
The Designer’s Guide Community downloaded from www.designers-guide.org

A Formal Top-Down Design
Process for Mixed-Signal Circuits

Ken Kundert
Designer’s Guide Consulting, Inc.
Version 1a, October 2001 With mixed-signal designs becoming more complex and time-to-market windows
shrinking, designers cannot hope to keep up unless they change the way they design.
They must adopt a more formal process for design and verification: top-down design. It
involves more than simply a cursory design of the circuit block diagram before design-
ing the blocks. Rather, it requires developing and following a formal verification plan
and an incremental and methodical approach for transforming the design from a abstract
block diagram to a detailed transistor-level implementation.

This paper was presented at the Advances in Analog Circuit Design workshop (AACD-2000 in
Germany) and at the Electronic Design Processes workshop (EDP-2001 in Monterey), and pub-
lished in Analog Circuit Design, R.J. van de Plassche, J.H. Huijsing and W.M.C. Sansen (editors),
Kluwer Academic Publishers, November 2000.

Last updated on May 12, 2006. You can find the most recent version at www.designers-guide.org.
Contact the author via e-mail at ken@designers-guide.com.

Permission to make copies, either paper or electronic, of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or commer-
cial advantage and that the copies are complete and unmodified. To distribute otherwise, to pub-
lish, to post on servers, or to distribute to lists, requires prior written permission.
Copyright © 2006, Kenneth S. Kundert – All Rights Reserved 1 of 13

http://www.designers-guide.org
http://www.designers-guide.org
mailto:ken@designers-guide.com
mailto:ken@designers-guide.com
http://www.designers-guide.org
http://www.designers-guide.org
http://www.designers-guide.com/home.html

Introduction
1.0 Introduction

At the Design Automation Conference in 1998, Ron Collett of Collett International pre-
sented findings from a 1997 productivity study in which his firm analyzed 21 chip
designs from 14 leading semiconductor firms. The study revealed a productivity gap of
14× between the most and least productive design teams. The study also revealed that
developing analog and mixed-signal circuitry requires three to seven times more effort
per transistor than designing digital control logic, though this factor was normalized out
of the 14× ratio.

In my experience, the primary culprits behind the poor productivity of those at the bot-
tom of the scale are increasingly complex designs combined with a continued prefer-
ence for bottom-up (i.e., transistor-level) design methodology and the occurrence of
simulation late in the design cycle, which leads to errors and re-spins. There's a huge
disparity in productivity between those mixed-signal designers who have transitioned to
an effective “top-down” design methodology and use mixed-signal hardware descrip-
tion languages (MS-HDLs), and those who practice “bottom-up” design and rely solely
on SPICE.

1.1 Getting to Market First

With the internet and wireless technology as the latest market drivers, the pace of the
electronic marketplace continues to quicken. New products and new product categories
are being created faster than ever before. In order to keep up with the rapid pace of the
market, designers must get their products to market more quickly than ever. Those that
are successful at bringing significant new capabilities to the market first are usually
rewarded with higher profit margins and greater market share. Conversely, those that are
late must face an uphill battle against entrenched competition. To understand this, con-
sider three scenarios for developing a product with Figure 1 showing the expected reve-
nue for each scenario. For the first, consider employing an efficient product

development process and being first to market. For the second, consider using the same
number of developers with an inefficient development process, which causes the prod-
uct to be late to market. This results in a much lower return because the product enters a

FIGURE 1. The expected investment and return for the same product developed using three different
approaches.

$

time

$

time

Incremental Investment and Return

Accumulated Investment and Return

Efficient and Timely Inefficient and Untimely Inefficient but Timely
2 of 13 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org
http://www.designers-guide.org

Introduction
market where a competitor has already established leadership position and because
there are fewer available customers left. Finally, consider using an inefficient develop-
ment process but increasing the number of developers in order to reach the market first.
If this were possible, the development costs are higher, but the total return is almost the
same as in the first case. This is because the returns are expected to be much greater than
the initial development costs.

