
Chapter 2

DC Analysis

2.1 Introduction

Many of the analyses available for Spice and Spectre compute op-
erating points. For example, Spice’s .op analysis computes and
outputs information about the operating point such as the voltage,
current, power, etc. at each component. The .dc analysis computes
the operating point as a function of some independent variable. The
linear small signals analyses, such as .ac and .noise, first compute
the operating point and then linearize the circuit about that operat-
ing point before computing the small-signal behavior of the circuit.
Finally, the transient analysis computes an operating point for the
initial state of the circuit. Clearly the ability to reliably compute an
accurate operating point is very important.

In general operating points are simply snap-shots of some solution
trajectory. In DC analysis, the operating points are also assumed to
be equilibrium points. Equilibrium points are constant-valued oper-
ating points. In other words, equilibrium points are solutions that do
not change with time. A circuit cannot reach an equilibrium point
if the stimulus is still changing, so the first step of a DC analysis is
to configure the independent sources so they are constant. In addi-
tion, since all waveforms are constant-valued at equilibrium points,
dv/dt = 0 and di/dt = 0 and so capacitors act as open circuits and
inductors act as short circuits. Therein lies the basic algorithm for
computing an equilibrium point.

15

kundert
Text Box
Excerpted from "The Designer's Guide to SPICE and Spectre" by Kundert .For more information, go to www.designers-guide.org/Books.

16 Chapter 2. DC Analysis

1. Configure all independent sources to be constant valued.

2. Replace all capacitors with open circuits.

3. Replace all inductors with short circuits.

Solving the equations that describe the resulting system gives an
equilibrium point. This system of equations is nonlinear and alge-
braic (no time derivatives or integrals). Solving large nonlinear sys-
tems of algebraic equations is a difficult challenge. The only way to
solve general nonlinear equations is to use iterative methods such as
Newton’s method. However, even these methods are not guaranteed
to work. In fact, there is no practical algorithm that always works.
When an iterative method fails, it does so by not converging to a so-
lution. Convergence issues are the primary concern when using DC
analysis because convergence is problematic for circuit simulators, es-
pecially on large circuits. The accuracy of the solution is a secondary
issue, because once the simulator converges, the results are rarely in-
accurate. In this chapter, the focus is mainly on convergence, though
accuracy issues are also discussed.

2.2 DC Analysis Theory

As stated in Section 1.3.2 on page 10,

i(v(t)) +
d

dt
q(v(t)) + u(t) = 0 (2.1)

v(0) = a (2.2)

is solved to find the transient behavior of the circuit. Also of interest
is the DC solution, or equilibrium point, which is defined as a solution
to (2.1) that does not vary with time (the input u(t) is assumed to
be constant valued). The DC equations are formulated from (2.1)
by assuming that d

dtv(t) = 0 for all t, and so d
dtq(v(t)) = 0 (this

constraint replaces the initial condition constraint of (2.2)).

i(vdc) + udc = 0 (2.3)

Circuit simulators solve this equation to compute the DC solution
or operating point. However, it must be stressed that the solution

2.2. DC Analysis Theory 17

Q

Q

Vcc

Figure 2.1: A latch, a circuit with 3 equilibrium points, one of
which is unstable.

computed is not necessarily unique, nor is it required to be stable.
For example, consider the latch shown in Figure 2.1. This circuit has
three equilibrium points, Q = Vcc, Q = 0, and Q = 1

2Vcc. The first
two solutions are stable. In other words, if the circuit is at one of
these solutions, and is perturbed slightly, it eventually returns to the
same solution. The last equilibrium point is unstable, meaning any
perturbation causes the voltages to drift away from this solution and
eventually ends up at one of the other two solutions. The simulator
is just as likely to find an unstable solution as it is to find a stable
one.

