
 

1  Introduction
Phase noise has been one of the most interesting yet poorly understood topics 
in circuit design. The challenge of predicting the amount of phase noise in a 
given circuit has been approached from a variety of angles, from using a “heu-
ristic model without formal proof” [1] to simulation techniques that lead to 
accurate results [2][3]. Completing this book involved hours of computer sim-
ulation, pages of algebra, translation of antiquated notation, and utilizing 
archeological-type efforts to unearth significant but otherwise forgotten 
papers.

With regard to this work, three major steps lead to the solution of this prob-
lem. The first is Lesson’s equation. All works on phase noise must reference 
Lesson’s equation because it is simple, intuitive, and has withstood the test of 
time [1]. The second innovation was in the development of Cadence, Inc.’s 
SpectreRF simulation tool [2]. This tool accurately predicts phase noise and 
served as a test bench to validate all derived equations. Finally, Huang [4]
showed it was possible to write out equations for phase noise explicitly. This 
work takes inspiration and elements from all these works and forms a model 
that is as intuitive as Leeson, as accurate as SpectreRF, and as rigorous as 
Huang.

2  The Mathematical Oscillator
The mathematical model of an ideal voltage-controlled oscillator starting at 
t = 0 is described by the following expression:
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Chapter 1  Basics of LC Oscillators
, (1)

where vc is the control voltage of the oscillator as a function of time. The cen-
ter frequency of oscillation is ωo and the instantaneous frequency of oscilla-
tion is given by:

, (2)

where Kv is the oscillator sensitivity and typically given in rad/sec/volt. 

As can be seen from (1), the small signal model of an oscillator in frequency/
phase domain, with voltage as an input and phase as an output, functions as an 
integrator. The frequency of oscillation is directly proportional to the control 
voltage and the oscillator phase is the time-integral of frequency. Being a self-
timed system, the oscillator lacks the ability to correct for its own phase. 
Imagine an oscillator running at some frequency with a constant bias applied 
to its control voltage line. Any disturbance on the control line will result in 
instantaneous frequency shift that integrates over the time the disturbance 
lasts. The resulting phase error will last indefinitely and can never be recov-
ered even though the disturbance lasted for a short amount of time as shown 
in Figure 1.  

FIGURE 1  Phase jitter accumulation.
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3 Additive White Noise in LC Oscillators
3  Additive White Noise in LC Oscillators
An oscillation is fully characterized by its amplitude and phase. When white 
noise is added to an oscillation, noise corrupts both the amplitude and phase 
of oscillation. Assume a noise signal n(t) added to an oscillation v(t). It is cus-
tomary to model noise as an infinite number of uncorrelated sinusoids sepa-
rated by 1 Hz each. The sum of the oscillation signal at ωo and a noise signal 
at frequency ωo + ωn is given by:

, (3)

where an is the noise amplitude and φn is a random phase. This equation can 
re-written as

(4)

+ .

The first three terms constitute an amplitude modulated carrier with the mod-
ulating tones at ωn. The last two terms together with the carrier, approximate a 
narrow band phase modulation signal. This means that a single sideband noise 
component added to the oscillator modulates both the amplitude and phase of 
the oscillation. The power of amplitude modulation sidebands is equal to the 
power of phase modulation sidebands.

In Chapter 2, we will rigorously define phase noise. For now, any noise that 
modulates the phase of oscillation is phase noise. Any noise that modulates 
the amplitude is considered amplitude noise and is unimportant in most prac-
tical cases, except when it later converts to phase or frequency noise.

4  The Linear Oscillator

4.1  Warning

In this section, we develop a misleading analysis of oscillators based on linear 
system theory. Despite looking reasonable, we will show later why it is not 
accurate or even correct.
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Chapter 1  Basics of LC Oscillators
4.2  Linear System Theory Applied to Oscillators

Oscillators are fundamentally nonlinear. In fact oscillator’s nonlinearity is the 
reason for their “stable” amplitude. Yet linear models are often used to 
describe oscillatory behavior. This is acceptable when oscillation start-up 
conditions are pursued because oscillation at start-up is a small signal. How-
ever, the periodically stable frequency can be far different from the small sig-
nal “linear” prediction. Furthermore, a linear oscillator model cannot predict 
the oscillation amplitude. In fact, the assumption of linearity, leads to an un-
determined amplitude. This is because in a linear system, if the input doubles, 
the output doubles. In an oscillator, this leads to an amplitude that is arbitrary 
[5].

So what is a linear model good for?

1. It can yields a startup condition for oscillation, and

2. it gives a rough estimate of the frequency of oscillation.

Consider the LC oscillator shown in Figure 2. If the oscillator loop is cut at 
any point, the gain around the loop is given by:

. (5)

FIGURE 2  Basic LC oscillator.
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4 The Linear Oscillator
For a sustained oscillation, Barkhausen criterion mandates that the gain 
around the loop is exactly unity and the phase shift around the loop is pre-
cisely 360 degrees. This leads to the following:

, (6)

. (7)

The oscillator shown in Figure 2 can be modeled as a positive feedback sys-
tem. In Figure 3, the oscillator is constructed using an amplifier and a phase 
shift network. The amplifier provides no phase shift. The modes of oscilla-
tions for this system occur at the natural frequencies of the phase shift net-
work. At these frequencies, the phase shift of this network is a multiple of 360 
degrees. If there are multiple frequencies at which Barkhausen criterion is 
met, then the oscillator can have multiple modes of oscillation. The mode 
with the highest gain is most likely to prevail but multiple modes of oscilla-
tion can coexist.