This example illustrates why it is more important to get a product to the market first than
it is to control development costs. Of course this assumes that the product is the right
product in that it satisfies the customers needs, and that it has some new and valuable
capability. With follow on products, the situation is somewhat different. Here, the mar-
ket leadership position is largely determined and the need to develop the product in a
timely manner is balanced by the need to control development costs.

1.2 Design Productivity Gap

Moore’s observation that the number of transistors available on an integrated circuit
doubles every 18 to 24 months continues to hold. Competitive pressures compel design-
ers to use these transistors to provide additional functionality and to increase the integra-
tion level and thereby decreasing the size, weight, power and cost of the product. As a
result, designers are confronted with larger and more complex designs. The increasing
size and complexity of these designs combines with the shrinking time available to
develop and get them to market; making the job of the circuit designer today much more
difficult than in the past.

Circuits are getting more complex in two different ways at the same time. First, circuits
are becoming larger. Consider wireless products. 40 years ago a typical receiver con-
tained between 5 and 10 transistors whereas it is common for a modern cell phone to
contain 10M transistors. Second, the operation of the circuits are becoming more com-
plex. 30 years ago integrated circuits generally consisted of simple functional blocks
such as op-amps and gates. Verification typically required simulating the block for two
or three cycles. Today, mixed-signal chips implement complex algorithms that require
designers to examine their operation over thousands of cycles. Examples include PLLs,
ΣΔ converters, magnetic storage PRML channels, and CDMA transceivers. The result of
these two effects together is that complexity is increasing at a blistering pace, and is out-
stripping the designers ability to keep up.

The CAD tools and computers employed by designers continually improve, which
serves to increase the productivity of designers. However, the rate of productivity
increase is not sufficient to allow the designers to keep up with the increasing complex-
ity of designs and decreasing time-to-market requirements. The growing difference
between the improvement in productivity needed to satisfy the demands of the market
and the productivity available simply by using the latest CAD tools and computers is
referred to as the Design Productivity Gap, and is shown in Figure 2. To close this gap,
one must change the way design is done. A design style that reduces the number of
serial steps, increases the likelihood of first time working silicon, and increases the
number of designers that can work together effectively is needed. If a design group fails
to move to such a design style, it will become increasingly ineffective. It eventually will
be unable to get products to market in a time of relevance and so will be forced out of
the market.
3 of 13The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org
http://www.designers-guide.org

Bottom-Up Design
2.0 Bottom-Up Design

The traditional approach to design is referred to as bottom-up design. In it, the design
process starts with the design of the individual blocks, which are then combined to form
the system. The design of the blocks starts with a set of specifications and ends with a
transistor level implementation. At this point, each block is verified as a stand-alone unit
against specifications and not in the context of the overall system. Once verified individ-
ually, the blocks are then combined and verified together, but at this point the entire sys-
tem is represented at the transistor level.

While the bottom-up design style continues to be effective for small designs, large
designs expose several important problems in this approach.

• Once the blocks are combined, simulation takes a long time and verification
becomes difficult and perhaps impossible. The amount of verification must be
reduced to meet time and compute constraints. Inadequate verification may cause
projects to be delayed because of the need for extra silicon prototypes.

• For complex designs, the greatest impact on the performance, cost and functionality
is typically found at the architectural level. With a bottom-up design style, little if
any architectural exploration is performed, and so these types of improvements are
often missed.

• Any errors or problems found when assembling the system are expensive to fix
because they involve redesign of the blocks.

• Communication between designers is critical, yet an informal and error prone
approach to communication is employed. In order to assure the whole design works
properly when the blocks are combined, the designers must be in close proximity
and must communicate often. With the limited ability to verify the system, any fail-
ure in communication could result in the need for additional silicon prototypes.

• Several important and expensive steps in the bottom-up design process must be per-
formed serially, which stretches the time required to complete the design. Examples
include system-level verification and test development.

The number of designers than can be used effectively in a bottom-up design process is
limited by the need for intensive communication between the designers and the inher-

FIGURE 2. IC process technology is improving faster than IC design technology, creating the design
productivity gap.

