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Figure 4.27: AC-coupled comparator, a circuit that is very sensitive
to charge errors.

4.2.5 Charge Conservation

There are several mechanisms that affect charge conservation. The
charge conserving nature of semiconductor models is the most im-
portant factor that affects charge conservation because of the large
amount of charge that is created or annihilated on every time step by
capacitance-based models. The Meyer capacitance model [meyer71]
used in MOS1, MOS2, and MOS3 models is capacitance-based and
so is not charge conserving. The Ward-Dutton model [ward78], avail-
able in MOS2, the Yang-Chatterjee model [yang82], and the BSIM
model, both available on all MOSFETs installed in Spectre, are all
charge-based and so conserve charge.

Even when exclusively using charge-conserving models, there can
still be some problems with charge conservation. The error due to
the convergence criteria was discussed in the section on DC analysis.
This results in charge not being completely conserved, which is an
important point. Even simulators with charge-conserving models do
not conserve charge completely, though they do a much better job of
it than simulators that use non-charge-conserving models.

While charge conservation errors are small, they occur on each time
step and in sensitive circuits, such as charge-storage circuits, the
small charge errors can accumulate until they become a big prob-
lem. Consider the AC-coupled comparator shown in Figure 4.27.
This is an example of a circuit that is extremely sensitive to error
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Stimulus for AC-Coupled Comparator
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Figure 4.28: Stimulus waveform for the AC-coupled comparator.

(see Section 4.2.4 on page 160 to recall how certain types of circuits
cause errors to accumulate). The switches in this circuit are initially
set such that the offset in the amplifiers is stored on the interstage
capacitors. Ideally, when switched back to the normal mode of op-
eration, the offset stored on the capacitor cancels the offset on the
amplifiers. Unfortunately, if the capacitor model used in the FETs
acting as switches do not conserve charge, the charge error is stored
on the interstage capacitors and amplified. This is shown in Fig-
ure 4.29, which is the output of the comparator when driven with
the input shown in Figure 4.28. Since the stimulus returns to zero at
the end of the simulation interval, the output should at least return
to being close to zero. The charge error that results from using non-
charge-conserving models prevents this from occurring. When the
circuit is resimulated using charge conserving models, the computed
solution (as shown in Figure 4.30 on the next page) is considerably
more accurate, though it does exhibit some charge error. If reltol
is tightened and the circuit resimulated, as shown in Figure 4.31 on
page 170, all hint of charge error is gone.

Why Capacitance-based Models do not Conserve Charge In
Spice, the Meyer capacitance model is used to model the dynamic
nature of the MOS devices. The Meyer model consists of equations
that give capacitance as a function of terminal voltages. The capac-
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Response of AC-Coupled Comparator as Computed by SPICE
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Figure 4.29: Response of the AC-coupled comparator computed by
Spice with non-charge conserving models. Notice that solution does
not return to zero as it should.

Response of AC-Coupled Comparator as Computed by Spectre
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Figure 4.30: Response of the AC-coupled comparator computed by
Spectre with charge conserving models. Notice that solution returns
almost to zero.
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Response of AC-Coupled Comparator when Computed with Tight Tolerances
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Figure 4.31: Response of the AC-coupled comparator computed by
Spectre with reltol tightened. Notice that solution returns to zero
as it should.

itors are nonlinear. Capacitance is an incremental or small-signal
quantity that is defined as C = dq/dv. Defining a capacitor model
by giving capacitance as a function of voltage results in the model
not conserving charge. The reason capacitance-based models do not
conserve charge is that capacitance is an incremental quantity that
only accurately predicts the change in charge versus voltage for in-
finitesimally small changes in voltage. The other method of defining
a capacitor model, that of giving charge as a function of voltage, does
conserve charge.

Consider the following experiment, connect a linear 1µF capacitor
across a voltage source. Assume that the voltage across the source
changes from 0 to 1mV in one time step, and then back to zero on
the next as shown in Figure 4.32. Let both time steps be 1ns. Then
current is computed on the first step as i = Cdv/dt = 1A, and the
charge is Q = Cv = 1nCoul. On the second step, the charge flow
is equal and opposite, with a net zero charge being supplied by the
source after the second step. Thus, capacitance based models do not
result in charge conservation problems when the capacitor is linear
and the capacitance is exact.

