Table 2 previews the basic characteristics of 
these two types of jitter. The formulas for jitter given in this table are derived in the next 
two sections.

4 Synchronous Jitter
Synchronous jitter is exhibited by driven systems. In the PLL, the PFD/CP and FDs 
exhibit synchronous jitter. In these components, an output event occurs as a direct result 
of, and some time after, an input event. It is an undesired fluctuation in the delay 
between the input and the output events. If the input is a periodic sequence of transi-
tions, then the frequency of the output signal is exactly that of the input, but the phase of 
the output signal fluctuates with respect to that of the input. The jitter appears as a mod-
ulation of the phase of the output, which is why it is sometimes referred to as phase 
modulated or PM jitter.

Let η be a stationary or T-cyclostationary process, then

(9)

(10)

10–15 15.883
10–16 16.444

TABLE 2 The two canonical forms of jitter.

Jitter Type Circuit Type Jitter

synchronous driven (PFD/CP, FD)

accumulating autonomous (OSC, VCO)

TABLE 1 The ratio of the peak-to-peak deviation of a Gaussian process to its standard deviation where the 
peak-to-peak deviation is defined as the magnitude that is not exceeded more often than the given 
error rate.

Error Rate α

Jee
var nv tc( )( )

vd tc( ) dt⁄
-------------------------------=

J cT=

jsync t( ) η t( )=

vn t( ) v t jsync t( )+( )=
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Modeling Jitter in PLL-based Frequency Synthesizers Synchronous Jitter
exhibits synchronous jitter. If η is further restricted to be a white Gaussian stationary or 
T-cyclostationary process, then vn(t) exhibits simple synchronous jitter. The essential 
characteristic of simple synchronous jitter is that the jitter in each event is independent 
or uncorrelated from the others, and (3) shows that it corresponds to white phase noise. 
Driven circuits exhibit simple synchronous jitter if they are broadband and if the noise 
sources are white, Gaussian and small. The sources are considered small if the circuit 
responds linearly to the noise, even though at the same time the circuit may be respond-
ing nonlinearly to the periodic drive signal.

For systems that exhibit simple synchronous jitter, from (5), 

. (11)

Similarly, from (6),

, (12)

, (13)

. (14)

. (15)

Since jsync(t) is T-cyclostationary jsync(ti) is independent of i, and so is Jee and Jk. The 
factor of  in (15) stems from the length of an interval including the independent vari-
ation from two transitions. From (15), Jk is independent of k, and so

. (16)

Using similar arguments, one can show that with simple synchronous jitter,

, (17)

Generally, the jitter produced by the PFD/CP and FDs is well approximated by simple 
synchronous jitter if one can neglect flicker noise.

4.1 Extracting Synchronous Jitter

The jitter in driven blocks, such as the PFD/CP or FDs, occurs because of an interaction 
between noise present in the blocks and the thresholds that are inherent to logic circuits.

In systems where signals are continuous valued, an event is usually defined as a signal 
crossing a threshold in a particular direction. The threshold crossings of a noiseless peri-
odic signal, v(t), are precisely evenly spaced. However, when noise is added to the sig-
nal, vn(t) = v(t) + nv(t), each threshold crossing is displaced slightly. Thus, a threshold 
converts additive noise to synchronous jitter. 

The amount of displacement in time is determined by the amplitude of the noise signal, 
nv(t) and the slew rate of the periodic signal, dv(tc)/dt, as the threshold is crossed, as 
shown in Figure 3 [28]. If the noise nv is stationary, then

(18)

Jee i( ) var jsync ti( )( )=

Jk i( ) var ti k+ ti–( )=

Jk i( ) var i k+( )T j+ sync ti k+( )[ ] iT jsync ti( )+[ ]–( )=

Jk i( ) 2var jsync ti( )( )=

Jk i( ) 2Jee i( )=

2

Jk J  for  = k 1 2 …, ,=

Jcc J=

var jsync tc( )( )
var nv( )

vd tc( ) dt⁄[ ]2
------------------------------≅
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Synchronous Jitter Modeling Jitter in PLL-based Frequency Synthesizers
where tc is the time of a threshold crossing in v (assuming the noise is small).

Generally nv is not stationary, but cyclostationary. It is only important to know when the 
noisy periodic signal vn(t) crosses the threshold, so the statistics of nv are only signifi-
cant at the time when vn(t) crosses the threshold,

. (19)

The jitter is computed from (11) using (18) or (19),

. (20)

To compute var(nv(tc)), one starts by driving the circuit with a representative periodic 
signal, and then sampling v(t) at intervals of T to form the ergodic sequence {v(ti)} 
where ti = tc for some i. Then the variance is computed by computing the power spectral 
density for the sequence by integrating from f = –fo/2 to fo/2. Recall that the noise is 
periodic in f with period fo = 1/T because n is a discrete-time sequence with rate T.

In practice, this is done by using the strobed noise capability of SpectreRF7 to compute 
the power spectral density of the sequence. When the strobed noise feature is active, the 
noise produced by the circuit is periodically sampled to create a discrete-time random 
sequence, as shown in Figure 4. SpectreRF then computes the power-spectral density of 
the sequence. The sample time should be adjusted to coincide with the desired threshold 
crossings. Since the T-periodic cyclostationary noise process is sampled every T sec-
onds, the resulting noise process is stationary. Furthermore, the noise present at times 
other than at the sample points is completely ignored. 

4.1.1 Extracting the Jitter of Dividers

To extract the jitter of a divider, drive the divider with a representative periodic input 
signal and perform a PSS analysis to determine the threshold crossing times and the 
slew rate (dv/dt) at these times. Then use SpectreRF’s strobed PNoise analysis to com-
pute Sn(  f  ). The sample point should be set to coincide with the point where the output 

FIGURE 3 How a threshold converts noise into jitter.

