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Abstract

The paper presents a quantization-theoretic framework for studying incremental XA data conversion systems. The
framework makes it possible to efficiently compute the quantization intervals and hence the transfer function of the
quantizer, and to determine the mean square error (MSE) and maximum error for the optimal and conventional linear
filters for first and second order incremental ¥ A modulators. The results show that the optimal filter can significantly
outperform conventional linear filters in terms of both MSE and maximum error. The performance of conventional
3A data converters is then compared to that of incremental XA with optimal filtering for bandlimited signals. It is
shown that incremental A can outperform the conventional approach in terms of signal to noise and distortion ratio
(SNDR). The framework is also used to provide a simpler and more intuitive derivation of the Zoomer algorithm.
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I. INTRODUCTION

3A data converters, also known as scalar predictive
quantizers or oversampling Analog-to-Digital converters,
are widely used in audio [1], [2] and communication sys-
tems [3], [4], [5]. These systems can achieve very large
dynamic range without the need for precise matching
of circuit components. This is especially attractive for
implementation in scaled technologies where transistors
are fast but not very accurate. They are also among the
most power efficient ADC architectures [4].

Exact analysis of XA data converters is difficult
due to their highly nonlinear structure. As a result,
optimal decoding (filtering and decimation) algorithms
are generally not known, although there has been much
work on decoding schemes [6], [7], [8]. Conventionally,
linear models with quantization noise modeled as addi-
tive white noise have been used [9]. This noise model,
however, was shown to be quite inaccurate for coarse
quantization. In [11], Candy derived a more accurate
approximation of the noise power spectral density show-
ing that it is not white. Subsequently, Gray [6] derived
the exact spectrum and determined the optimal MSE
linear filter for constant inputs. Gray’s framework was
later used in multiple studies (e.g., [12], [13]). This type
of exact analysis, however, is too complex for most
practical XA systems and the conventional linear method
is still used and then verified and tweaked using time-
domain simulations [9], [10].

Recently, A data converters have become popular
in sensing applications such as imaging [14], [15], [16],
[17] and accurate temperature sensing [18]. In such
applications, the input signal is very slowly varying
with time, and as a result can be viewed as constant
over the conversion period. Of particular interest is
the special case of incremental XA [19], where the
integrator is reset prior to each input signal conversion.
In this case, the optimal filter with respect to the mean-
squared error criterion denoted by Zoomer was found
by Hein et al. [20]. The approach used in [20], however,
does not naturally lead to full characterization of the
quantizer transfer function or the determination of the
MSE or maximum error, especially for second and higher
order YA modulators. Knowledge of the exact transfer

function of the XA converter can enable the system
designer to achieve the system requirements with a lower
oversampling ratio. Moreover, as noted by Markus et
al. [19], data converters with high absolute accuracy
are often required in instrumentation and measurement.
In [19], bounds on the maximum error of incremental
A using some conventional linear filters was derived,
but there is still a need to derive the maximum error of
the optimal filter.

In this paper, we introduce a time-domain,
quantization-theoretic ~ framework  for  studying
incremental XA quantization systems. The framework
allows us to determine the quantization intervals and
hence the transfer function of the quantizer, and to
precisely determine the MSE and maximum error for
the optimal filter. For constant inputs, we demonstrate
significant improvements in both MSE and maximum
error over conventional linear filters [19]. These results
imply that an incremental A with optimal filtering can
achieve the same performance as that of conventional
YA systems at lower oversampling ratio and hence
lower power consumption. We show that incremental
A can outperform the conventional approach in terms
of SNDR in addition to not having the idle tones
artifacts of conventional XA. Using our framework
we are also able to compare the performance of
conventional XA data converter to that of incremental
A with optimal filtering for bandlimited input signals.
We also use our framework to provide a simpler and
more intuitive proof of the optimality of the Zoomer
algorithm [20].

In the following section, we introduce our framework
and use it to study first-order YA quantization systems.
In Section III, we extend our results to incremental
second-order YA quantization systems. In each case,
we compare the performance of the optimal filter to
that of linear filters. In Section IV, we discuss potential
applications of our results to sensor systems and com-
pare the performance of the incremental XA modulator
using optimal filtering to conventional XA systems using
linear filtering for sinusoidal inputs. We also show that
incremental XA does not suffer from the problem of idle
tones.