If the capacitor is nonlinear and described with an equation that
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Figure 4.32: Stimulus waveform to the charge conservation exam-
ple.

gives capacitance as a function of voltage, neither the current nor
the charge can be computed exactly. They can be approximated
using backward Euler (4.9) as follows,

i(t1) = C(v(t0))[v(t1)− v(t0)]/[t1 − t0] (4.30)
∆q(t1) = C(v(t0))[v(t1)− v(t0)] (4.31)

Thus if C(0) = 1µF and C(0.001) = 1.1µF, then

i(t1) = 1A (4.32)
∆q(t1) = 1nCoul (4.33)
i(t2) = −1.1A (4.34)

∆q(t2) = −1.1nCoul (4.35)

Thus, the net charge is −0.1 nCoul. This is illustrated in Figure 4.33
on the next page.

If a charge-based model is used, the problem goes away. Assume
the capacitor is modeled with the equation q(v) = Cv +Dv2, where
C = 1µF and D = 50µF/v. This equation was chosen because it
satisfies C(0) = 1µF and C(0.001) = 1.1µF. Now the current still
has to be approximated, but the approximation is such that charge
is always conserved.

i(t1) = [q(v(t1))− q(v(t0))]/[t1 − t0] (4.36)
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Figure 4.33: Example that shows that charge is not conserved (in
other words, ∆q(t1) �= −∆q(t2) even though ∆v(t1) = −∆v(t2))
when using capacitance-based models because the change in charge
on a time step is computed from a linear approximation of the charge
function rather than the using the charge function itself. δq(tn) rep-
resents the charge error made on step n.
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Figure 4.34: Example that shows that charge is conserved when us-
ing charge-based models (because ∆q(t1) = −∆q(t2) when ∆v(t1) =
−∆v(t2)).
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i(t1) = 1.05A (4.37)
∆q(t1) = 1.05nCoul (4.38)
i(t2) = −1.05A (4.39)

∆q(t2) = −1.05nCoul (4.40)

The net charge is 0. This is illustrated in Figure 4.34 on the facing
page.

The crucial point here is that since charge is computed explicitly, if a
charge-based capacitor model is evaluated for the charge at a particu-
lar voltage, and then the voltage on the capacitor goes through some
large excursion but returns to its original value, then the charge must
also return to its original value because it is computed with an alge-
braic expression that has not changed using the same input. With a
capacitance-based model, the small errors made on each step of the
voltage trajectory accumulate and the final charge does not equal
the starting charge.

This example also partially illustrates why the MOSFET capacitor
models in Spice have not been fixed. It is first necessary to derive a
charge equation that fits the model. In other words, it is necessary
to derive a set of charge relations for each terminal such that the
derivative of these charges match the Meyer capacitances. Unfortu-
nately, that is not possible. The Meyer capacitances are incomplete
and inconsistent and so there exists no charge functions that when
differentiated give the Meyer capacitances.

If you are forced to use the Meyer model, the charge-conservation
problem can be reduced by tightening reltol, but it cannot be elim-
inated. Tightening reltol reduces charge error because it results in
the simulator taking smaller time steps, which implies the change in
voltage across the capacitor over a time step is smaller and so the
linearized capacitance model is more accurate. However, Meyer’s in-
complete set of capacitances does result in charge being created or
destroyed regardless of how small a time step is used.

The Statz GaAsFET model, unlike the Meyer model, does conserve
total device charge because it has an explicit relationship between
total charge and the terminal voltages. However, the model does not
have explicit relationships for the drain and source charge, so charge
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does mysteriously appear or disappear on the drain and source. To-
tal charge is conserved because the explicit total-charge relationship
forces the exact amount of charge that disappears from the drain to
appear on the source and visa versa.

Requirements for Capacitor Models to Conserve Charge3

For a capacitor model to be charge conserving, it must be such that
if the voltage is changed and then returned to its original value,
the final charge must equal the initial charge, regardless of the path
taken or the starting point. This is true for models described with
single-valued charge functions because q(vi) = q(vf ) if vi = vf . As
shown previously, capacitance-based models do not conserve charge
if the capacitor is nonlinear and the path is discretized with a finite
number of steps because the capacitance is a linear approximation
to the charge function and if the steps are not infinitesimal, a finite
error accumulates on each step.