7. The strobed-noise feature of SpectreRF is also referred to as its time-domain noise feature.

Jitter Histogram

Noise

Δt

Δv
tc

Threshold Histogram

var jsync tc( )( )
var nv tc( )( )

vd tc( ) dt⁄[ ]2
------------------------------=

Jee
var nv tc( )( )

vd tc( ) dt⁄
-------------------------------=
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Modeling Jitter in PLL-based Frequency Synthesizers Synchronous Jitter
signal crosses the threshold of the subsequent stage (the phase detector) in the appropri-
ate direction. When running PNoise analysis, assure that the maxsideband parameter is 
set sufficiently large to capture all significant noise folding. A large value will slow the 
simulation. To reduce the number of sidebands needed, use T as small as possible. Spec-
treRF computes the power spectral density , which is integrated to compute the total 
noise at the sample points, 

. (21)

Then Jee is computed from (20).

With ripple counters, one usually only characterizes one stage at a time. The total jitter 
due to noise in the ripple counter is then computed by assuming that the jitter in each 
stage is independent (again, this is true for device noise, but not for noise coupling into 
the divider from external sources) and taking the square-root of the sum of the square of 
the jitter on each stage. 

Unlike in ripple counters, jitter does not accumulate with synchronous counters. Jitter in 
a synchronous counter is independent of the number of stages and consists only of the 
jitter of its clock along with the jitter of the last stage.

4.1.2 Extracting the Jitter of the Phase Detector

The PFD/CP is not followed by a threshold. Rather, it feeds into the LF, which is sensi-
tive to the noise emitted by the CP at all times, not just during transitions. This argues 
that the noise of the PFD/CP be modeled as a continuous noise current. However, as 
mentioned earlier, doing so is problematic for simulators and would require very tight 
tolerances and small time steps. So instead, the noise of the PFD/CP is referred back to 
its inputs. The inputs of the PFD/CP are edge triggered, so the noise can be referred 
back as jitter.

To extract the input-referred jitter of a PFD/CP, drive both inputs with periodic signals 
with offset phase so that the PFD/CP produces a representative output. Use SpectreRF’s 
PNoise analysis to compute the output noise over the total bandwidth of the PFD/CP (in 
this case, use the conventional noise analysis rather than the strobed noise analysis). 
Choose the frequency range of the analysis so that the total noise at frequencies outside 
the range is negligible. Thus, the noise should be at least 40 dB down and dropping at 

FIGURE 4 Strobed noise. The lower waveform is a highly magnified view of the noise present at the strobe 
points in vn, which are chosen to coincide with the threshold crossings in v.

vn(t)

t

t
ni

Snv

var nv tc( )( ) Snv
f tc,( )df

0

fo 2⁄

∫=
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Accumulating Jitter Modeling Jitter in PLL-based Frequency Synthesizers
the highest frequency simulated. Integrate the noise over frequency and apply Wiener-
Khinchin Theorem [21] to determine 

, (22)

the total output noise current squared [8]. Then either calculate or measure the effective 
gain of the PFD/CP, Kdet, in units of amperes per cycle. Scale the gain so that it has the 
units of amperes per second by dividing Kdet by the period T seconds per cycle. Then 
divide the total output noise current by this gain and account for there being two transi-
tions per cycle to distribute the noise over to determine the input-referred jitter for the 
PFD/CP, 

. (23)

As before, when running PNoise analysis, assure that the maxsideband parameter is set 
sufficiently large to capture all significant noise folding. A large value will slow the 
simulation. To reduce the number of sidebands needed, use T as small as possible.

5 Accumulating Jitter
Accumulating jitter is exhibited by autonomous systems, such as oscillators, that gener-
ate a stream of spontaneous output transitions. In the PLL, the OSC and VCO exhibit 
accumulating jitter. Accumulating jitter is characterized by an undesired variation in the 
time since the previous output transition, thus the uncertainty of when a transition 
occurs accumulates with every transition. Compared with a jitter free signal, the fre-
quency of a signal exhibiting accumulating jitter fluctuates randomly, and the phase 
drifts without bound. Thus, the jitter appears as a modulation of the frequency of the 
output, which is why it is sometimes referred to as frequency modulated or FM jitter.

Again assume that η be a stationary or T-cyclostationary process, then

(24)

(25)

exhibits accumulating jitter. While η is cyclostationary and so has bounded variance, 
(24) shows that the variance of jacc, and hence the phase difference between v(t) and 
vn(t), is unbounded.

If η is further restricted to be a white Gaussian stationary or T-cyclostationary random 
process, then vn exhibits simple accumulating jitter. In this case, the process {j acc(iT)} 
that results from sampling j acc every T seconds is a discrete Wiener process and the 
phase difference between v(iT) and vn(iT) is a random walk [8]. As shown next, simple 
accumulating jitter corresponds to oscillator phase noise that results from white noise 
sources.

The essential characteristic of simple accumulating jitter is that the incremental jitter 
that accumulates over each cycle is independent or uncorrelated. Autonomous circuits 

var n( ) Sn f( )df
0

∞

∫=

JeePFD/CP

T
Kdet
---------- var n( )

2
---------------=

jacc t( ) η τ( ) τd
0

t

∫=

vn t( ) v t jacc t( )+( )=
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Modeling Jitter in PLL-based Frequency Synthesizers Accumulating Jitter
exhibit simple accumulating jitter if they are broadband and if the noise sources are 
white, Gaussian and small. The sources are considered small if the circuit responds lin-
early to the noise, though at the same time the circuit may be responding nonlinearly to 
the oscillation signal. An autonomous circuit is considered broadband if there are no 
secondary resonant responses close in frequency to the primary resonance.8

For systems that exhibit simple accumulating jitter, each transition is relative to the pre-
vious transition, and the variation in the length of each period is independent, so the 
variance in the time of each transition accumulates, 

, (26)

where

. (27)

Similarly,

. (28)

Generally, the jitter produced by the OSC and VCO are well approximated by simple 
accumulating jitter if one can neglect flicker noise.

5.1 Extracting Accumulating Jitter

The jitter in autonomous blocks, such as the OSC or VCO, is almost completely due to 
oscillator phase noise. Oscillator phase noise is a variation in the phase of the oscillator 
as it proceeds along its limit cycle.