Manufacturing Capability

Design Capability

Tr
an

si
st

or
s

0.18μ
2000

0.5μ
1995

1.0μ
1990

Gap
4 of 13 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org
http://www.designers-guide.org

Top-Down Design
ently serial nature of several of the steps. The communication requirements also tend to
require that designers be co-located.

3.0 Top-Down Design

In order to address these challenges, many design teams are either looking to, or else
have already implemented, a top-down design methodology. In a basic top-down
approach, the architecture of the chip is defined as a block diagram and simulated and
optimized using either a MS-HDL simulator or a system simulator. From the high-level
simulation, requirements for the individual circuit blocks are derived. Circuits are then
designed individually to meet these specifications. Finally, the entire chip is laid out and
verified against the original requirements.

This represents the widely held view of what top-down design is. And while this is a
step towards top-down design, it only addresses one of the issues with bottom-up design
and there is much more that can be done. To overcome the remaining issues, one must
go further. Also needed is a formal verification planning procedure and a mixed-level
simulation strategy [4]. Both act to reduce risk and are added with the understanding
that with complex mixed-signal circuits, complete final transistor-level verification is at
a minimum very expensive and is often impractical. With careful planning one can use
mixed-level simulation to move the verification up in the design process where it is less
expensive and so can be more comprehensive. It also tends to find errors earlier in the
design process when recovery is easier and less expensive.

A well designed top-down design process methodically proceeds from architecture- to
transistor-level design. Each level is fully designed before proceeding to the next and
each level is fully leveraged in design of the next. It acts to partition the design into
smaller, well defined blocks, and so allows more designers to work together produc-
tively. This tends to reduce the total time required to complete the design. A top-down
design process also formalizes and improves communications between designers. This
reduces the number of flaws that creep into a design because of miscommunication. The
formal nature of the communication also allows designers to be located at different sites
and still be effective.

Following a top-down design methodology also reduces the impact of changes that
come late in the design cycle. If, for whatever reason, the circuit needs to be partially
redesigned, the infrastructure put in place as part of the methodology allows the change
to be made quickly. The models can be updated and impact on the rest of system can be
quickly evaluated. The simulation plan and the infrastructure for mixed-level simula-
tions is already be available and can be quickly applied to verify any changes.

3.1 Chip Architect

The chip architect is a new member of the design team. He or she is the leader of the
top-down design process and is expected to develop the simulation and modeling plans
and to coordinate with the other designers to assure that the plans are followed. The pri-
mary responsibility of the chip architect is to assure that the system operates as expected
when finally implemented. This must be a designer that has experience in the type of
system being designed so that he or she can anticipate and plan for issues that are likely
to occur. Preferably, the experience covers aspects of both system and block design. The
5 of 13The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org
http://www.designers-guide.org

Top-Down Design
chip architect may be the system engineer, the one that actually designs the block dia-
gram, but it need not be. However, the chip architect should not also have block design
responsibilities. Block design has a tendency of consuming an engineer.

The chip architect should be comfortable with modeling and MS-HDLs to the point
where he or she can write the descriptions of both the system and the individual blocks.
Since most designers are not skilled at modeling and not familiar with MS-HDLs, the
chip architect would train the other engineers on the project on the use of MS-HDLs.
However, it is important to recognize that modeling is a skill that is distinct from design.
Designer often have neither the skill nor the inclination to write sophisticated models. If
sophisticated models are required, they generally must be developed by the chip archi-
tect.

The chip architect must have a good understanding of simulation. In particular, where
and how simulation can be used to verify areas of concern in the design, and where it
cannot. This knowledge is leveraged heavily during the development of the simulation
plan.

The chip architect owns the top-level schematic for the design. This schematic must be
captured before any block design begins, even though it is likely to change before the
design is complete. The top-level schematic specifies the partitioning of the design into
blocks and the interface for each block. So each block should be “pin-accurate”. By this
is it meant that in the top-level schematic, each block, and each pin on each block, is
represented, and the type of each pin is carefully defined and documented. For example,
an enable line on a block may be denoted “3V CMOS active high” or a trigger line may
be described with “5V TTL positive edge triggered”. In this way, the top-level sche-
matic provides clarity of intention to the design team.