An interesting question remains. If only a capacitance-based model
is available, can the charge error be reduced to negligible levels by
taking small time steps. For a capacitance-based model to be charge
conserving when the time step asymptotically approaches zero the
capacitances must include all of the derivatives of a charge function,
and must be exact. This is shown by integrating all the charge
that flows into a capacitor while traversing a closed path of voltages.
Consider the charge that flows from gate-to-source on a MOSFET.
This charge is a function of Vgs, Vgd, and Vgb and so is denoted
Qgs(Vgs, Vgd, Vgb). In the notation of vector calculus, the total charge
accumulated around the path is written∮

C

∂Qgs

∂V
dV =

∮
C
∇Qgs(V ) · dV = Qerr (4.41)

where V = [Vgs Vgd Vgb]T is the voltage vector, ∇Qgs(V ) is the
capacitance written as a gradient, C is any closed path, and Qerr is
the total charge accumulated along the path. Expanding the gradient

3This section assumes the reader has a background in vector calculus. You
may skip this section without loss of continuity.
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gives

∮
C

(
∂Qgs

∂Vgs
dVgs +

∂Qgs

∂Vgd
dVgd +

∂Qgs

∂Vgb
dVgb

)
= Qerr. (4.42)

Stoke’s theorem states that∮
C
∇Qgs(V ) · dV =

∫
S
∇×∇Qgs · dS (4.43)

where S is the surface enclosed by C. Using Stoke’s theorem on (4.41)
converts the path integral in terms of the first derivatives of charge
to a surface integral in terms of the second derivatives of charge.∫

S
∇×∇Qgs · dS = Qerr (4.44)

Expanding the cross and dot products gives

∫
S

(
∂2Qgs

∂Vgd∂Vgb
(Vgs, Vgd, Vgb)− ∂2Qgs

∂Vgb∂Vgd
(Vgs, Vgd, Vgb)

)
dSgs +

(
∂2Qgs

∂Vgb∂Vgs
(Vgs, Vgd, Vgb)− ∂2Qgs

∂Vgs∂Vgb
(Vgs, Vgd, Vgb)

)
dSgd +

(
∂2Qgs

∂Vgs∂Vgd
(Vgs, Vgd, Vgb)− ∂2Qgs

∂Vgd∂Vgs
(Vgs, Vgd, Vgb)

)
dSgb = Qerr

(4.45)

If Qgs is continuously differentiable, it can be shown that the second
derivative must be symmetric4. This condition requires that

∂2Qgs

∂Vgd∂Vgb
(Vgs, Vgd, Vgb) =

∂2Qgs

∂Vgb∂Vgd
(Vgs, Vgd, Vgb) (4.46)

∂2Qgs

∂Vgs∂Vgd
(Vgs, Vgd, Vgb) =

∂2Qgs

∂Vgd∂Vgs
(Vgs, Vgd, Vgb) (4.47)

∂2Qgs

∂Vgb∂Vgs
(Vgs, Vgd, Vgb) =

∂2Qgs

∂Vgs∂Vgb
(Vgs, Vgd, Vgb). (4.48)

4It is a standard theorem in vector calculus that if a function is continuously
differentiable at a point, then its second derivative or Hessian must be symmetric
at that point.
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Substituting (4.46–4.48) into (4.45) gives

0 = Qerr. (4.49)

Thus, the charge accumulated along a closed-path of voltages for a
capacitance-based model is zero if the steps taken to traverse the
path are infinitesimally small, if the capacitances actually stem from
some charge function, if they include all of the derivatives of the
charge function, and if they are exact.

A complete set of derivatives for Qgs(Vgs, Vgd, Vgb) include

∂Qgs

∂Vgs
(Vgs, Vgd, Vgb) = Cgs(Vgs, Vgd, Vgb) (4.50)

∂Qgs

∂Vgd
(Vgs, Vgd, Vgb) (4.51)

∂Qgs

∂Vgb
(Vgs, Vgd, Vgb). (4.52)

Of this set, the Meyer capacitance model only provides Cgs, the
other derivatives are neglected. This is insufficient to conserve charge
because (4.47–4.48) are not satisfied. In fact, since ∂Qgs

∂Vgd
is zero in

the Meyer model, then ∂2Qgs

∂Vgs∂Vgd
is zero for all Vgs, Vgd, and Vgb. Cgs

is a function of Vgd, so ∂Qgs

∂Vgd
Cgs = ∂2Qgs

∂Vgd∂Vgs
is nonzero. Thus,

∂2Qgs

∂Vgs∂Vgd
(Vgs, Vgd, Vgb) �= ∂2Qgs

∂Vgd∂Vgs
(Vgs, Vgd, Vgb). (4.53)

Similarly,

∂2Qgs

∂Vgs∂Vgb
(Vgs, Vgd, Vgb) �= ∂2Qgs

∂Vgb∂Vgs
(Vgs, Vgd, Vgb). (4.54)

Therefore, there is no charge function that has a derivative that
equals the Meyer capacitance. Also, since important terms in (4.45)
are neglected, Qerr �= 0 and the model does not conserve charge,
regardless of how little the voltage changes on each time step.