In order to determine the period jitter J of vn(t) for a noisy oscillator, assume that it 
exhibits simple accumulating jitter so that η in (24) is a white Gaussian T-cyclostation-
ary noise process (this excludes flicker noise) with a single-sided PSD of

, (29)

and an autocorrelation function of 

, (30)

where δ is a Dirac delta function. Then

(31)

is a Wiener process [8], which has an autocorrelation function of

. (32)

8. Oscillators are strongly nonlinear circuits undergoing large periodic variations, and so signals 
within the oscillator freely mix up and down in frequency by integer multiples of the oscilla-
tion frequency. For this reason, any low frequency time constants or resonances in supply or 
bias lines would effectively act like close-in secondary resonances. In fact, this is the most 
likely cause of such phenomenon.

Jk k= J  for  k 0 1 2 …, , ,=

J var jacc ti T+( ) jacc ti( )–( )=

Jcc 2J=

Sη f( ) 2c=

Rη t1 t2,( ) cδ t1 t2–( )=

jacc t( ) ηT τ( ) τd
0

t

∫=

Rjacc
t1 t2,( ) c min t1 t2,( )=
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The period jitter is the standard deviation of the variation in one period, and so

. (33)

(34)

(35)

(36)

(37)

(38)

(39)

which agrees with Demir [4]. We now have a way of relating the jitter of the oscillator 
to the PSD of η. However, η is not measurable, so instead the jitter is related to the 
phase noise Sφ. To do so, consider simple accumulating jitter written in terms of phase, 

, (40)

where fo = 1/T. From (29) and (40) the PSD of φacc is

. (41)

Vendelin [26] showed that 

, (42)

and so

, (43)

. (44)

Determine c by choosing Δf well above the corner frequency ( fc) to avoid ambiguity and 
well below fo to avoid the noise from other sources that occur at these frequencies.

5.1.1 Example

To compute the jitter of an oscillator, an RF simulator such as SpectreRF is used to find 
L and fo of the oscillator. Given these, c is found with (44), J is found with (39) and Jk is 
found with (26). This procedure is demonstrated for the oscillator shown in Figure 5. 
This is a very low noise oscillator designed in 0.35μ CMOS by Rael and Abidi [23]. The 
frequency of oscillation is 1.1 GHz and the resonator has a loaded Q of 6. 

J2 var jacc t T+( ) jacc t( )–( )=

J2 E jacc t T+( ) jacc t( )–( )2[ ]=

J2 E jacc t T+( )2 2jacc t T+( )jacc t( ) j+ acc t( )– 2[ ]=

J2 E jacc t T+( )2[ ] 2E jacc t T+( )jacc t( )[ ]– E jacc t( )2[ ]+=

J2 Rjacc
t T t T+,+( ) 2Rjacc

t T t,+( ) Rjacc
t t,( )+–=

J2 c t T+( ) 2ct– ct+=

J cT=

φacc t( ) 2πfo jacc t( ) 2πfo η τ( ) τd
0

t

∫= =

Sφacc
Δf( ) 2c

2πfo( )2

2πΔf( )2
--------------------

2cfo
2

Δf 2
-----------= =

L Δ f( ) 1
2
---Sφ Δ f( )=

L Δ f( ) 1
2
---Sφacc

Δf( )
cfo

2

Δf 2
---------= =

c L Δf( )Δf 2

fo
2

---------=
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The procedure starts by using an RF simulator such as SpectreRF to compute the nor-
malized phase noise L. Its PNoise analysis is used, with the maxsideband parameter set 
to at least 10 to adequately account for noise folding within the oscillator.9 In this case, 
L = –110 dBc at 100 kHz offset from the carrier. Apply (44) to compute c from L,

(45)

where L( Δ f  ) = 10–11, Δf = 100 kHz, and fo = 1.1 GHz, which gives c = 82.6 × 10–21. The 
period jitter J is then computed from (39),

. (46)

In this example, the noise was extracted for the VCO alone. In practice, the LF is gener-
ally combined with the VCO before extracting the noise so that the noise of the LF is 
accounted for.

6 Jitter of a PLL
If a PLL synthesizer is constructed from blocks that exhibit simple synchronous and 
accumulating jitter, then the jitter behavior of the PLL is relatively easy to estimate [19]. 
Assume that the PLL has a closed-loop bandwidth of fL, and that τL = 1/2πfL, then for k
such that , jitter from the VCO dominates and the PLL exhibits simple accumu-
lating jitter equal to that produced by the VCO. Similarly, at large k (low frequencies), 
the PLL exhibits simple accumulating jitter equal to that produced by the OSC. Between 
these two extremes, the PLL exhibits simple synchronous jitter. The amount of which 
depends on the characteristics of the loop and the level of synchronous jitter exhibited 
by the FDs and the PFD/CP. The behavior of such a PLL is shown in Figure 6.

FIGURE 5 Differential LC oscillator.

9. At one point it was mistakenly suggested in the documentation for SpectreRF that maxside-
band should be set to 0 for oscillators. This causes SpectreRF to ignore all noise folding and 
results in a significant underestimation of the total noise. 

PN

M1 M2
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L2L1

IDD

c L Δ f( )Δf 2
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2

---------=
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---- 82.6 10 21–×
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------------------------------ 8.7 fs= = = =
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7 Modeling PLLs with Jitter
The basic behavioral models for the blocks that make up a PLL are well known and so 
are not discussed here in any depth [1,2]. Instead, only the techniques for adding jitter to 
the models are discussed.

Jitter is modeled in an AHDL by dithering the time at which events occur. This is effi-
cient because it does not create any additional activity, rather it simply changes the time 
when existing activity occurs. Thus, models with jitter can run as efficiently as those 
without.