Once the top-level schematic is captured, the top-level models are written, usually by
the chip architect, and the system completely verified according the simulation plan.
The top-level schematic and models are then distributed to everyone on the design team.
As the design progresses, the chip architect coordinates any changes to the block inter-
faces, and then distributes updated models of the system or the blocks to the team. As
the block designers work, they provide transistor-level schematics (pre- and post-layout)
to the chip architect, who verifies them with mixed-level simulation, again according to
the simulation plan, before accepting them.

During the design phase, the chip architect works with the test engineers to develop the
test plan and test programs. The availability of a working model of the system early in
the design process allows test engineers to begin the development and testing of test
programs early. Moving this activity, which used to occur exclusively after the design
was complete, so that it starts at the same time the block design begins significantly
reduces the time-to-production [1,2,3,11]. Bringing test development into the design
phase can reduce post-silicon debug time by 50% and can eliminate a turn by finding
chips that are untestable early. It can also improve tests, which then improves yield.

3.2 Simulation and Modeling Plans

An important focus in a good top-down design methodology is the development of a
comprehensive simulation plan, which in turn leads to a modeling plan. This is done by
the chip architect with input from the whole design team. The process begins by identi-
fying particular areas of concern in the design. Plans are then developed for how each
6 of 13 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org
http://www.designers-guide.org

Top-Down Design
area of concern will be verified. The plans specify how the tests are preformed, and
which blocks are at the transistor level during the test. For example, if an area of con-
cern is the loading of one block on another, the plan might specify that one test should
include both blocks represented at the transistor level together. For those blocks for
which models are used, the effects required to be included in the model are identified for
each test. This is the beginning the modeling plan. Typically, many different models will
be created for each block. These models may be written either by the chip architect or
the block designer.

It is important to resist the temptation to specify and write models that are more compli-
cated than necessary. Start with simple models and only model additional effects as
needed (and as spelled out in the modeling plan). Also, the emphasis when writing mod-
els should be to model the behavior of the block, not its structure. A simple equation
that relates the signals on the terminals is preferred to a more complicated model that
tries to mimic the internal working of the block. This is counter to the inclination of
most designers, whose intimate knowledge of the internal operation of the block usually
causes them to write models that are faithful to the architecture of the block, but more
complicated than necessary.

It is also not necessary to model the behavior of a circuit block outside its normal oper-
ating range. Instead, you can add code in a model that looks for inappropriate situations
and reports them. Consider a block that supports only a limited range of input biases. It
is not necessary to model the behavior of the block when the input is outside the desired
range if in a properly designed circuit it will never operate in that mode. It is sufficient
to simply generate a warning that an undesirable situation has occurred.

Following these general rules will result in faster simulations and less time spent writing
models.

A formal planning process generally results in more efficient and more comprehensive
verification, meaning that more flaws are caught early and so there are fewer design iter-
ations. The simulation and test plans are applied initially to the high-level description of
the system, where they can be quickly debugged. Once available, they can be applied
during the mixed-level simulations of the blocks, reducing the chance that errors will be
found late in the design cycle.

3.3 System-Level Verification

System-level design is generally performed by system engineers. Their goal is to find an
algorithm and architecture that implement the required functionality while providing
adequate performance at minimum cost. They typically use system-level simulators,
such as Simulink or SPW [7,10], that allow them to explore various algorithms and eval-
uate trade-offs early in the design process. These tools are preferred because they repre-
sent the design as a block diagram, they run quickly, and they have large libraries of
predefined blocks for common application areas.

