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CHAPTER 8
LooP GAIN ANALYSIS

Determining the loop gain of circuits with high-gain components is a difficult task.
You might be tempted to open the loop to make measurements, but this will
probably destroy the DC bias of the circuit. Opening the loop might also disconnect
an internal load impedance and affect your measurements. What we need is a way
to make these measurements without opening the loop' or changing the internal
" loading of the circuit.

In developing this technique we will start with a hypothetical circuit. We will set |
up this circuit to make these measurements without introducing any problems. Then
we will modify the formulas to work with “real” circuits. But first, let us review some
terms.

8.1 AN IDEAL CIRCUIT

Ue

FIGURE 8-1 Schematic of system with feedback.

In a system with feedback, shown in Figure 8-1, the following signals may be
calculated by inspection: |

u, = >.=m

u, = S.IHA.:o

(8-1)

T This technique, as far as the author can determine, originates from a Hewlett-Packard Applications Note,
circa 1965, The technique has been extended and refined by Dr. R. D. Middlebrook of the California
Institute of Technology; see Mnternational Journal of Electronics, vol. 38, no. 4 (1975), 485-512.
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82 LOOP CAIN ANALYSIS — CHAPTER 8

where u;, u,, and u, are the input, output, and error signals, respectively. Further
manipulation of these formulas yields

u, = >.=h. lb.ﬁée

u; (8-2}
U =

€ 1+AK

SO that system gain, G, is
G = m«Q = A = A = 1 T (8-3)
U, 1+AK 1+T K 1+T

where the loop gain, or return ratio, T is

Ur

T=_1 = AK (8-4)
u
€

The system’s relative stability can be inspected in an open-loop configuration. The
loop is opened in the feedback path, and a “test” signal is injected. Then the
resulting feedback signal, opposite the injection point, is compared to the test signal.
The feedback signal is inspected for one full cycle (360°) of phase shift. However,
since the feedback is subtracted from the input, the subtraction alone provides 180°
of phase shift. So the feedback signal should be inspected for an additional 180° of
phase shift, and not 360°. If the loop gain (the ratio of feedback signal to the test
signal) is one, or greater, the loop is unstable, since it can supply its own input. The
amount of gain, relative to unity, at 180° phase shift is called the loop gain margin.
Likewise, the amount of phase difference from 180° when the loop gain is unity, is
calied the loop phase margin.

Actually this analysis is true even if the loop is broken in the forward path, but
it seems easier to describe as though the feedback path were broken. Now, having
said that, we will imagine that we will “break” the loop somewhere inside the circuit.
It doesn’t matter where, just as long as the break is in some part of the signal path,
To do this, we will imagine that some part of the signal path is a controlled-current
Source connected to an impedance (for example, imagine an ideal transistor with a
load resistance) as shown in Figure 8-2. Also, the normal input signal will be set to
Zero so that we need only consider the effects of the test signal.
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FIGURE 8-2 Idealized section of loop circuitry. FIGURE 8-3 Load duplicated, current injected.
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FIGURE 8-4 Via superposition, loop is not broken. FicUgre 8-5 Voltage-mode equivalent.

Then,we break the loop, as shown in Figure 8-3, being careful to duplicate the
load impedance seen by the current source. Now we inject a current into the original
load impedance, which is part of the original loop, as the test signal. The return
signal is current in the duplicated load impedance. The ratio of the two signals is
merely the current loop gain measurement, or Ti, where Ti = @\_.a.

Now comes part of the trick: it is not necessary to open the loop to inject the test
signal. As shown in Figure 8-4, if a current is injected directly into the signal path,
it splits into the test signal and return signal of Figure 8-3. Furthermore, the load
impedance does not need to be duplicated, since the loop is not broken and the
current source has infinite impedance.

Similarly, we can develop the same technique using voltages instead of currents.
As shown in Figure 8-5, a voltage source is inserted in the loop to inject a signal.
The resulting measurement of the voltage across the load impedance and the
controlled-voltage source yields a ratio that is merely the voltage loop gain
measurement, or Tv, where Tv = J.\ca.

Since we were able to choose ideal points to break the loop, the signal ratios are
the loop gain of the system; that is, T = Ti for the current measurement, and
T = Tv for the voltage measurement.

-

““REAL’”” CIRCUIT

Now we tackle a “real” circuit. Our example so far assumed controlled sources that
have no internal impedance the way a real transistor, or real opamp, does. We can
account for this impedance by use of superposition.