Another way to model an oscillator is a single port model. A lossless LC tank 
is an oscillator with its frequency of oscillation that can be computed from (7). 
Loss in the tank damps the oscillation with a time constant equal to 1/RC. 
Adding a negative resistance element replenishes any current that flows 
through the lossy element to sustain oscillation. If the oscillation is to grow 
then the energy supplied by the negative resistance element must equal the 
energy lost per cycle. For the oscillator in Figure 2, the two transistors are 
arranged such that they provide a negative resistance of –2/gm. The differen-

FIGURE 3  Feedback amplifier model of the oscillator.
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Chapter 1  Basics of LC Oscillators
tial resistance of the tank is 2R. Therefore, for a sustained oscillation, the neg-
ative resistance should be equal to the positive resistance at all times. This 
leads back to (6). Redrawn in Figure 4, this circuit is known as the voltage-
biased oscillator.

5  Linear Oscillator Noise Analysis
Imagine an oscillator constructed using a parallel LC tank and a transconduc-
tor in a positive feedback loop. The frequency of oscillation is of course given 
by (7). Note that the resonant frequency of the LC tank is the same as the 
oscillation frequency because both the resistor and the transconductor do not 
provide any extra phase shift as they carry no reactive current. The reader can 
readily prove that if the resistive loss is modeled in series with the inductor 
rather than it parallel, the oscillation frequency will be different from that 
given by (7).

Now let’s consider the noise. Noise can come from two sources in this sys-
tem: the resistor and the transconductor. Resistor noise is modeled by a white 
thermal noise current whose density is given by:

. (8)

Noise in the transconductor is also modeled as a white noise current whose 
density is given by:

FIGURE 4  Basic LC oscillator (redrawn).
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5 Linear Oscillator Noise Analysis
, (9)

where γ is the noise figure of the transconductor element.

The combined noise can be referred to the input of the transconductor as a 
white noise voltage given by:

. (10)

Substituting from (6), the input referred noise voltage at the transconductor 
input is given by:

, (11)

where F = 1 + γ is the noise figure of the entire oscillator.

The tank impedance at a frequency δω away from the resonance frequency 
can be approximated by

, (12)

where Q is the tank quality factor.

Using basic feedback theory, it is trivial to prove that the closed-loop transfer 
function from the noise input to the oscillator output is given by:

. (13)

In noise analysis, it is customary to represent noise by a sine wave in a 1 Hz 
bandwidth. Let’s consider a noise component at a frequency dω away from 
the carrier (i.e. oscillation fundamental tone). Noise power at the output of the 
oscillator can be deduced using (11) and (13),

. (14)
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Chapter 1  Basics of LC Oscillators
As shown earlier, additive noise shows as half amplitude noise and half phase 
noise. The noise-to-carrier ratio is obtained by dividing the output phase 
noise by the carrier power. We should also consider noise in the lower side 
band at ωo + δω. The single side band noise to carrier ratio is obtained by add-
ing noise power at +δω and –δω resulting in the following expression:

. (15)

This is the renowned Leeson’s equation [1]. In the original paper it was given 
as a heuristic equation without formal proof. The preceding analysis is not 
part of the original paper that was based on measurements and observations. 
Many other researchers and design engineers derived, over the years, proofs 
similar to the one we derived here and ended up with one version or another 
of (15).

What’s wrong with the above analysis? First, it is linear and time invariant. 
Therefore, no frequency translations of noise can occur. This means that low 
frequency noise, such as flicker noise, cannot create phase noise under the 
assumptions of this model. The only type of noise that can create phase noise 
in this model is noise originating around the oscillation frequency. Moreover, 
it has to have an equivalent amount of amplitude noise because it is in 
essence, additive noise. In any LC oscillator, this is not true. As we will show 
later, some elements contribute pure phase noise and no amplitude noise. 
Finally, linear analysis cannot predict the amplitude of oscillation. The ampli-
tude limiting mechanism is fundamentally nonlinear and cannot be captured 
in the context of a linear time-invariant analysis.

6  How Is This Book Different?
In the following chapters we will show in detail why the derivation in 
Section 4 is wrong. We will show how to use circuit theory to derive an accu-
rate model for phase noise in electrical oscillators. We will describe what we 
call a mechanistic model that captures the dominant nonlinearities in an oscil-
lator and provides a closed form expression for phase noise. No fudge factors 
utilized!
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 References
Concepts from nonlinear circuit theory are sometimes utilized yet we tried to 
keep that to the minimum necessary.

By doing so, this book provides deep insight into the operation of oscillators 
and provides simple procedures for designing high-purity oscillators. We are 
answering the seldom tackled questions: ‘why does the oscillator behave that 
way?’ and ‘how is an optimal oscillator designed?’
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