II. INCREMENTAL FIRST-ORDER XA

A block diagram of a XA quantization system with
constant input is depicted in Figure 1. The figure also
provides the correspondence between the terminology
used in the circuit design literature and the quantization-
theoretic literature [22]. The XA modulator itself cor-
responds to the encoder in the quantization-theoretic
setting. It outputs a binary sequence of length m that
corresponds to the quantization interval that the input
x belongs to. The set of such binary sequences is
the index set in the quantization-theoretic setting. The
filter, which corresponds to the decoder, provides an
estimate & of the input signal x. Given an index, the
optimal decoder outputs the centroid, i.e., the midpoint,
of the quantization interval corresponding to the index.
Figure 2 is an example that illustrates the terminology
used to characterize a quantization system. Note that this
correspondence applies to all data converters, and while
a XA data converter system performs oversampling
internally, the entire system can be viewed as a Nyquist
rate data converter. Also note that in practice a data
converter system produces an estimate that has finite
precision and offset and gain mismatch with the true
estimate Z. Finally, note that quantization framework in
Figure 1 refers to the ¥ A data conversion system and
not to the coarse quantizer used in the modulator itself.
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Fig. 1. Block diagram of a XA quantization system with constant
input. The terms under the figure provide the corresponding object
names in quantization theory.

In this section we study the discrete time first-order
>A modulator (see Figure 3). For simplicity we focus
on the single-bit case. However, our results can be easily
extended to multi-bit YA modulators. Without loss of
generality, we assume that the comparator threshold
value is 1 and the input signal =z € [0,1]. The input
to the modulator is integrated, thus creating a ramp
with a slope proportional to the constant input. At time
n = 1,2,...,m, the ramp sample u(n) is compared
to the threshold value of 1 and the output b(n) = 1
if u(n) > 1, otherwise b(n) = 0. If b(n) = 1, a one
is subtracted from the ramp value. Thus in effect the
modulator is predicting the ramp value by counting the
number of ones and subtracting off its prediction via the
feedback loop. This operation is illustrated in Figure 4,
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Fig. 2. Illustration of the quantization-theoretic terminology. x1 . .. x4
are the transition points, [z1,z2)...[x3,2z4) are the quantization
intervals that correspond to different indices generated by the encoder
and should be optimally decoded to (x1 + z2)/2...(x3 + z4)/2.

where the output of the integrator w(n) is plotted versus
time for a fixed input value.
The output of the integrator is thus given by

n—1

un)=z—-bn—1)+u(n—1)=nz— Zb(z) (1)
0

We shall assume that the integrator is reset to zero at
the beginning of conversion, i.e. u(0) = 0, which is the
case in incremental JA.

In conventional YA data converters, the binary se-
quence generated by the modulator is decoded using a
linear filter, such as a counter or a triangular filter, to
produce an estimate of the input signal [19]. Such linear
filters, however, are not optimal and result in signifi-
cantly higher distortion compared to the optimal filter.
The optimal filter in the form of “Zoomer” implemen-
tation was derived in [20]. In [21] Mcllrath developed a
nonlinear iterative filter that achieves significantly better
performance compared to linear filters.

' @_ﬂ
Fig. 3. Block diagram for the first-order ©A modulator. D refers to
the delay element and Q refers to the one-bit quantizer.

u(n) b(n)e {0,1}

We are now ready to introduce our framework for
studying incremental XA data converter. Note that to
completely characterize a quantization system, one needs
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Fig. 4.  First-order sample integrator output and the corresponding
sequence. The discrete-time waveform is plotted as a continuous
waveform for simplicity of illustration in all waveforms throughout
the paper.

to determine the quantization intervals induced by its en-
coder. Equivalently, one needs to determine the transition
points between consecutive quantization intervals.

The XA modulator can be viewed to be performing
a sequence of effective comparisons, u(n) = 1 which
are equivalent to 2 = (1 + Y0 " b(i))/n. Clearly any
encoder that produces bits corresponding to the same
effective comparisons is equivalent to the >A modulator.
Each effective comparison defines and upper denoted by
UB or a lower bound denoted by LB, on the input. To
find the transition points of the first-order XA modulator,
we define the following equivalent encoder. Referring
to (1), it is clear that the sequence of comparisons
u(n) 2 1, 1 < n < m, is the same as the sequence
of comparisons of the predictor 1 + 2371 b(i) to the
equivalent ramp nx, which is the line segment from
the origin of slope x. Therefore, if the modulator is
replaced by an encoder that performs the comparisons
to the equivalent ramp, its output sequence would be
identical to that of the modulator for all input values.
Note that this equivalence holds for all inputs z € [0, 1].
Figure 5 depicts this equivalence graphically.