This phase of the design provides a greater understanding of system early in the design
process. It also allows a rapid optimization of the algorithm and moves trades to the
front of design process where changes are inexpensive and easy to make. Unworkable
approaches are discarded early. Simulation is also moved further up in the design pro-
cess where it is much faster and can also be used to help partition the system into blocks
and budget their performance requirements.
7 of 13The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org
http://www.designers-guide.org

Top-Down Design
Once the algorithm is chosen, it must be mapped to a particular architecture. Thus, it
must be refined to the point where the blocks used at the system level accurately reflect
the way the circuit is partitioned for implementation. The blocks must represent sections
of the circuit that are to be designed and verified as a unit. Furthermore, the interfaces
must be chosen carefully to avoid interaction between the blocks that are hard to predict
and model, such as loading or coupling. The primary goal at this phase is the accurate
modeling of the blocks and their interfaces. This contrasts with the goal during algo-
rithm design, which is to quickly predict the output behavior of the entire circuit with
little concern about matching the architectural structure of the chip as implemented. As
such, mixed-signal hardware description languages (MS-HDLs) such as Verilog-AMS
[12,13] or VHDL-AMS [14] become preferred during this phase of the design because
they allow accurate modeling of the interfaces and support mixed-level simulation.

The transition between algorithm and architecture design currently represents a discon-
tinuity in the design flow. The tools used during algorithm design are different from the
ones used during architecture design, and they generally operate off of different design
representations. Thus, the design must be re-entered, which is a source of inefficiencies
and errors. It also prevents the test benches and constraints used during the algorithm
design phase from being used during the rest of the design.

On the digital side, tools such as SPW do provide paths to implementation via Verilog
and VHDL generation. Similar capabilities do not yet exist for the analog or mixed-sig-
nal portions of the design. An alternative is to use Verilog-AMS or VHDL-AMS for
both algorithm and architecture design. This has not been done to date because simula-
tors that support these languages are just now becoming available. It will probably take
a while for this approach to become established because of the absence of application
specific libraries needed for rapid system-level exploration.

3.4 Mixed-Level Simulation

Digital synthesis maps digital behavior onto digital gates that are arranged in a rather
constrained topology. The simple nature of gates combined with the constrained topol-
ogy makes synthesis feasible. With analog circuitry, the fundamental building blocks are
much more complex and varied and the topology is completely unconstrained. These
two factors make analog synthesis a fundamentally much more difficult problem than
digital synthesis. Analog synthesis so far has resisted all attempts at automation except
in limited cases, such as analog filters. Work continues, but we are still far from having
universal analog synthesis.

Without analog synthesis, analog design is done the old fashioned way, with designers
manually converting specifications to circuits. While this allows for more creativity, it
also results in more errors, particularly those that stem from miscommunication. These
miscommunications result in errors that prevent the system from operating properly
when the blocks are assembled even though the blocks were thought to be correct when
tested individually.

To overcome this problem, mixed-level simulation is employed in a top-down design
methodology for analog and mixed-signal circuits (this represents a significant but
essential departure from the digital design methodology). Mixed-level simulation is
required to establish that the blocks will function as designed in the overall system.
8 of 13 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org
http://www.designers-guide.org

Top-Down Design
To verify a block with mixed-level simulation, the model of the block in the top-level
schematic is replaced with the transistor level schematic of the block before running the
simulation. The system, described at a high level, acts as a test-bench for the block,
which is described at the transistor level. Thus, the block is verified in the context of the
system, and it is easy to see the effect of imperfections in the block on the performance
of the system. Mixed-level simulation requires that both the system and the block
designers use the same simulator and that it be well suited for both system- and transis-
tor-level simulation.

Mixed-level simulation allows a natural sharing of information between the system and
block designers. When the system-level model is passed to the block designer, the
behavioral model of a block becomes an executable specification and the description of
the system becomes an executable test bench for the block. When the transistor level
design of the block is complete, it is easily included in the system-level simulation by
the chip architect.

Mixed-level simulation is the only feasible approach currently available for verifying
large complex mixed-signal systems. Some propose to use either timing simulators
(sometimes referred to as fast or reduced accuracy circuit simulators) or circuit simula-
tors running on parallel processors. However, both approaches defer system-level verifi-
cation until the whole system is available at transistor level, and neither provide the
performance nor the generality needed to verify most mixed-signal systems.

Successful use of mixed-level simulation requires careful planning and forethought.
And even then, there is no guarantee that it will find all the problems with a design.
However, it will find many problems, and it will find them much earlier in the design
process, before full-chip simulations, when they are much less costly to fix. And with
mixed-level simulation, it is possible to run tests that are much too expensive to run with
full-chip simulation.