7.1 Modeling Driven Blocks

A feature of Verilog-A allows especially simple modeling of synchronous jitter. The 
transition() function, which is used to model signal transitions between discrete levels, 
provides a delay argument that can be dithered on every transition. The delay argument 
must not be negative, so a fixed delay that is greater than the maximum expected devia-
tion of the jitter must be included. This approach is suitable for any model that exhibits 
synchronous jitter and generates discrete-valued outputs. It is used in the Verilog-A 
divider module shown in Listing 1, which models synchronous jitter with (10) where 
j sync is a stationary white discrete-time Gaussian random process. It is also used in 
Listing 2, which models a simple PFD/CP. 

7.1.1 Frequency Divider Model

The model, given in Listing 1, operates by counting input transitions. This is done in the 
@cross block. The cross function triggers the @ block at the precise moment when its 
first argument crosses zero in the direction specified by the second argument. Thus, the 
@ block is triggered when the input crosses the threshold in the user specified direction. 
The body of the @ block increments the count, resets it to zero when it reaches ratio, 
then determines if count is above or below its midpoint (n is zero if the count is below 
the midpoint). It also generates a new random dither dT that is used later. Outside the @
block is code that executes continuously. It processes n to create the output. The value 
of the ?: operator is Vhi if n is 1 and Vlo if n is 0. Finally, the transition function adds a 
finite transition time of tt and a delay of td + dt. The finite transition time removes the 
discontinuities from the signal that could cause problems for the simulator. The jitter is 
embodied in dt, which varies randomly from transition to transition. To avoid negative 
delays, td must always be larger than dt. This model expects jitter to be specified as Jee, 
as computed with (20).

FIGURE 6 Long-term jitter (Jk) for an idealized PLL as a function of the number of cycles.
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7.1.2 PFD/CP Model

The model for a phase/frequency detector combined with a charge pump is given in 
Listing 2. It implements a finite-state machine with a three-level output, –Iout, 0 and 
+Iout. On every transition of the VCO input in direction dir, the output is incremented. 
On every transition of the reference input in the direction dir, the output is decremented. 
If both the VCO and reference inputs are at the same frequency, then the average value 
of the output is proportional to the phase difference between the two, with the average 
being negative if the reference transition leads the VCO transition and positive other-
wise [7]. As before, the times of the output transitions are randomly dithered by dt to 
model jitter. The output is modeled as an ideal current source and a finite transition time 
provides a simple model of the dead band in the CP.

7.2 Modeling Accumulating Jitter

7.2.1 OSC Model

The delay argument of the transition() function cannot be used to model accumulating 
jitter because of the unbounded nature of this type of jitter. When modeling a fixed fre-

LISTING 1 Frequency divider that models synchronous jitter.

`include “disciplines.vams”

module divider (out, in);

input in; output out; electrical in, out;

parameter real Vlo=–1, Vhi=1; 
parameter integer ratio=2 from [2:inf); 
parameter integer dir=1 from [–1:1] exclude 0; // dir=1 for positive edge trigger 

// dir=–1 for negative edge trigger 
parameter real tt=1n from (0:inf); 
parameter real td=0 from (0:inf); 
parameter real jitter=0 from [0:td/5); // edge-to-edge jitter 
parameter real ttol=1p from (0:td/5); // recommend ttol << jitter

integer count, n, seed;  
real dt;

analog begin 
@(initial_step) seed = –311;

@(cross(V(in) – (Vhi + Vlo)/2, dir, ttol)) begin 
// count input transitions 
count = count + 1; 
if (count >= ratio) 

count = 0; 
n = (2∗count >= ratio); 
// add jitter 
dt = jitter∗$rdist_normal(seed,0,1); 

end

V(out) <+ transition(n ? Vhi : Vlo, td+dt, tt); 
end 
endmodule 
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quency oscillator, the timer() function is used as shown in Listing 3. At every output 
transition, the next transition is scheduled using the timer() function to be 

 in the future, where δ is a unit-variance zero-mean random process and 
K is the number of output transitions per period. Typically, K = 2. 

7.3 VCO Model

A VCO generates a sine or square wave whose frequency is proportional to the input 
signal level. VCO models, given in Listings 4 and 5, are constructed using three serial 
operations, as shown in Figure 7. First, the input signal is scaled to compute the desired 
output frequency. Then, the frequency is integrated to compute the output phase. 
Finally, the phase is used to generate the desired output signal. The phase is computed 
with idtmod, a function that provides integration followed by a modulus operation. This 
serves to keep the phase bounded, which prevents a loss of numerical precision that 
would otherwise occur when the phase became large after a long period of time. Output 
transitions are generated when the phase passes –π/2 and π/2.

The jitter is modeled as a random variation in the frequency of the VCO. However, the 
jitter is specified as a variation in the period, thus it is necessary to relate the variation in 
the period to the variation in the frequency. Assume that without jitter, the period is 
divided into K equal intervals of duration τ = T / K = 1 / K fo. The frequency deviation 

LISTING 2 PFD/CP model with synchronous jitter.

`include “disciplines.vams”

module pfd_cp (out, ref, vco);

input ref, vco; output out; electrical ref, vco, out;

parameter real Iout=100u; 
parameter integer dir=1 from [–1:1] exclude 0; // dir=1 for positive edge trigger 

// dir=–1 for negative edge trigger 
parameter real tt=1n from (0:inf); 
parameter real td=0 from (0:inf); 
parameter real jitter=0 from [0:td/5); // edge-to-edge jitter 
parameter real ttol=1p from (0:td/5); // recommend ttol << jitter

integer state, seed; 
real dt;

analog begin 
@(initial_step) seed = 716;

@(cross(V(ref), dir, ttol)) begin 
if (state > –1) state = state – 1; 
dt = jitter∗$rdist_normal(seed,0,1); 

end

@(cross(V(vco), dir, ttol)) begin 
if (state < 1) state = state + 1; 
dt = jitter∗$rdist_normal(seed,0,1); 

end

        I(out) <+ transition(Iout∗state, td + dt, tt); 
end 
endmodule

T K⁄ Jδ K⁄+
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will be updated every interval and held constant during the intervals. With jitter, the 
duration of an interval is

. (47)

Δτ is a random variable with variance

. (48)

Therefore,

(49)

where δ is a zero-mean unit-variance Gaussian random process. The dithered frequency 
is

LISTING 3 Fixed frequency oscillator with accumulating jitter.