To find the transition points using the above equiva-
lence, consider the square lattice shown in Figure 6

Ly ={(pa) :p,g € 27,1 < qg<p<m}.

We now show that the set of transition points is simply
the set of slopes of the equivalent ramps that pass
through points of the square lattice, which we denote
as

Sn={L: 0.0 e Lnf.

The elements of S,,, form the Farey sequence [23] of
order m.

To show that S, is the set of transition points, we
first show that any element of S, is a transition point.
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Fig. 5. The equivalent ramp and it’s corresponding predictor. The
dotted line is the integrator output, the solid line is the equivalent
ramp, and the dashed line is the predictor.

Consider the equivalent ramp of slope ¢/p. It is not
difficult to see that any equivalent ramp of higher slope,
i.e., any signal value z > ¢/p, generates a different
sequence from ¢/p itself. Therefore, any ¢/p € S, is a
transition point.

To show that any transition point y belongs to .S,,,
we need to show that y = ¢/p for some integers 1 <
g < p < m. Since y is a transition point, the sequence
corresponding to y and y + 4, for any § > 0, must differ
in at least one sample time. Let such sample time be
1 < p < m, then there must be an integer ¢ < p such
that the predictor value is ¢ at time p, which implies that
Y =q/p € Sm.

The transition points can be computed simply by
computing the elements of S, or by parsing the Farey
or Stern-Brocot tree [23]. The worst case running time
is O(m?).
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Fig. 6. Lattice for first-order X A.



The optimal filter produces the centroid of the quan-
tization region corresponding to the sequence generated
by the modulator. For example for the sequence 00101,
which corresponds to = € [2/5,1/2], the optimal filter
produces the estimate & = 9/20.

Algorithm 1 Optimal Filtering Algorithm(Zoomer Im-
plementation)

begin
SEQ «— Modulator generated sequence
UB«+—1,LB«+0
Predictor +— 1
for p=1:m do
if SEQ(p) =1 then
LB « max{LB, Predictor/p}
Predictor «— Predictor + 1
else
UB «— min {UB, Predictor/p}
end if
end for
return (UB+ LB)/2
end

The equivalent encoder framework provides a simple
and intuitive way to prove the optimality of the O(m)
Zoomer algorithm [20] (algorithm 1). To prove the
optimality of this implementation, note that a filter is
optimal if given any index sequence produced by the
modulator, it outputs the centroid of the quantization
interval to which the input signal belongs. So, for any
input € [0,1], we need to show that the resulting UB
and LB are the transition points for the quantization
interval of z. We show this by induction. Clearly, this
is the case for m = 1. Assume that this is also the
case up to m — 1, ie., for m — 1 samples, UB and
LB are the transition points of the quantization interval
of x. Since any transition point is a point on the square
lattice, UB—LB < 1/(m — 1) < 2/m. Therefore, at the
mth sampling time, there can be only one new transition
point between U B and LB. Let p be the predictor value
at time m. Note that if p/m ¢ (LB,UB), then the mth
bit does not change the quantization interval for x from
that at time m — 1 and hence (LB,UB) remains as
the quantization interval for x. On the other hand, if
p/m € (LB,UB), then it is a new transition point and
the quantization interval specified by (LB,UB) is split
into two new quantization intervals with x belonging to
one of them. Specifically, if SEQ(m) = 1, then LB «—
p/m and the new quantization interval for x becomes
(p/m,UB), and if SEQ(m) =0, UB <« p/m and the
new quantization interval for x becomes (LB, p/m). In

both cases the end points of the interval are transition
points. This proves that algorithm 1 is indeed the optimal
filtering algorithm.

The above procedures can be readily used to quantify
the MSE of the optimal filter. In order to compare
the MSE of the optimal filter to conventional linear
filters, we need to find the correspondence of estimates
produced by each filter to the quantization intervals.
Figure 7 illustrates this correspondence for the counter
(i.e., rectangular), triangular and MSE optimal linear [6]
filters. The figure depicts the quantization intervals and
their centroids, which are produced by the optimal filter,
for m = 4, and the estimates for each filter and their
correspondence to the quantization intervals. The figure
clearly illustrates the source of suboptimality of linear
filters as an interval is not necessarily mapped into its
centroid and may in fact be mapped into an estimate that
is outside the interval itself.