3.5 Bottom-Up Verification

Once a block is implemented, one could update the models that represent it to more
closely mimic its actual behavior. This improves the effectiveness of mixed-level and
system-level simulation and is referred to as bottom-up verification. To reduce the
chance of errors, it is best done during the mixed-level simulation procedure. In this
way, the verification of a block by mixed-level simulation becomes a three step process.
First the proposed block functionality is verified by including an idealized model of the
block in system-level simulations. Then, the functionality of the block as implemented
is verified by replacing the idealized model with the netlist of the block. This also allows
the effect of the block’s imperfections on the system performance to be observed.
Finally, the netlist of the block is replaced by an extracted model. By comparing the
results achieved from simulations that involved the netlist and extracted models, the
functionality and accuracy of the extracted model can be verified. From then on, mixed-
level simulations of other blocks are made more representative by using the extracted
model of the block just verified rather than the idealized model.

When done properly, bottom-up verification allows the detailed verification of very
large systems. The behavioral simulation runs quickly because the details of the imple-
mentation are discarded while keeping the details of the behavior. Because the details of
the implementation are discarded, the detailed behavioral models generated in a bottom-
up verification process are useful for third-party IP evaluation and reuse.
9 of 13The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org
http://www.designers-guide.org

Mixed-Signal Hardware Description Languages
Though bottom-up verification is helpful when verifying the performance of large sys-
tems, it is rarely done today. Generating behavioral models that include the detailed
behavior of even simple blocks can be difficult and requires a specialized skill not com-
monly found in the design team. This situation is not expected to change until auto-
mated tools and methodologies develop to generate detailed behavioral models. Such
tools are beginning to appear, but they are still in a very immature state.

Mixed-level simulation is currently the best approach to verifying large mixed-signal
systems that are designed with a top-down methodology. However, eventually systems
will be too large to completely verify with mixed-level simulation, in which case a bot-
tom-up verification approach will become necessary.

3.6 Final Verification

In a top-down design process, SPICE-level simulation is used judiciously in order to get
its benefits without incurring its costs. All blocks are simulated at the transistor level in
the context of the system (mixed-level simulation) in order to verify their functionality
and interface. Areas of special concern, such as critical paths, are identified up front and
simulated at the transistor level. The performance of the circuit is verified by simulating
just the signal path or key pieces of it at the transistor level. Finally, if start-up behavior
is a concern, it is also simulated at the transistor level. The idea is not to eliminate
SPICE simulation, but to reduce the time spent in SPICE simulation while increasing
the effectiveness of simulation in general by careful planning.

4.0 Mixed-Signal Hardware Description Languages

Both Verilog-AMS and VHDL-AMS have been defined and simulators that support
these languages are emerging. These languages are expected to have a big impact on the
design of mixed-signal systems because they provide a single language and a single
simulator that are shared between analog and digital designers. It will be much easier to
provide a single design flow that naturally supports analog, digital and mixed-signal
blocks, making it simpler for these designers to work together. It also becomes substan-
tially more straight-forward to write behavioral models for mixed-signal blocks. Finally,
the AMS languages bring strong event-driven capabilities to analog simulation, allow-
ing analog event-driven models to be written that perform with the speed and capacity
inherited from the digital engines.

It is important to recognize that the AMS languages are primarily used for verification.
Unlike the digital languages, the AMS languages will not be used for synthesis in the
foreseeable future because the only synthesis that is available for analog circuits is very
narrowly focused.

4.1 Verilog-AMS

Verilog-A is an analog hardware description language patterned after Verilog-HDL [6].
Verilog-AMS combines Verilog-HDL and Verilog-A into a MS-HDL that is a super-set
of both seed languages [11]. Verilog-HDL provides event-driven modeling constructs,
and Verilog-A provides continuous-time modeling constructs. By combining Verilog-
HDL and Verilog-A it becomes possible to easily write efficient mixed-signal behav-
ioral models. A unique feature of Verilog-AMS is that it provides automatic interface
10 of 13 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org
http://www.designers-guide.org

Mixed-Level Simulation Example
element insertion so that analog and digital models can be directly interconnected even
if their terminal / port types do not match. It also provides support for real-valued event-
driven nets and back annotating interconnect parasitics.