`include “disciplines.vams”

module osc (out);

output out; electrical out;

parameter real freq=1 from (0:inf); 
parameter real Vlo=–1, Vhi=1; 
parameter real tt=0.01/freq from (0:inf); 
parameter real jitter=0 from [0:0.1/freq); // period jitter

integer n, seed; 
real next, dT;

analog begin 
@(initial_step) begin 

seed = 286; 
next = 0.5/freq + $abstime; 

end

@(timer(next)) begin 
n = !n; 
dT = jitter∗$rdist_normal(seed,0,1); 
next = next + 0.5/freq + 0.707∗dT; 

end

V(out) <+ transition(n ? Vhi : Vlo, 0, tt); 
end 
endmodule

FIGURE 7 Block diagram of VCO behavioral model that includes jitter.
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(50)

Let , then

. (51)

Finally, var(τi) = J2/K, and so  and .

The @cross statement is used to determine the exact time when the phase crosses the 
thresholds, indicating the beginning of a new interval. At this point, a new random trial 
δi is generated.

The final model given in Listing 4. This model can be easily modified to fit other needs. 
Converting it to a model that generates sine waves rather than square waves simply 
requires replacing the last two lines with one that computes and outputs the sine of the 
phase. When doing so, consider reducing the number of jitter updates to one per period, 
in which case the factor of 1.414 should be changed to 1.

Listing 5 is a Verilog-A model for a quadrature VCO that exhibits accumulating jitter. It 
is an example of how to model an oscillator with multiple outputs so that the jitter on the 
outputs is properly correlated. 

7.4 Efficiency of the Models

Conceptually, a model that includes jitter should be just as efficient as one that does not 
because jitter does not increase the activity of the models, it only affects the timing of 
particular events. However, if jitter causes two events that would normally occur at the 
same time to be displaced so that they are no longer coincident, then a circuit simulator 
will have to use more time points to resolve the distinct events and so will run more 
slowly. For this reason, it is desirable to combine jitter sources to the degree possible. 

To make the HDL models even faster, rewrite them in either Verilog-HDL or Verilog-
AMS. Be sure to set the time resolution to be sufficiently small to prevent the discrete 
nature of time in these simulators from adding an appreciable amount of jitter.

7.4.1 Including Synchronous Jitter into OSC

One can combine the output-referred noise of FDM and FDN and the input-referred 
noise of the PFD/CP with the output noise of OSC. A modified fixed-frequency oscilla-
tor model that supports two jitter parameters and the divide ratio M is given in Listing 6
(more on the effect of the divide ratio on jitter in the next section). The accJitter param-
eter is used to model the accumulating jitter of the reference oscillator, and the syncJitter
parameter is used to model the synchronous jitter of FDM, FDN and PFD/CP. Synchro-
nous jitter is modeled in the oscillator without using a nonzero delay in the transition 
function. This is a more efficient approach because it avoids generating two unneces-
sary events per period. To get full benefit from this optimization, a modified PFD/CP 
given in Listing 7 is used. This model runs more efficiently by removing support for jit-
ter and the td parameter.

fi
1
K
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τ Δτi+
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7.4.2 Merging the VCO and FDN

If the output of the VCO is not used to drive circuitry external to the synthesizer, if the 
divider exhibits simple synchronous jitter, and if the VCO exhibits simple accumulating 
jitter, then it is possible to include the frequency division aspect of the FDN as part of 
the VCO by simply adjusting the VCO gain and jitter. If the divide ratio of FDN is large, 
the simulation runs much faster because the high VCO output frequency is never gener-
ated. The Verilog-A model for the merged VCO and FDN is given in Listing 8. It also 
includes code for generating a logfile containing the length of each period. The logfile is 

LISTING 4 VCO model that includes accumulating jitter.

`include “disciplines.vams” 
`include “constants.vams”

module vco (out, in);

input in; output out; electrical out, in;

parameter real Vmin=0; 
parameter real Vmax=Vmin+1 from (Vmin:inf); 
parameter real Fmin=1 from (0:inf); 
parameter real Fmax=2∗Fmin from (Fmin:inf); 
parameter real Vlo=–1, Vhi=1; 
parameter real tt=0.01/Fmax from (0:inf); 
parameter real jitter=0 from [0:0.25/Fmax); // period jitter 
parameter real ttol=1u/Fmax from (0:1/Fmax);

real freq, phase, dT; 
integer n, seed;

analog begin 
@(initial_step) seed = –561;

// compute the freq from the input voltage  
freq = (V(in) – Vmin)∗(Fmax – Fmin) / (Vmax – Vmin) + Fmin;

// bound the frequency (this is optional) 
if (freq > Fmax) freq = Fmax; 
if (freq < Fmin) freq = Fmin;

// add the phase noise 
freq = freq/(1 + dT∗freq);

// phase is the integral of the freq modulo 2π 
phase = 2∗`M_PI∗idtmod(freq, 0.0, 1.0, –0.5);

// update jitter twice per period 
// 1.414=sqrt(K), K=2 jitter updates/period 
@(cross(phase + `M_PI/2, +1, ttol) or cross(phase – `M_PI/2, +1, ttol)) begin 

dT = 1.414∗jitter∗$rdist_normal(seed,0, 1); 
n = (phase >= –`M_PI/2) && (phase < `M_PI/2); 

end

// generate the output 
V(out) <+ transition(n ? Vhi : Vlo, 0, tt); 

end 
endmodule
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used in Section 8 when determining SVCO, the power spectral density of the phase of the 
VCO output.

LISTING 5 Quadrature Differential VCO model that includes accumulating jitter.