The Mean Square Error (MSE) is a measure of average
noise power, and implies the overall accuracy of the
quantization system. Figure 8(i) compares the MSE for
the optimal filter to the MSEs for the counter, triangular
and optimal linear [6] filters. In plotting the MSE for
each linear filter we corrected for its systematic offset
and gain biases using the minimum MSE affine trans-
formation found by computing the coefficients a and b

that minimize
n

D=E[(x—2)% =) (2] —ad; — b)*A;,
i=1

where {xf}" , and {A;}!, are the centroids and
lengths of the quantization intervals, respectively, and
{&;}"_, are the estimates corresponding to the quanti-
zation intervals provided by the linear filter. Note that
the optimal filter does not suffer from any systematic
offset or gain biases. Also note that the outputs of all
the filters considered here converge to the input value.
Their convergence rates, however, differ. As expected,
the counter has the worst convergence rate. For small
m, the triangular filter is worse than the optimal linear
filter, but as m increases, their MSEs become very close.
Note that for example, in order to achieve a performance
similar to a 10-bit uniform ADC one can use the optimal
filter and operate the YA data converter with half the
speed of the case when a conventional filter is used.

Our framework can also be used to completely char-
acterize the transfer function for first-order XA data
conversion system, which can provide further insight into
the behavior of various filters. As an example, in Figure
9 we plot the transfer functions for first-order XA data
converter using the optimal filter, the optimal linear filter
and the rectangular filter for m = 7.
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Fig. 8. (i) MSE and (ii) Maximum error behavior as a function of oversampling ratio m, with gain/offset correction using (a) counter filter

(b) triangular filter (c) optimal linear filter and (d) optimal filter.

Note that the large distortion at the two ends of the
YA data converter can be intolerable in some applica-
tions. For example, in imaging applications [15], it is
very important to achieve low distortion at low input
signal values (corresponding to low light).

Maximum error is another measure of distortion,
which is very important when absolute accuracy is
needed. If the application allows the designer to adjust
the input range to = € [1/m, 1 — 1/m)], instead of [0, 1],
the large distortion at the two ends of the range (see
Figure 9) can be avoided, resulting in a factor of two
reduction in absolute error with very small decrease in
the input range of 2/m. Figure 8(ii) plots the maximum
error in the range of z € [1/m,1 — 1/m] for different
filters versus the oversampling ratio m. As can be seen

from the plots, the optimal filter can achieve significantly
lower absolute error than linear filters for the same
oversampling ratio. Alternatively, it can achieve the same
absolute error at a much lower oversampling ratio. For
example, to achieve an absolute error equal to that
of a uniform 10-bit ADC, a YA data converter with
optimal filtering requires half the oversampling ratio of a
counter filter. It is also interesting to note that the counter
outperforms the optimal MSE linear filter in terms of
absolute accuracy.

Another consequence of our framework is the ability
to characterize the Directed Acyclic Graph (DAG) of
the first-order XA encoder, i.e., the graph representing
the sequence of “larger/smaller” comparisons effectively
performed by the encoder. This graph may help in
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Fig. 9. Transfer functions using (a) counter filter after gain/offset correction (b) triangular filter after gain/offset correction (c) optimal linear

filter after gain/offset correction and (d) optimal filter, for m = 7.

studying the redundancy in sequences produced by the
encoder. It is useful for finding transition points for
higher order XA data converter, as we shall see in
the next section. The DAG can be found using O(m?)
algorithm 2.

Figure 10 plots the DAG for m = 7. The horizontal
axis corresponds to the sampling times and the vertical
axis corresponds to the comparison threshold. The nodes
correspond to the effective comparisons while the edges
correspond to the outcomes of the comparisons (an
upper edge corresponds to a 1, while a lower edge
corresponds to 0). For example, the path defined by
011101 corresponds to all 3/4 < z < 4/5, and provides
the following information about the input: z < 1, x >
1/2, @ > 2/3, x > 3/4, © < 4/5, © > 2/3. Note that
there are two types of nodes, a solid node corresponding
to a comparison where the outcome is unknown, and
a hollow node corresponding to a comparison with a
known outcome given the previous bits. To explain this
difference, note that a path leading to a node defines
an upper and a lower bound, UB and LB, on the
range of input signals that correspond to this path. If

the predictor corresponding to the node lies within the
(LB, U B) interval, then the comparison has an unknown
outcome. On the other hand, if the comparison threshold
lies outside the (LB, UB) interval, then the outcome of
the comparison is already known. For example, consider
hollow node (4, 0.5). The paths leading to the node cor-
respond to the input ranges (0.5,0.66) and (0.33,0.5).
In either case, the outcome of the comparison is known.