A commercial version of Verilog-AMS that also supports VHDL is available from
Cadence Design Systems.

4.2 VHDL-AMS

VHDL-AMS [8,9,14] adds continuous time modeling constructs to the VHDL event-
driven modeling language [5]. Like Verilog-AMS, mixed-signal behavioral models can
be directly written in VHDL-AMS. Unlike with Verilog, there is no analog-only subset.

VHDL-AMS inherits support for configurations and abstract data types from VHDL,
which are very useful for top-down design. However, it also inherits the strongly typed
nature of VHDL, which creates problems with mixed-signal designs. Within VHDL-
AMS you are not allowed to directly interconnect digital and analog ports, and there is
no support for automatic interface element insertion built-in to the language. In fact, you
are not even allowed to directly connect ports from an abstract analog model (a signal
flow port) to a port from a low-level analog model (a conservative port). This makes it
difficult to support mixed-level simulation. These deficiencies have to be overcome by a
simulation environment, making VHDL-AMS much more dependent on its environ-
ment. This should slow deployment of effective VHDL-AMS-based flows.

A commercial version of VHDL-AMS that also supports Verilog is available from Men-
tor Graphics [15].

5.0 Mixed-Level Simulation Example

Though this example is several years old, it is representative of the type of circuit com-
plexity that is becoming mainstream today. It is a PRML channel chip that is difficult to
simulate for two reasons. First, it is a relatively large circuit that involves both analog
and digital sections that are closely coupled. Second, the architecture involves complex
feedback loops and adaptive circuits that take many cycles to settle. The combination of
many transistors and many cycles combines with the result being a simulation that is so
expensive as to be impractical. In this case, the expected simulation time was predicted
to be greater than a month.

The traditional approach to simulating a complex circuit like this is to simulate the
blocks individually. Of course this verifies that the blocks work individually, but not
together. In addition, for this circuit it is difficult to verify the blocks when operating
outside the system, and it is difficult to predict the performance of the system just know-
ing the performance of the individual blocks.

When the architecture was simulated at a high level with each block represented by a
pin-accurate behavioral model, the simulation time was less than 10 minutes. Then,
when a single block was run at the transistor level, the simulation ran overnight. Even
though the full system was never simulated at the transistor level, it worked the first time
because this methodology verified the blocks in the context of the system and it verified
the interfaces between the blocks.
11 of 13The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org
http://www.designers-guide.org

Development of Chip Architects
6.0 Development of Chip Architects

The primary barrier to widespread adoption of a formal top-down design style for com-
plex mixed-signal circuits is a lack of engineers with the skills and training to be chip
architects. A chip architect must

• Be fluent in an AMS language and skilled in the art of modeling

• Be an experienced designer

• Have a good understanding of the top-down design process

• Be proficient in the use of circuit and AMS simulation

• Have the ability to lead and manage complex projects

Given the high pressure world that most designers live in, it is unlikely that they will be
able to acquire such a broad and deep set of skills while on the job, even if they are
motivated to do so. Rather, it is important for their employers to look for engineers that
have the interest and the relevant background and invest the time and training to develop
them into chip architects. In addition, it is essential that appropriate training becomes
available from universities and continuing education centers.

It may take some time to develop chip architects with all of the skills listed above. In the
mean time, the role of the chip architect represents a new set of skills, duties, and
responsibilities that must be present in the design team and shared amongst its members.
Perhaps one of the most difficult skills to develop in a chip architect is that of design
experience. However, experience in the chip-architect can be traded-off against experi-
ence in the design group. If the chip-architect has little design experience, then the other
members of the design group must be more experienced, and therefore more senior
designers. The chip architect then leverages the experience of the team when developing
the simulation and modeling plans. However, if the chip-architect is experienced, then
the remaining members of the design group need not be as experienced and may be
staffed with more junior engineers. One of the more important roles of the chip architect
then becomes educating the team on what the system issues are, and how to model and
simulate them.