`include “disciplines.vams” 
`include “constants.vams”

module quadVco (PIout,NIout, PQout,NQout, Pin,Nin);

electrical PIout, NIout, PQout, NQout, Pin, Nin; 
output PIout, NIout, PQout, NQout; 
input Pin, Nin;

parameter real Vmin=0; 
parameter real Vmax=Vmin+1 from (Vmin:inf); 
parameter real Fmin=1 from (0:inf); 
parameter real Fmax=2∗Fmin from (Fmin:inf); 
parameter real Vlo=–1, Vhi=1; 
parameter real jitter=0 from [0:0.25/Fmax); // period jitter 
parameter real ttol=1u/Fmax from (0:1/Fmax); 
parameter real tt=0.01/Fmax;

real freq, phase, dT; 
integer i, q, seed;

analog begin 
@(initial_step) seed = 133;

// compute the freq from the input voltage 
freq = (V(Pin,Nin) − Vmin) ∗ (Fmax − Fmin) / (Vmax − Vmin) + Fmin;

// bound the frequency (this is optional) 
if (freq > Fmax) freq = Fmax; 
if (freq < Fmin) freq = Fmin;

// add the phase noise 
freq = freq/(1 + dT∗freq);

// phase is the integral of the freq modulo 2π 
phase = 2∗`M_PI∗idtmod(freq, 0.0, 1.0, –0.5);

// update jitter where phase crosses π/2 
// 2=sqrt(K), K=4 jitter updates per period 
@(cross(phase – 3∗`M_PI/4, +1, ttol) or cross(phase – `M_PI/4, +1, ttol) or 
         cross(phase + `M_PI/4, +1, ttol) or cross(phase + 3∗`M_PI/4, +1, ttol)) begin 

dT = 2∗jitter∗$rdist_normal(seed,0,1); 
i = (phase >= –3∗`M_PI/4) && (phase < `M_PI/4); 
q = (phase >= –`M_PI/4) && (phase < 3∗`M_PI/4); 

end

// generate the I and Q outputs 
V(PIout) <+ transition(i ? Vhi : Vlo, 0, tt); 
V(NIout) <+ transition(i ? Vlo : Vhi, 0, tt); 
V(PQout) <+ transition(q ? Vhi : Vlo, 0, tt); 
V(NQout) <+ transition(q ? Vlo : Vhi, 0, tt); 

end 
endmodule
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Recall that the synchronous jitter of FDM and FDN has already been included as part of 
OSC, so the divider model incorporated into the VCO is noiseless and the jitter at the 
output of the noiseless divider results only from the VCO jitter. Since the divider out-
puts one pulse for every N pulses at its input, the variance in the output period is the sum 
of the variance in N input periods. Thus, the period jitter at the output, JFD, is  times 
larger than the period jitter at the input, JVCO, or

. (52)

Thus, to merge the divider into the VCO, the VCO gain must be reduced by a factor of 
N, the period jitter increased by a factor of , and the divider model removed.

After simulation, it is necessary to refer the computed results, which are from the output 
of the divider, to the output of VCO, which is the true output of the PLL. The period jit-
ter at the output of the VCO, JVCO, can be computed with (52).

To determine the effect of the divider on Sφ(ω), square both sides of (52) and apply (39)

. (53)

LISTING 6 Fixed-frequency oscillator with accumulating and synchronous jitter.

`include “disciplines.vams”

module osc (out);

output out; electrical out;

parameter real freq=1 from (0:inf); 
parameter real ratio=1 from (0:inf); 
parameter real Vlo=–1, Vhi=1; 
parameter real tt=0.01∗ratio/freq from (0:inf); 
parameter real accJitter=0 from [0:0.1/freq); // period jitter 
parameter real syncJitter=0 from [0:0.1∗ratio/freq); // edge-to-edge jitter

integer n, accSeed, syncSeed; 
real next, dT, dt, accSD, syncSD;

analog begin 
@(initial_step) begin 

accSeed = 286; 
syncSeed = –459; 
accSD = accJitter∗sqrt(ratio/2); 
syncSD = syncJitter; 
next = 0.5/freq + $abstime; 

end

@(timer(next + dt)) begin 
n = !n; 
dT = accSD∗$rdist_normal(accSeed,0,1); 
dt = syncSD∗$rdist_normal(syncSeed,0,1); 
next = next + 0.5∗ratio/freq + dT; 

end

V(out) <+ transition(n ? Vhi : Vlo, 0, tt); 
end 
endmodule

N

JFD NJVCO=

N

cVCOTVCO
cFDTFD

N
-------------------=
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TVCO = TFD / N, and so

cVCO = cFD (54)

From (41),

(55)

Finally, fVCO = N fFD, and so

SVCO = N 2 SFD. (56)

Once FDN is incorporated into the VCO, the VCO output signal is no longer observable, 
however the characteristics of the VCO output are easily derived from (52) and (56), 
which are summarized in Table 3.

It is interesting to note that while the frequency at the output of FDN is N times smaller 
than at the output of the VCO, except for scaling in the amplitude, the spectrum of the 
noise close to the fundamental is to a first degree unaffected by the presence of FDN. In 
particular, the width of the noise spectrum is unaffected by FDN. This is extremely for-
tuitous, because it means that the number of cycles we need to simulate is independent 
of the divide ratio N. Thus, large divide ratios do not affect the total simulation time.

To understand why FDN does not affect the width of the noise spectrum, recall that 
while we started with a jitter that varied continuously with time, j(t) in (2), for either 
efficiency or modeling reasons we eventually sampled it to end up with a discrete-time 
version. The act of sampling the jitter causes the spectrum of the jitter to be replicated at 
the multiples of the sampling frequency, which adds aliasing. This aliasing is visible, 
but not obvious, at high frequencies in Figure 9. However, especially with accumulating 

LISTING 7 PFD/CP without jitter.

`include “disciplines.vams”

module pfd_cp (out, ref, vco);

input ref, vco; output out; electrical ref, vco, out;

parameter real Iout=100u; 
parameter integer dir=1 from [–1:1] exclude 0; // dir = 1 for positive edge trigger 

// dir = –1 for negative edge trigger 
parameter real tt=1n from (0:inf); 
parameter real ttol=1p from (0:inf);

integer state;

analog begin 
@(cross(V(ref), dir, ttol)) begin 

if (state > –1) state = state – 1; 
end 
@(cross(V(vco), dir, ttol)) begin 

if (state < 1) state = state + 1; 
end

        I(out) <+ transition(Iout ∗ state, 0, tt); 
end 
endmodule

2SVCO
f 2

fVCO
2

------------ 2SFD
f 2

fFD
2

--------=
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LISTING 8 VCO with FDN.