As explained earlier, given m comparisons, the first-
order LA encoder generates O(m?) quantization inter-
vals, which is rather small compared to the possible 2™
quantization intervals. Study of the DAG clarifies this
difference. The hollow nodes in the DAG do not create
transition points and therefore do not add to the number
of quantization intervals. However, it is expected that
this redundancy in the effective comparisons improves
the robustness of the system to errors. Higher order and
multi-bit XA modulators are usually used to increase the
number of quantization intervals and therefore achieve
improved error. In the next section we extend the frame-
work to second-order incremental YA,
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Fig. 10. Directed acyclic graph showing quantization in first-order
3 A modulator.

Algorithm 2 Generating the first-order XA Directed
Acyclic Graph

begin

SEQ « [0]

UB«+—1,LB+0

g—1l,s<1

mark (g, s) as a hollow node on the graph
q—2

CALL DAG(SEQ,LB,UB,q)

end

FUNCTION DAG(SEQ,LB,UB,q)
if ¢ < m then
Predictor «— 232—11 SEQ(i) +1
s « Predictor/q
if LB < s <UB then
mark (g, s) as a solid node on the graph
CALL DAG([SEQ;1],s,UB,q+1)
CALL DAG([SEQ;0],LB,s,q+1)
else if s > UB then
mark (g, s) as a hollow node on the graph
CALL DAG([SEQ;0],LB,UB,q+ 1)
else
mark (g, s) as a hollow node on the graph
CALL DAG([SEQ;1],LB,UB,q+ 1)
end if
end if

III. SECOND-ORDER INCREMENTAL XA

In this section we study the discrete time second-order
3 A quantizer. We focus on the second-order modulator
depicted in Figure 11. Our results, however, can be
easily extended to a much broader set of architectures.
It consists of two integrators followed by a comparator,
the output of which is fed back to the input of both
integrators. We assume that the comparator threshold is
0 and the input signal z € [—1,1]. Note that unlike
the first-order case the output of the comparator b(n) =
sgn(u(n)) € {—1,1}. We also assume zero initial states,
i.e., u(0) = v(0) = 0, corresponding to an incremental
second-order modulator. Note that the first two bits
generated by the modulator are 1 and —1, respectively,
independent of the input. To achieve good performance,
the modulator gain parameters a; and ay are chosen
so that the output of the second integrator v(n) is as
close to 0 as possible for all z and 1 < n < m. In the
following discussion we assume a conventional choice
of a; =1/2, as = 2.

The outputs of the two integrators (the states) are
given by

un) = 3 (b)) +uln— 1),
vin) = 2(un—-1)—=>bn-1))4+v(n-1). 2)

which results in
n—1

v(n) =an(n—1)/2=> (n—i+1)b(i). (3)

1

Similar to the first-order case we can characterize
the second-order XA data converter by determining the
quantization intervals induced by the modulator. This can
be done by finding the transition points using the follow-
ing equivalent encoder. Referring to (3) the sequence of
comparisons v(n) 2 0, 1 < n < m is the same as the
sequence of comparisons of the predictor Z;L_:ll (n—i+
1)b(i) to the equivalent ramp an(n — 1)/2, which is
quadratic in n. They both represent the same effective
comparisons, & = 2(321 ' (n — i 4+ 1)b(i))/(n® — n).
Therefore the output of the modulator is identical to
the output of an encoder that performs comparisons
between the predictor and the equivalent ramp. Figure 12
depicts this equivalence graphically; the dotted line is
the integrator waveform, the solid line is the equivalent
ramp, and the dashed line is the predictor.

The optimal filtering algorithm for the second-order
modulator is essentially any filter that produces the cen-
troid corresponding to the quantization interval. Zoomer
implementation is the same as Algorithm 1 with the
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Fig. 12. The equivalent ramp and its corresponding predictor. The
dotted line is the integrator output, the solid line is the equivalent ramp,
and the dashed line is the predictor.

updating of the predictor replaced with that for the
second-order predictor.

