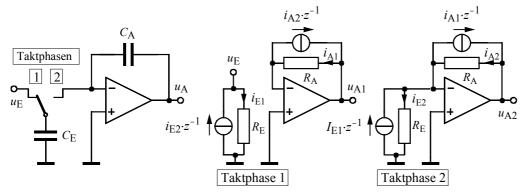
AC analysis of switched-capacitor networks

Method: Separate simulation and combination of both switching phases


Principle: Combination of two separate blocks with cross-coupled controlled current sources.

Example: See Fig. 1 (S/C integrator).

Current i_{A2} (right amplifier) controls the corresponding current source in the left amplifier. Corresponding crosscoupling for the other 3 currents.

Each switched capacitor is replaced by a parallel combination of a current source and a resistor. The resistor value is determined by the sampling frequency and the capacitor value (see example below).

Both output signals u_{A1} and u_{A2} are to be added.

Fig. 1 SC-Integrator (Superposition of both output voltages u_{A1} and u_{A2})

Example: Classical *RC-Miller*-Integrator: $R_1=10 \text{ k}\Omega$, $C_2=15.9 \text{ nF}$ ($\tau=159 \text{ }\mu\text{s}$, $f_0=1/(2\pi\tau)=1 \text{ kHz}$);

- SC-Äquivalent (Fig. 1, left): Sampling period $T_A=10 \ \mu s$, $C_E=T_A/R_1=1 \ nF$, $C_A=C_2=15,9 \ nF$;

- For simulation (Fig. 1, right) $R_{\rm E} = T_{\rm A}/C_{\rm E} = 10 \text{ k}\Omega$, $R_{\rm A} = T_{\rm A}/C_{\rm A} = 628,3 \Omega$, $z^{-1} = \exp(-j\omega T_{\rm A})$;

Remark:

Most simulation programs contain controlled sources allowing *Laplace* notation $s=j\omega$ and $z^{-1}=\exp(-s\cdot 1E-5)$. For correct determination of the current direction for all currents i_E und i_A it is recommended to use in addition zero-voltage sources in series to R_E and R_A , correspondingly.

Perform an ac analysis (input node u_E). Both output voltages u_{A1} and u_{A2} are added and the transfer function u_A/u_E can be displayed, as shown in Fig. 2.

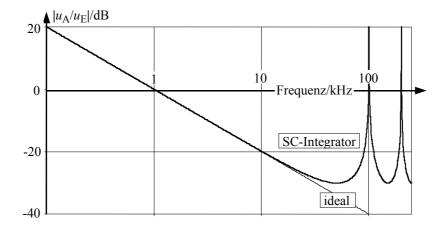


Fig. 2 Transfer function: SC-Structure (Fig. 1), and for comparison: Ideal integration.

Remark: In practice, the output of S/C stages resembles a sample-and-hold function – leading to a drastical improvement of the integrator function for all frequencies above 10 kHz.