7.0 Conclusion

A formal top-down design methodology requires a significant investment in time and
training and a serious commitment throughout the design process if it is to be success-
ful. However, it is much easier the second time around and once mastered provides dra-
matic returns. Fewer design iterations are needed, which results in a shorter and more
predictable design process. More optimal designs are produced that are better verified.
Finally, it allows design teams to be larger and more dispersed, giving the option of trad-
ing a higher initial investment for a shorter time-to-market.

7.1 If You Have Questions

If you have questions about what you have just read, feel free to post them on the Forum
section of The Designer’s Guide Community website. Do so by going to www.designers-
guide.org/Forum.
12 of 13 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org
http://www.designers-guide.org/Forum
http://www.designers-guide.org/Forum
http://www.designers-guide.org
http://www.designers-guide.org

Acknowledgments
Acknowledgments

Much of the material presented is based on discussions with Dan Jefferies and Henry
Chang of Cadence Design Systems and Jim Holmes of Texas Instruments.

Bibliography

[1] C. Force, T. Austin. Testing the design: the evolution of test simulation. Interna-
tional Test Conference, Washington 1998.

[2] C. Force. Integrating design and test using new tools and techniques. Integrated
System Design, February 1999.

[3] Dantes virtual test environment, www.virtualtest.com.

[4] J. Holmes, F. James, and I. Getreu. Mixed-Signal Modeling for ICs. Integrated Sys-
tem Design Magazine, June 1997.

[5] VHDL Language Reference Manual, IEEE Standard 1076-1993.

[6] Standard Description Language Based on the VerilogTM Hardware Description
Language, IEEE Standard 1364-1995.

[7] Matlab and Simulink, www.mathworks.com.

[8] E. Christen, K. Bakalar. VHDL-AMS — a hardware description language for ana-
log and mixed-signal applications. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 46, no. 10, Oct. 1999, pp. 1263-1272.

[9] Definitions of Analog and Mixed-Signal Extensions to IEEE Standard VHDL. IEEE
Standard 1076.1-1999.

[10] Signal-Processing Worksystem User’s Guide. Cadence Design Systems, San Jose,
CA.

[11] SpectreVX and SaberVX virtual test environments, www.teradyne.com.

[12] Kenneth S. Kundert. The Designer’s Guide to Verilog-AMS. Kluwer Academic
Publishers, 2004.

[13] Verilog-AMS Language Reference Manual: Analog & Mixed-Signal Extensions to
Verilog HDL, version 2.0. Open Verilog International, 2000. Available from
www.eda.org/verilog-ams. An abridged version is available from www.verilog-
ams.com or www.designers-guide.org/VerilogAMS.

[14] VHDL-AMS, www.vhdl.org/analog.

[15] VHDL-AMS simulators, www.vhdl-ams.com.
13 of 13The Designer’s Guide Community
www.designers-guide.org

http://www.virtualtest.com/
http://www.mathworks.com/
http://www.teradyne.com/
http://www.eda.org/verilog-ams/
http://www.vhdl.org/analog/
http://www.vhdl-ams.com/
http://www.verilog-ams.com
http://www.verilog-ams.com
http://www.designers-guide.org/VerilogAMS
http://www.designers-guide.org
http://www.designers-guide.org
http://www.designers-guide.org/Books/dg-vams/index.html

	1.0 Introduction
	1.1 Getting to Market First
	1.2 Design Productivity Gap

	2.0 Bottom-Up Design
	3.0 Top-Down Design
	3.1 Chip Architect
	3.2 Simulation and Modeling Plans
	3.3 System-Level Verification
	3.4 Mixed-Level Simulation
	3.5 Bottom-Up Verification
	3.6 Final Verification

	4.0 Mixed-Signal Hardware Description Languages
	4.1 Verilog-AMS
	4.2 VHDL-AMS

	5.0 Mixed-Level Simulation Example
	6.0 Development of Chip Architects
	7.0 Conclusion
	7.1 If You Have Questions

	Acknowledgments
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