It is important to understand that:

1. Circuits sometimes have more than one DC solution.

2. The DC solution computed by the circuit simulator may be
unstable.

The fact that circuit simulators do not really distinguish between
stable and unstable solutions allows a circuit simulator to compute
a DC solution for oscillators, which do not generally have stable DC
equilibrium points.

18 Chapter 2. DC Analysis

2.2.1 Solving Nonlinear Equations

The set of equations that result from DC analysis (2.3) and on every
step of a transient analysis (4.12) are nonlinear algebraic systems
and so in general cannot be solved directly. These equations can be
solved by the Newton-Raphson algorithm (also referred to as New-
ton’s method), which converts the solution of a nonlinear equation
into the solution of a sequence of linear equations. Newton-Raphson
starts with an initial guess. It then linearizes the circuit about that
guess, and solves the linear circuit. The circuit is then re-linearized
about the new point and the procedure repeats until the process
converges.

Newton’s method solves equations of the form

f(v̂) = 0 (2.4)

for v̂ by starting with an initial guess called v(0) and repeatedly
solving the Newton-Raphson iteration equation

J(v(k))(v(k+1) − v(k)) = −f(v(k)) (2.5)

or
v(k+1) = v(k) − J−1(v(k))f(v(k)) (2.6)

for v(k+1) (the value of v on the k + 1th iteration) until some conver-
gence criteria are met. J(v) = d

dvf(v) is called the Jacobian of f at v.
Since both f(v) and v are N -dimensional vectors, J(v) is an N ×N
matrix. It represents the circuit linearized about v. This process is
explicitly stated in Algorithm 2.1 and is illustrated graphically with
a simple scalar example in Figure 2.2.

The sequence generated by (2.6) is guaranteed to converge to v̂ if f is
continuously differentiable, if the solution is isolated (this concept is
discussed in Section 2.2.3.1 on page 25), and if v(0) is sufficiently close
to v̂. In circuit simulation, none of these three conditions are guaran-
teed, and so neither is convergence. Failure to converge is probably
the biggest complaint designers have with circuit simulators.

Newton-Raphson has the very desirable property of quadratic con-
vergence, meaning that once it is close to the solution, it reduces the
error by squaring it on each iteration. The end result is that once

2.2. DC Analysis Theory 19

Step 0: Initialize
set k ← 0
choose v(0)

Step 1: Linearize about v(k)

Jf (v(k)) = ∂f(v(k))/∂v
where Jf is the Jacobian of f .

Step 2: Solve the linearized system
v(k+1) ← v(k) − J−1

f (v(k))f(v(k))

Step 3: Iterate
set k ← k + 1
if not converged, go to step 1.

Algorithm 2.1: Newton-Raphson algorithm for finding v̂ such that
f(v̂) = 0:

Newton-Raphson is close to the solution, the solution is found very
accurately with only a few more iterations.

2.2.2 Convergence Criteria

Newton-Raphson is a method that takes an initial guess of the so-
lution of a system of nonlinear equations, and refines it making it
more and more accurate on each iteration. However, in its pure
form, Newton’s method never terminates. A way of deciding when
the iteration should be terminated is needed.

2.2.2.1 Absolute Convergence Criteria

The Newton-Raphson iteration is considered to have converged, and
therefore can be terminated, only after the approximate solution sat-
isfies two convergence criteria. These two convergence criteria are
given in simplified form first, with a more practical form given later.

20 Chapter 2. DC Analysis

v

f(v)

v(0)v(1)

f(v(0))

v̂

f(v(0))
dv

v

f(v)

v(0)v(1)v(2)

f(v(0))

v̂

f(v(1))

Figure 2.2: Newton’s method applied to find the value v̂ such that
f(v̂) = 0 (the value of v where the curve crosses the horizontal axis).
The process starts by guessing the value v(0). The function is lin-
earized about v(0) and solved for the next guess v(1). If all goes well,
v(1) is closer to the solution v̂ than was v(0), and v(k) → v̂ as k →∞.
The process terminates when v(k) is sufficiently close to v̂.