A<

It il
X Yy X
Miv| | m m Mi | | m z,

FIGURE 8-6 1deal injection. FiGURe 8-7 Real injection.
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In the previous case the ideal injection was performed as shown in Figure 8-6, but
in this case we have two new currents, as shown in Figure 8-7:

«.\ _ NN i = m.«
x T o .o x T
Nu.+NN 1+ Wh
z, (8-5)
VA Z
AEE R L P Ve
NH+NN NN

where M is the rest of the loop’s gain. The current loop ratio that we measure, then,
is

\ NH
Ti=2 =M+__ (8-6)
J Nm
X
and the loop gain is
NH NH N NH
, J M+ _——__ Ti—__
y 7\:.« Z, 2, Z,
1,_... = - = = Z = Z Amuwg
.M.un £ NN Z,

Notice that this is the measurement of a real circuit, where the active element has
been replaced with its Norton-equivalent current source and impedance, Z,. The
remaining impedance, Z,, represents the load of the active element.

By similar means, we might make a non-ideal measurement of the voltage loop
ratio, as shown in Figure 8-8, with the result

T= - (8-8)

Again, notice that this is the measurement of a real circuit, where the active element
has been replaced with its Thévinin-equivalent voltage source and impedance, Z,.
The remaining impedance, Z,, represents the load of the active element.

Of course, this begs the question of what these circuit impedances are so we may
calculate T exactly. By inspection, we can see that

o L Z
T = Ti, RM..AAH and __ << T
2 Z, 69
T=Tv, if INNAA 1 and :NIN <<T
Nu NH

Notice that if we were to measure both Ti and Tv, we would have two equations with
two unknowns. To eliminate the impedance ratio, we first rewrite the measurement
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FIGURE 8-8 Real injection for voltage measurement.
ratios in terms of T

. ( NH, Z
Ti = |[1+—|T+ —
[ % Z (8-10)
( )
NN NN
v = |1+ =T+ =
NH NH
\ 7
and then, by adding 1 to both sides and adding the reciprocals, we find that
(T+1) = (Ti+1) || (Tv+1) ©11)
where || means “parallel combination”; for example:
My = —— = 22
1 N 1 Xty (8-12)
x Yy

This says that the lower of the two measurements, Ti or Tv, dominates the value of
T, the loop gain. It also says that we can make both measurements, as shown in
Figure 8-9, and calculate T exactly. Another way to restate the formula for T is
T TVl (6-13)
Ti+Tv+2

which may be more suitable for numerically stable calculations.

System System

FIGURE 8-9 Making Ti and Tv measurements.
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8.3 A “ReEAl” EXAMPLE

Let’s try to calculate loop gain in a relatively simple circuit. Figure 8-10 shows the
circuit we will measure, breaking into the loop at the output of the opamp.

The simplified model of the Opamp (also shown) will be used for this example.
The subcircuit definition for the opamp is

* "ideal" op-amp with 100K gain and one-pole roll-off at 10H=
.8ubckt opamp non inv out

rin non inv 100K

egain 1 0 (non,inv) 100K

ropen 1 2 1K

copen 2 O 15.92u

eout 3 0 (2,0) 1

rout 3 out 50
.ends

Since we will want two copies of the entire circuit we are measuring, let’s put the
circuit in a subcircuit. This subcircuit will have only two nodes, which are at the
place where we are breaking the loop:

. * example circuit
.subckt test left right
vin 1 0 DC 0O
x1 1 2 left opamp
rl right 0 200
r2 right 2 10K

r3 2 0 1K
cl 2 0 .038u
»ends

Finally, there is the rest of the circuit:

* Loop galn measurement

.ac dec 100 1 1Meg

.probe

Xi Ti_ left Ti_right test ; this copy for Ti measurement
xv Tv_Jeft e<lwwmunwmmnwn5wm oovwwowe<ammm:wmambn

* perform Ti measurements

iz 0 1 AC 1 ; current stimulus

viy 1 Ti_left DC 0 ; sense Ix

hiy iy 0 viy 1 3 convert Ix to a voltage
riy iy 0 1¢

vix 1 Ti_right DC 0 ; sense Iy

hix ix 0 vix 1 3 convert Iy to a voltage
rix ix 0 1¢

* perform Tv measurements

vz Tv_right Tv_left AC 1 ; voltage stimulus .
evy vy 0 (0,Tv_left ) 1 ; duplicate Vx

rvy vy {0 1G

evx vx 0 (Tv_right,0) 1 ; duplicate Vy

rvx vx 0 1G

Notice that we may break into the loop of this example circuit elsewhere, or try
another circuit, just by changing the description of the test subcircuit.
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Break loop here

10K

RL
200

R3
1K

FIGURE 8-10 Loop gain measurement example circuit.