At any sample time, n, the set of possible values
the second-order predictor can assume consists of every
other integer in the interval [—(n — 1)(n — 2)/2 +
2,(n — 1)(n — 2)/2] on the square lattice as depicted
in Figure 12. However, unlike the first-order case, not
all such integers correspond to transition points, and
therefore, to compute the set of transition points, we find
and parse the directed acyclic graph of the second-order
3 A modulator.

To find the DAG for the second-order modulator,
we use Algorithm 3, which is similar to Algorithm 2.
We replace the predictor and the effective compari-
son for the first-order modulator in Algorithm 2 by
that for the second-order, taking into consideration the
fact that the second-order modulator produces +1s
and —1s instead of 0Os and 1s. Note that in Algo-
rithm 3 ¢ starts from 2 because of the two delay ele-

Block diagram for the second-order XA modulator. D refers to the delay element and Q refers to the one-bit quantizer.
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Fig. 13. Directed graph showing quantization in the second-order
> A modulator.

ments before the quantizer. Figure 13 plots the second-
order DAG for m = 8. For example, the path de-
fined by 1,—1,—1,—-1,1,—1,—1, —1 corresponds to all
—8/10 < x < —2/3, and provides the following
information about the input: x > 0, =z < 1, = <
—-1/3, © < =2/3, x > —4/5, =z < =-3/5, = <
—13/21, = < —9/14. Again there are two types of
nodes, a solid node corresponding to a comparison where
the outcome is unknown and a hollow node correspond-
ing to a comparison with a known outcome given the
previous bits. The solid nodes correspond to transition
points. Figure 14 plots all the transition points and their
corresponding equivalent ramps for m = 7.

As in the first-order case, the derivation of the tran-
sition points can be used to determine the transfer
function of the second-order converter. To compare the
performance of filters such as the Kaiser or the natural
linear filter [19] to that of the optimal filter, in Figure 15
we plot the transfer functions using these different filters.
Note that the linear filters considered are again biased
and we have corrected for the bias as before. Although
the outputs of the linear filters converge to the correct
input, they perform poorly compared to the optimal filter.
In fact, as can be seen in Figure 15(b), the transfer
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Algorithm 3 Generating the second-order XA Directed
Acyclic Graph

begin

SEQ « [1; 1]

UB«+—1,LB+0

q— 2,51

mark (g, s) as a hollow node on the graph
q<—3

CALL DAG(SEQ,LB,UB,q)

end

FUNCTION DAG(SEQ,LB,UB,q)
if ¢ < m then
Predictor «— Y9"1(q — i+ 1)SEQ(i)
s « Predictor/q(q — 1)
if LB < s < UB then
mark (g, s) as a solid node on the graph
CALL DAG([SEQ;1],s,UB,q+1)
CALL DAG([SEQ;—1],LB,s,q+ 1)
else if s > UB then
mark (g, s) as a hollow node on the graph
CALL DAG([SEQ;-1],LB,UB,q+1)
else
mark (g, s) as a hollow node on the graph
CALL DAG([SEQ;1],LB,UB,q+ 1)
end if
end if

function of the Kaiser filter is not even monotonic in
the input. Also note that there is a significant systematic
gain error in the natural filter shown in 15(a). Also in
Figure 15 there is a large quantization interval at the
high end for all the filters considered. This large interval
is due to the fact that the first two bits generated by the
modulator are 1 and —1 independent of the input and
results in an asymmetric transfer function. Since this is a
systematic problem that causes large distortions, in what
follows we shall eliminate this large interval.

The transition points can be used to quantify the MSE
and maximum error of the optimal filter and to compare
it to that of conventional filters. Figure 16 plots the
MSE and maximum error of the Kaiser low pass filter
with 3 = 2.5, the natural filter and the optimal filter
as a function of m. Note that the performance gain
of the optimal filter over linear filters for second-order
3 A converter is more than that of the first-order. For
example, in order to achieve performance comparable to
a 10-bit ADC, a second-order XA converter with optimal
filtering can be operated at 1/5th the speed of that using
a conventional filter.