The first criterion specifies that KCL should be satisfied to a given
degree,

|fn(v(k))| < εf (2.7)

where εf is some small positive number. The second tries to control
the error in the solution by asserting that the difference between the
last two iterations must be small,

|v(k)
n − v(k−1)

n | < εx (2.8)

where εx is some small positive number.

A simulator considers v(k) a solution if (2.7) and (2.8) are both satis-
fied. It is necessary to assure that both conditions are satisfied to be
certain that the solution computed by Newton’s method is correct.
However, most simulators (in particular, those that are descendants

2.2. DC Analysis Theory 21

of Spice) only check condition (2.8). This occasionally results in a
condition called false convergence, which occurs when the iteration
is terminated prematurely with (2.4) far from being satisfied because
progress on one iteration is slow (and therefore v(k) − v(k−1) is small
and so (2.8) is satisfied). These simulators try to avoid this problem
by using heuristics (generally that |fn(v(k)) − fn(v(k−1))| < εf), but
these sometimes fail. The reason they fail is that neither condition
actually verifies that the equations are being solved (that KCL is
being honored). Instead they are satisfied when the current iteration
is close to the previous one. Thus, if the rate of convergence be-
comes slow, these conditions are satisfied without the iteration being
close to the solution. The progress on an iteration in both (2.7) and
(2.8) would be slow if the Jacobian is wrong because of an error in
the implementation of a model. On the other hand, conditions (2.7)
and (2.8), which are used in Spectre, do not exhibit false conver-
gence. Condition (2.7) assures that KCL is approximately satisfied,
and (2.8) bounds the error in the solution.

Why the Residue Criterion is Needed In general, the residue
criterion (2.7) is important when the impedance at a node is small.
For example, consider a strongly forward-biased pn-junction. Even
small changes in voltage across the junction result in large changes in
the current through the junction. In such circuits, the residue crite-
rion is more important that the update criterion (2.8) for maintaining
the accuracy of the solution.

Why the Update Criterion is Needed The update criterion
(2.8) is important when the impedance at a node is large. Consider
a node that is isolated from others by a reverse-biased pn-junction.
There is a large range of voltages that result in the current through
the junction being less than the absolute current tolerance. In this
situation, the update criterion is more important than the residue
criterion for maintaining the accuracy of the solution.

22 Chapter 2. DC Analysis

2.2.2.2 Relative Convergence Criteria

While conceptually simple, the convergence conditions given by (2.7)
and (2.8) are not used as given in practice because the criteria do
not tolerate changes in scale well. Consider condition (2.8), a better
criterion is:

Newton Update Convergence Criterion
The solution updates are said to have converged if

|v(k)
n − v(k−1)

n | < reltol vnmax + vntol (2.9)

where typically vnmax = max(|v(k)
n |, |v(k−1)

n |).

By default, reltol is 0.001 and vntol (called vabstol in Spectre)
is 1µV.

reltol is called the relative convergence tolerance because it specifies
how small the update must be relative to the node voltage. reltol
allows you to simulate high voltage circuits and low voltage circuits
without adjusting the convergence criteria. vntol is referred to as
an absolute tolerance. It becomes important when the solution on a
particular node is near zero. In this case, just using the reltol crite-
rion would force the update to be microscopic before convergence was
allowed. In some cases the required update would be smaller than
the computer round-off error, in which case convergence would never
occur. vntol prevents these problems from occurring by causing any
update smaller that vntol to be accepted.

Criterion (2.9) overcomes several problems that plague (2.8). First,
(2.8) does not automatically scale itself to the problem, and so εx
would have to be manually adjusted to fit the problem. Second, if
the solution at node n is large and at node m is small, then εx must
be chosen fairly large so that convergence is not precluded at node
n, which results in convergence being checked very loosely at node
m.

The residue convergence criterion of Equation (2.7) can also be im-
proved.

