
 

Fast crystal-oscillator-simulation methodology 
The settling behavior of a crystal oscillator typically requires days to 
simulate with Spice. A new methodology for fast simulation of crystal 
oscillators allows such simulations to proceed in less than an hour and 
brings benefits such as the ability to accurately predict the frequency 
settling behavior. 

By Mark Gehring, Cypress Semiconductor 

Crystal oscillators are notoriously difficult to simulate accurately. The nature of the 
Newton-Raphson algorithm, which all Spice-like simulators (HSpice, PSpice, Spectre, 
and Eldo) use, is difficult to converge for very high Q circuits. To achieve accurate 
results, you must set the time step for the simulator to approximately Tstep5(4/f )*sqrt( 
reltol/Q), where F is the oscillator frequency and reltol is the simulator’s relative 
tolerance setting (convergence criteria) (Reference 1). For a 12-MHz oscillator with a Q 
of 40,000 and a reltol of 0.001, this equation results in a maximum time step of 52 psec. 
Because the settling time is on the order of several milliseconds, the simulator must 
produce on the order of 50 million time points, requiring sometimes days of simulation 
time even for a simple circuit. 

Theory 
Reference 2 describes a simulation method based on envelope analysis, which 

vastly simplifies the equations describing the oscillator. The essence of the method is 
the following: 

1. The analysis starts, as in Reference 3, by breaking the circuit internal to the 
crystal equivalent circuit model as shown in Figure 1. 

2. The authors of references 2 and 3 point out that the current flowing in the series 
RLC of the crystal must be a virtually pure sinusoid, due to the high Q of the crystal. The 
network acts as an extremely narrow bandpass filter, removing all harmonics. This 
situation leads to a large simplification in the analysis. (However, the voltage across it is 
not so constrained, and is often rich in harmonics due to the nonlinear load of the 
oscillator circuit.) 

3. The authors of Reference 2 next observe that the envelope (amplitude) of the 
oscillations changes very slowly compared with the oscillation period, leading to further 
simplifications; you can reduce the entire circuit, independent of implementation, to two 
simple equations: 

 
where “a” is the amplitude of the current in the RLC of the crystal, Rq is the motional 
resistance, Lq is the motional inductance, wq is the series resonant frequency of the 
crystal (1/sqrt(LqCq)), and v is the instantaneous frequency of the oscillator relative to the 
series resonant frequency (a delta frequency). Ld(a) and Rd(a) are the nonlinear 
inductance and resistance, respectively, of the oscillator. They are a function of the 
current amplitude a.  

4. Ld(a) and Rd(a) are next obtained in the following manner: The circuit in Figure 1 
is modified by replacing the series RLC of the crystal with a sinusoidal current source set 
to the crystal frequency Fq. The current amplitude is swept as a parameter. The top end 
of the sweep must be beyond the point at which the negative resistance of the oscillator 



 

is less than Rq, because at this amplitude, the oscillator will settle. A transient (or 
SpectreRF PSS/EldoRF SST) analysis is run until the voltage has settled on the input 
node. This simulation is very fast, because there are no high Q elements in the circuit 
(typically a few seconds per current amplitude step, depending on circuit complexity). An 
FFT of the final period of the voltage waveform is computed, and the complex voltage of 
the fundamental (first harmonic) is divided by the current amplitude to obtain a large 
signal impedance. The real part is Rd(a), and the imaginary part, divided by 2pFq, is 
Ld(a). 

Reference 2 leaves out two important details required for simulation to proceed: the 
method for solving the nonlinear differential equation and the initial conditions for that 
equation—in other words, the initial current in the crystal at time zero. 

Implementation 
The differential equation above is similar in form to an inductor in parallel with a 

nonlinear resistor. You can solve it conveniently with a Verilog A model, using a 
polynomial curve fit to the inductance and resistance as a function of the amplitude. 

The initial current in the inductor Lq of Figure 1 is obtained as the larger of the 
following: 

A. Simulate the total integrated noise current in the series RLC with the circuit on. 
Because this noise is concentrated at the crystal frequency, you can consider it a single 
sinusoid. Multiply the results from Spice by sqrt(2), because “a” is the peak amplitude. 

B. Do a transient simulation of the start up of the oscillator with the crystal attached. 
Because you are interested in only the first period of oscillation, this simulation is very 
fast, despite the very high Q. 

Simulation of this very simple Verilog A model completes in less than one second. 

Results 
This method was applied to the crystal oscillator in the CY6934 WirelessUSB crystal 

oscillator (Reference 4). The crystal was first measured with a network analyzer to 
obtain its exact parameters. The circuit was simulated to obtain the nonlinear resistance 
and inductance versus amplitude, and a sixth-order polynomial curve fit was obtained 
with Excel. These data were input to the Verilog A model and simulated to compare with 
measured and transient simulations. 

Figure 2 shows the simulated amplitude of the current in Lq. The curve on the left is 
the amplitude simulated with Verilog A in a fraction of a second, and the curve on the 
right is from a full transient simulation requiring 10.5 hours. The curves were compared 
at several different time points, and in all cases were identical. 

Figures 3 and 4 compare the simulation with measurement. A scope with a high-
impedance (,0.7 pF) probe measured amplitude versus time, and an Agilent 89441A 
vector signal analyzer measured frequency versus time. 

Note that the new simulation method does not include harmonics of the voltage 
waveform, so the measurements show larger swing. For radio applications, it is 
important to know the settling time of the frequency. Figure 4 shows excellent 
agreement (,1 ppm error) between simulation and measurements.  

A new method was presented for fast simulation of crystal oscillators. Comparison 
with full transient simulation and measurements confirm its accuracy and efficacy.  
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Figure 1—Generalized crystal oscillator circuit. 
 
 

 
Figure 2—Inductor current versus time; full transient versus new simulation method. 
 
 



 

WUSBLS Typical Simulated vs. Measured Amplitude Settling
Measured Crystal Params, Circuit Sim = typical

( note : circuit is differential and is simulated that way. Measurement is single-ended, 
and so contains additional even harmonics )
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Figure 3—Measured and simulated voltage swing versus time 
 

WUSBLS Xtal Osc Meas vs. Sim Freq vs. Time
Measured Crystal Params, PCB parasitics assumed as 1.5pF 

Circuit Sim = typical
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Figure 4—Measured and simulated frequency error versus time 
 