IV. APPLICATIONS

In previous sections we presented a framework for
studying incremental XA data converters and used it
to compare the performance of the optimal filter to
that of conventional filters. In this section, we use our
framework and the results of the previous sections to
explore the potential advantages of incremental XA
data converters over conventional XA for two classes
of applications. We first investigate sensor applications
where the input varies very slowly and can be considered
constant over the conversion period. In such applications,
incremental XA is commonly used to prevent idle tones.
We show that the power consumption using the optimal
filter can be significantly lower than using conventional
linear filters. Next we compare the performance of incre-
mental A modulators with optimal filtering to that of
conventional XA systems for bandlimited input signals.
We show that for high oversampling ratios, incremental
2 A systems achieve higher SNDR.

Our results assume ideal, noise-free circuits. Finding
a computationally tractable optimal filter in the presence
of noise is an open problem. We briefly discuss how our
results may still be useful in practice.

Sensor Applications

Recently, XA data converters have become popular
in sensing applications such as imaging [14], [15], [16],
[17] and accurate temperature sensing [18]. In such
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Fig. 15. Transfer functions using (a) natural linear filter without gain/offset correction (b) Kaiser filter with 3 = 2.5 with gain/offset correction
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Fig. 16. (i) MSE and (ii) Maximum error behavior as a function of oversampling ratio m, using (a) natural linear filter without gain/offset
correction (b) Kaiser filter with 8 = 2.5 with gain/offset correction (c) natural linear filter with gain/offset correction and (d) optimal filter.
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applications, the input signal is slowly varying with time,
and thus can be viewed as constant over the conversion
period. One of the main advantages of using incremental
A in such applications is that they do not suffer from
idle tones; thus the measurements are repeatable and
a static transfer function exists. This is because in an
incremental system the same conversion is performed
for all samples and, therefore, all filtered values are the
same regardless of the filter used, while in a conven-
tional XA system, the integrator residues vary with the
samples creating periodic tones. Figure 17 compares the
Power Spectral Density (PSD) of the output signal of an
incremental second order YA modulator with optimal
filter to that of a conventional nonincremental system.

An important limiting factor in the design of many
sensor interface circuits is data converter power con-
sumption. We show through an example that the power
consumption of an incremental 3A converter can be sig-
nificantly reduced by using the optimal filter instead of a
conventional linear filter. Consider the incremental XA
data converter reported in [18] for use in a temperature
sensing system. The converter, which is implemented in
0.5um CMOS technology, operates at 10 samples/sec
with oversampling ratio of 400 and consumes 400.W.
As discussed at the end of Section III, the same accuracy
can be achieved at 1/5th the oversampling ratio if we
use the optimal filter instead. Since most of the power is
dissipated in the modulator, the power consumption of
the modulator in this case would be reduced to below
100W. This reduction, however, is achieved using more
complex signal processing, so to make the power con-
sumption comparison more accurate one must take into
account the additional power consumed by the filter. To
estimate the power consumed by the optimal filter, note
that it requires less than 4 multiplications per sample to
implement. Assuming that each multiplication consumes
4pJ (see [24]), the total power consumption of the filter
is in the order of 10nW, which is significantly lower than
the 100uW consumed by the modulator. Moreover, the
power consumed by the optimal filter in this example
is not larger than that of a linear filter even though
it requires more computations per sample, because the
optimal filter operates at 1/5th the frequency of the linear
filter.

The above example assumed ideal circuit implemen-
tation. In practice XA modulators are designed to be
thermal noise limited to save capacitor area and mitigate
the effect of idle tones [9]. Using the optimal filter in a
thermal noise limited design is not possible, as it would
fail on too many modulator output sequences. However,
since the incremental architecture does not suffer from
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idle tones, a quantization noise limited design can be
used instead. In such a design, sufficiently large modu-
lator capacitor sizes would be used to minimize thermal
noise and a modified optimal filter such as the filter
presented in [8] would be used. The modulator can then
be operated at a lower speed than the thermal noise
limited modulator with a linear filter to achieve the same
MSE performance at a lower power consumption slightly
higher than the discussed example.

Incremental XA for Bandlimited Signals

We now compare an incremental XA data converter
to a conventional design for bandlimited input signals.
Figure 18 depicts the two systems. The input signal in
the conventional system is sampled at rate f;, which is
much faster than the Nyquist rate of the input signal and
fed into a XA modulator operating at the same rate. The
output sequence is decimated at rate fo, which is slightly
higher than the Nyquist rate of the input signal. Thus,
the oversampling ratio is f1/f2. In the incremental XA
system, the signal is sampled at rate fo and each sample
is fed into the ¥ A modulator, which operates at rate
f1. The modulator is reset after each conversion, i.e., at
rate fo. The output sequence is filtered using the optimal
filter.