After running an AC analysis simulation, we view the results with the aid of the
following macro definitions. (Probe macro definition and use are covered in §6.6.)
par(a,b)=(({a)*(b))/((a)+(b)))
Ti=(V(iy)/V(ix))

Tv=(V(vy)/V(vx))
T={par({Ti+l,Tv+1l)-1)

The first macro, par (a,b), defines the “parallel” operation (that is, a ||b) and is
written to be numerically stable as the arguments approach zero. Without macros,
or Probe handling complex arithmetic, displaying the loop functions becomes quite
an ordeal. For example, the relatively simple expression for the magnitude of Ti+ 1
is

A ix,.— H%amvm + ﬁ 1~ 1Yim vw

2 . 2
HNR + Huﬂ.ﬁ

(8-14)

|Ti+1| =

where, for example, ix,, is the real part of 1x.

First we look at the magnitude response of T, Ti, and Tv, as shown in Figure 8-11.
As we would expect, at lower frequencies Tv dominates, since the input impedance
of the feedback circuit is much greater than the output impedance of the opamp; that
is, Tv is of smaller magnitude and will control the value of (Ti+1){|(Tv+1). But
as the frequency increases, the impedance of the feedback circuit decreases and
begins to load the opamp. As the loop gain components, Ti and Tv, approach unity,
or 0dB, their contribution is dominated by the +1 in the calculation of T derived in
(8-11). Weird and non-intuitive things happen to Ti and Tv as frequency increases,
but T has the shape we expect from knowing the frequency response of the opamp
and the feedback circuit.

Now we look at the phase response of T, Ti, and Tv, as shown in Figure 8-12.
Here we find that, at low frequencies, the phase is controlled by the opamp. But
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FIGURE 8-11 Plot of open-loop magnitude responses.

again, as frequency increases, the current and voltage components, Ti and Tv, give
an inaccurate indication of the lcop phase response. Intuitively, we know that shape
of T is correct from knowing the opamp’s phase response, which has a single pole,
and that the feedback circuit has no resonant circuitry that would give the 180° phase
shift of a double pole.
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FIGURE 8-12 Plot of open-loop phase responses.
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8.4 UNSTABLE LOOP GAIN

Every once in a while, through no fault of the engineer (of course), a system is
designed that is unstable or only conditionally stable. The problem then becomes
how to correct this, but the type and amount of correction needed depend on how
“bad” ‘the system is. How do we ascertain this?

The key to measuring an unstable loop comes from reconsidering the Ti and Tv
measurements we made earlier. As shown in Figure 8-7 and Figure 8-8, in each case
two signals are created and measured. The ratio of the signals is some type of loop
gain measurement. Analogues of those figures are shown in Figure 8-13 and
Figure 8-14, where now we assume the generating sources injecting the test signal
have finite impedance. However, we can easily see that this does not affect the
calculation of Ti or Tv. In both cases, the ratio of the current or voltage values, now
primed values in the newer figures, will be the same as before.

But the circuit has changed! The impedance of the test signal source changes the
loading on the active device, yet the loop gain measurement is not changed. This
happens because the effect of the source impedance is not part of the measured
values. Another way of saying this is that the measurements have been designed to
be taken outside of the subnetwork that contains the source impedance.

But the source impedance still loads the circuit! This gives us a mechanism for
altering the circuit’s response without affecting the original loop gain measurement.
In particular, we can use the source impedance, or an additional impedance
associated with the source, to lower the loop gain so that it becomes marginally
stable. Then we make our measurements to calculate the loop gain.

In practice, forcing the loop to be stable is only a concern for real circuits. Before
starting small-signal analysis, the simulator calculates an operating point ignoring all
capacitances and inductances, which are the effects that usually create instability.
PSpice allows you to simulate and measure an unstable loop gain without resorting
to a loading impedance to stabilize the loop, usually. However, you might come
across a circuit that is DC unstable, having net positive feedback at zero frequency.
In this case, PSpice will have problems finding an operating point and you need to
use the technique just discussed to analyze such a circuit.

FIGURE 8-13 Current-mode measurement. FIGURE 8-14 Voltage-mode measurement,