`include “disciplines.vams”

module vco (out, in);

input in; output out; electrical out, in;

parameter real Vmin=0; 
parameter real Vmax=Vmin+1 from (Vmin:inf); 
parameter real Fmin=1 from (0:inf); 
parameter real Fmax=2∗Fmin from (Fmin:inf); 
parameter real ratio=1 from (0:inf); 
parameter real Vlo=–1, Vhi=1; 
parameter real tt=0.01∗ratio/Fmax from (0:inf); 
parameter real jitter=0 from [0:0.25∗ratio/Fmax); // VCO period jitter 
parameter real ttol=1u∗ratio/Fmax from (0:ratio/Fmax); 
parameter real outStart=inf from (1/Fmin:inf);

real freq, phase, dT, delta, prev, Vout; 
integer n, seed, fp;

analog begin 
@(initial_step) begin 

seed = –561; 
delta = jitter ∗ sqrt(2∗ratio); 
fp = $fopen(“periods.m”); 
Vout = Vlo; 

end

// compute the freq from the input voltage  
freq = (V(in) – Vmin)∗(Fmax – Fmin)  / (Vmax – Vmin) + Fmin;

// bound the frequency (this is optional) 
if (freq > Fmax) freq = Fmax; 
if (freq < Fmin) freq = Fmin;

// apply the frequency divider, add the phase noise 
freq = (freq / ratio)/(1 + dT ∗ freq / ratio);

// phase is the integral of the freq modulo 1 
phase = idtmod(freq, 0.0, 1.0, –0.5);

// update jitter twice per period 
@(cross(phase – 0.25, +1, ttol)) begin 

dT = delta ∗ $rdist_normal(seed, 0, 1); 
Vout = Vhi; 

end 
@(cross(phase + 0.25, +1, ttol)) begin 

dT = delta ∗ $rdist_normal(seed, 0, 1); 
Vout = Vlo; 
if ($abstime >= outStart) $fstrobe( fp, “%0.10e”, $abstime – prev); 
prev = $abstime; 

end 
V(out) <+ transition(Vout, 0, tt); 

end 
endmodule
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jitter, the phase noise amplitude at low frequencies is much larger than the aliased noise, 
and so the close-in noise spectrum is largely unaffected by the sampling. The effect of 
FDN is to decimate the sampled jitter by a factor of N, which is equivalent to sampling 
the jitter signal, j(t), at the original sample frequency divided by N. Thus, the replication 
is at a lower frequency, the amplitude is lower, and the aliasing is greater, but the spec-
trum is otherwise unaffected.

8 Simulation and Analysis
The synthesizer is simulated using the netlist from Listing 10 and the Verilog-A descrip-
tions in Listings 6-8, modifying them as necessary to fit the actual circuit. The simula-
tion should cover an interval long enough to allow accurate Fourier analysis at the 
lowest frequency of interest (Fmin). With deterministic signals, it is sufficient to simu-
late for K cycles after the PLL settles if Fmin = 1/(TK). However, for these signals, 
which are stochastic, it is best to simulate for 10K to 100K cycles to allow for enough 
averaging to reduce the uncertainty in the result.

One should not simply apply an FFT to the output signal of the VCO/FDN to determine 
L(Δf   ) for the PLL. The result would be quite inaccurate because the FFT samples the 
waveform at evenly spaced points, and so misses the jitter of the transitions. Instead, 
L(Δf   ) can be measured with Spectre’s Fourier Analyzer, which uses a unique algorithm 
that does accurately resolve the jitter [11]. However, it is slow if many frequencies are 
needed and so is not well suited to this application.

Unlike L(Δf   ), Sφ( Δf  ) can be computed efficiently. The Verilog-A code for the VCO/
FDN given in Listing 8 writes the length of each period to an output file named peri-
ods.m. Writing the periods to the file begins after an initial delay, specified using out-
Start, to allow the PLL to reach steady state. This file is then processed by Matlab from 
MathWorks using the script shown in Listing 9. This script computes Sφ(Δf  ), the power 
spectral density of φ, using Welch’s method [20]. The frequency range is from fout/2 to 
fout/nfft. The script computes Sφ(Δf   ) with a resolution bandwidth of rbw.10 Normally, 
Sφ(Δf   ) is given with a unity resolution bandwidth. To compensate for a non-unity reso-
lution bandwidth, broadband signals such as the noise should be divided by rbw. Signals 
with bandwidth less than rbw, such as the spurs generated by leakage in the CP, should 
not be scaled. The script processes the output of VCO/FDN. The results of the script 
must be further processed using the equations in Table 3 to remove the effect of FDN. 

TABLE 3 Characteristics of VCO output relative to the output of FDN assuming the VCO exhibits simple 
accumulating jitter and the FDN is noise free.

Frequency Jitter Phase Noise

10.The Hanning window used in the psd() function has a resolution bandwidth of 1.5 bins [9]. 
Assuming broadband signals, Matlab divides by 1.5 inside psd() to compensate. In order to 
resolve narrowband signals, the factor of 1.5 is removed by the script, and instead included in 
the reported resolution bandwidth.

fVCO NfFD= JVCO
JFD

N
---------= SφVCO

N2SφFD
=
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9 Example 
These ideas were applied to model and simulate a PLL acting as a frequency synthe-
sizer. A synthesizer was chosen with fref = 25 MHz, fout = 2 GHz, and a channel spacing 
of 200 kHz. As such, M = 125 and N = 10,000.

The noise of OSC is –95 dBc/Hz at 100 kHz. Applying (44) to compute c, where 
L(Δf   ) = 316 × 10–12, Δf    = 100 kHz, and fo = 25 MHz, gives c = 5 × 10–15. The period 
jitter J is then computed from (39) to be 14 ps.