15
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Fig. 19. Spectrum of Nuttall Window.

To compare the two systems, we apply a sinusoidal
signal to each system and compute its output PSD and its
SNDR. Figure 20 compares the PSDs for a conventional
second-order XA converter with 2500-tap Remez low
pass filter with a cut-off frequency of 40KHz and an
incremental second-order XA system that uses the op-
timal filter. The results are for a sinusoidal input signal
with amplitude ¢ = 0.5 and frequency f ~ 6600Hz,
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the optimal filter and the same modulator. Nuttall Window is applied in both cases. The input is set to a constant value of .001 and ADC is
performed at performed at a rate of 200ksamples/sec and the oversampling ratio m = 100. A 2500-tap Remez low pass filter with a cut-off

frequency of 40KHz is used for the conventional system.
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Fig. 18. (a) Conventional scheme (b) Incremental with optimal filter.

modulator frequency sampling rate f; = 20MHz and
Nyquist rate fo = 200KHz. A Nuttall window [25] with
the spectrum shown in Figure 19 is used. The SNDR
for the incremental XA system is 97dB versus 90dB for
the conventional system. Another performance measure
of interest is the maximum tone power, which is the
power of the largest tone created by each system. The
maximum tone power of the incremental system is 5dB
below that of the conventional system.

Figure 21 shows the PSD of the two systems when a
sinusoid with an amplitude smaller than its dc value is
applied. Note that the incremental system with optimal
filter only has distortion as harmonics of the sinusoid and
that the maximum tone power in the conventional system
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is 10dB higher than the maximum harmonic power in the
incremental system.

V. CONCLUSION

We introduced a quantization-theoretic framework for
analyzing incremental XA quantizers and used it to
characterize the quantization intervals and hence transfer
functions for first and second-order incremental YA
modulators. We then used the computed quantization in-
tervals and their corresponding sequences to characterize
the performance of the optimal filter and conventional
linear filters. We also showed that incremental XA
with optimal filtering can outperform conventional XA
systems for bandlimited input signals in terms of SNDR.
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Power Spectral Densities for (a) a conventional second-order XA system and (b) an incremental second-order XA system using the

optimal filter and the same modulator. Nuttall Window is applied in both cases. The input is set to a sinusoid with amplitude of 0.0005 and dc
value of 0.001. Modulator sampling rate f; = 20MHz and Nyquist rate fo = 200KHz. Input frequency f ~ 6600Hz. A 2500-tap Remez
low pass filter with a cut-oft frequency of 40KHz is used for the conventional system.

Further, we showed that incremental XA systems do not
suffer from idle tones. Even though we considered only
single-bit first and second order modulators in this paper,
our framework can be readily extended to higher order
and multi-bit modulators.

In practice, YA quantization system designers im-
prove performance by increasing the oversampling ra-
tio and/or using more complex modulators. However,
high oversampling ratio results in high system power
consumption. Our results show that the oversampling
requirements can be relaxed by using optimal filtering
and that the gain is more pronounced for higher order
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incremental XA. The optimal filter requires more com-
plex signal processing than linear filters; however, as
discussed the additional power consumed in the digital
processing should be negligible compared to the savings
in the analog front end, especially in scaled CMOS
implementations.

Our analysis assumed ideal circuit components. In
practice, nonidealities such as temporal noise, offsets,
and nonlinearities of the analog components limit the
attainable performance. In conventional XA systems,
temporal noise is averaged out by the filter, and nonlin-
earities and gain-bandwidth ultimately limit the perfor-



mance [26]. Recently, it was demonstrated that ADCs
can achieve a much higher performance by digitally
correcting for the nonlinearities [27]. There is a need
to develop such digital techniques for correcting non-
linearity, reducing noise, and calibrating for loop-gain
variations in XA modulators. In particular, the factors in
the optimal filter need to constantly track the loop gains
that vary due to component mismatch and 1/f noise.

The time-domain analysis carried out in this paper
may prove useful in deriving such filters. Only after
developing such techniques and the needed circuits can
the potential power savings of the proposed incremental
3A systems be fully assessed.
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