The noise of VCO is –48 dBc/Hz at 100 kHz. Applying (44) and (39) with L(Δf   ) = 1.59 
× 10–5, Δf    = 100 kHz, and fo = 2 GHz, gives c = 4 × 10 –14 and a period jitter of J = 
4.5 ps.

LISTING 9 Matlab script used for computing Sφ(Δf   ). These results must be further processed using Table 3 to 
map them to the output of the VCO.

% Process period data to compute Sφ(Δf  ) 
echo off; 
nfft=512; % should be power of two 
winLength=nfft; 
overlap=nfft/2; 
winNBW=1.5; % Noise bandwidth given in bins

% Load the data from the file generated by the VCO 
load periods.m;

% output estimates of period and jitter 
T=mean(periods); 
J=std(periods); 
maxdT = max(abs(periods–T))/T; 
fprintf(‘T = %.3gs, F = %.3gHz\n’,T, 1/T); 
fprintf(‘Jabs = %.3gs, Jrel = %.2g%%\n’, J, 100∗J/T); 
fprintf(‘max dT = %.2g%%\n’, 100∗maxdT); 
fprintf(‘periods = %d, nfft = %d\n’, length(periods), nfft);

% compute the cumulative phase of each transition 
phases=2∗pi∗cumsum(periods)/T;

% compute power spectral density of phase 
[Sphi,f]=psd(phases,nfft,1/T,winLength,overlap,’linear’);

% correct for scaling in PSD due to FFT and window 
Sphi=winNBW∗Sphi/nfft;

% plot the results (except at DC) 
K = length(f); 
semilogx(f(2:K),10∗log10(Sphi(2:K))); 
title(‘Power Spectral Density of VCO Phase’); 
xlabel(‘Frequency (Hz)’); 
ylabel(‘S phi (dB/Hz)’); 
rbw = winNBW/(T∗nfft); 
RBW=sprintf(‘Resolution Bandwidth = %.0f Hz (%.0f dB)’, rbw, 10∗log10(rbw)); 
imtext(0.5,0.07, RBW);
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The period jitter of the PFD/CP and FDs was found to be 2 ns. The FDs were included 
into the oscillators, which suppresses the high frequency signals at the input and output 
of the synthesizer. The netlist is shown in Listing 10. The results (compensated for non-
unity resolution bandwidth (–28 dB) and for the suppression of the dividers (80 dB)) are 
shown in Figures 8-11. The simulation took 7.5 minutes for 450k time-points on a HP 
9000/735. The use of a large number of time points was motivated by the desire to 
reduce the level of uncertainty in the results. The period jitter in the PLL was found to 
be 9.8 ps at the output of the VCO.     

LISTING 10 Spectre netlist for PLL synthesizer.

// PLL-based frequency synthesizer that models jitter 
simulator lang=spectre

ahdl_include “osc.va” // Listing 6 
ahdl_include “pfd_cp.va” // Listing 7 
ahdl_include “vco.va” // Listing 8

Osc (in)oscfreq=25MHz ratio=125 accJitter=14ps syncJitter=2ns 
PFD(err in fb)pfd_cpIout=500ua 
C1 (err c)capacitorc=3.125nF 
R (c   0)resistorr=10k 
C2 (c   0)capacitorc=625pF 
VCO(fb err)vcoFmin=1GHz Fmax=3GHz Vmin=–4 Vmax=4 ratio=10000 \ 

jitter=4.5ps outStart=10ms

JitterSimtranstop=60ms

FIGURE 8 Noise of the closed-loop PLL at the output of the VCO when only the reference oscillator exhibits 
jitter (CL) versus the noise of the reference oscillator mapped up to the VCO frequency when 
operated open loop (OL).
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The low-pass filter LF blocks all high frequency signals from reaching the VCO, so the 
noise of the phase lock loop at high frequencies is the same as the noise generated by the 
open-loop VCO alone. At low frequencies, the loop gain acts to stabilize the phase of 
the VCO, and the noise of the PLL is dominated by the phase noise of the OSC. There is 
some contribution from the VCO, but it is diminished by the gain of the loop. In this 
example, noise at the middle frequencies is dominated by the synchronous jitter gener-
ated by the PFD/CO and FDs. The measured results agree qualitatively with the 
expected results. The predicted noise is higher than one would expect solely from the 
open-loop behavior of each block because of peaking in the response of the PLL from 5 
kHz to 50 kHz. For this reason, PLLs used in synthesizers where jitter is important are 
usually over damped.

FIGURE 9 Noise of the closed-loop PLL at the output of the VCO when only the VCO exhibits jitter (CL) 
versus the noise of the VCO when operated open loop (OL).

FIGURE 10 Noise of the closed-loop PLL at the output of the VCO when only the PFD/CP, FDM, and FDN 
exhibit jitter (CL) versus the noise of these components mapped up to the VCO frequency when 
operated open loop (OL).
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10 Conclusion 
A methodology for modeling and simulating the jitter performance of phase-locked 
loops was presented. The simulation is done at the behavioral level, and so is efficient 
enough to be applied in a wide variety of applications. The behavioral models are cali-
brated from circuit-level noise simulations, and so the high-level simulations are accu-
rate. Behavioral models were presented in the Verilog-A language, however these same 
ideas can be used to develop behavioral models in purely event-driven languages such 
as Verilog-HDL and Verilog-AMS.

This methodology is flexible enough to be used in a broad range of applications where 
jitter is important. Examples include, clock generation and recovery, sampling systems, 
over-sampled ADCs, digital modulation and demodulation systems, and fractional-N
frequency synthesis (though it is not possible to merge the VCO and divider in this 
case).

10.1 If You Have Questions

If you have questions about what you have just read, feel free to post them on the Forum
section of The Designer’s Guide Community website. Do so by going to www.designers-
guide.org/Forum. For more in depth questions, feel free to contact me in my role as a 
consultant at ken@designers-guide.com.
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