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• The response of a circuit to any excitation source can be computed from the knowledge of the 
transfer function H(s)=Vout/Vin which is defined by its singularities (poles and zeros). 

• Take the example of an amplifier with nearly constant amplification from DC to a maximum 
frequency:

• Although all singularities contribute to the response of the system, it is clear that the pole at lowest
frequency (ωL) gives a first-order approximation of the -3dB bandwidth of the amplifier. In order to 
estimate the main properties of the amplifier we can compute the system response on the basis of 
the single-pole model shown in the figure with dashed line (dominant pole approximation). The 
farther (or more separated) are the rest of the singularities from the dominant pole, the better this 
approximation. 

• The estimated response of this amplifier to an input step is the well-known exponential curve with 
time constant τL=1/ωL. It must be reminded that in case of a “dominant” zero (i.e. occurring before 
ωL, the -3dB bandwidth is no more given by ωL. 

Dominant pole approximation
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• This further example shows an amplifier with nearly constant amplification between two corner 
frequencies (e.g. an amplifier with AC-coupled input).  The low-frequency (LF) corner is defined by 
the group of singularities at LF, while the high-frequency (HF) corner is defined by the group of 
singularities at HF.

• It is often straightforward to identify the group of (larger-value) capacitances giving rise to the LF 
singularities and the (smaller-value) capacitances giving rise to the HF singularities. Therefore if we 
assume that the 2 groups of singularities are well separated in frequency (i.e. by several decades), 
then we can split the analysis of the circuit: for the analysis of the LF singularities we set the HF 
capacitances to open-circuits, while for the analysis of the HF singularities we set the LF 
capacitances to short-circuits. Among the two groups of singularities, ωLF and ωHF are the 
“dominant” poles, respectively, for the LF and HF regions. 

• As before, we can estimate the response of this amplifier to an input step on the basis of a 
dominant pole approximation (dashed line). 

Dominant pole approximation (2)
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Method of Time Constants (MTC)
• In general, the complete computation of the frequency response of a multi-stage amplifier with 

many capacitive elements may become difficult and the exact result can be of little use. Therefore 
approximate methods have been developed to aid the design phase, and computer simulation is 
used to verify the final design. A method that provides an estimation of the highest/lowest 
frequency poles in a group of singularities is given below.

• Let us consider a circuit with n capacitors, independent and interacting, giving rise to n poles.

We can estimate the pole at LF (p1) and the pole at HF (pn) with the following expressions:

s-plane

xxx x
p1p2…… p3pn

4444 84444 76 n real poles

α

jω

pH pL

∑
=

−=−= n

i
i

L
Lp

1

0

11

τ
τ

∑
=

∞
−=−=

n

i iH
Hp

1

11
ττ

is the time constant associated to the i-th capacitance, when all 
the other capacitances are assumed at zero frequency (i.e. open-
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• The level of approximation is better for separated poles |p1|>>|p2|,|p3|,…>>|pn|
• It should be reminded that the MTC does not give any information on the location of the other 

intermediate poles and on the presence of zeros (which must be found by direct inspection on the 
circuit). 
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Poles/zeros in basic circuits

• In general, the no. of poles of the circuit is equal to the no. of independent reactive elements (i.e. 
capacitors, inductors). If we restrict to circuits in which the reactive elements are only capacitors 
(the most frequent case) we can say that the no. of poles of the circuit is equal to the no. of 
independent capacitors. Any transfer function of that circuit will show the same poles. On the 
contrary, the no. of zeros depends on the considered transfer function of the circuit. 

• Let us now review some basic case -- Circuit with 1 capacitor (n=1 pole)

• There is only n=1 pole. The time constant associated with the pole is obtained by computing the 
equivalent resistance “seen” by the capacitance, setting the independent source to zero: 
τp=C(R1//R2) ( p=-1/ τp).

• From the definition, in order to find possible zeros in H(s)=(Vout/Vin) we seek a finite value of s that 
satisfies the condition Vout=0. In the example this occurs only when the impedance of the capacitor 
is zero that is at infinite frequency. Therefore there is no zero in H(s). Another practical way to 
seek possible zeros is to evaluate H(jω) at ω=0 (C open-circuit) and ω=∞ (C short-circuit) and 
deduce the number/location of zero(s).

• The found transfer function is:

• Note-- If we take the voltage V1 as output variable, the transfer function K(s)=V1/ Vin will show the 
same pole as H(s) (once Vin is set to zero we have the same circuit), but now we have also 1 zero 
at s=-1/(R2C) (in fact V1=0 when Z2=R2//(1/sC) goes to infinity, or Y2=1/Z2=0): 
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Poles/zeros in basic circuits (2)

• Circuit with 2 capacitors, but not independent (n=1 pole)

• When you set the independent source to zero, you immediately realize that C1 and C2 are in 
parallel, therefore not independent(*) and they can be seen as one equivalent capacitor (C1+C2). 
Therefore we have only one pole, with time constant equal to the equivalent capacitance times the 
equivalent resistance τp=(R1//R2)(C1+C2) ( p=-1/ τp). 

• The pair R1-C1 gives rise to a zero in the H(s)= Vout/ Vin, as Vout=0 when Z1=R1//(1/sC1) tends to 
infinity, i.e. for s=-1/(R1C1). The pair R2-C2 does not give a zero because Z2=0 only for 
ω infinity.

(*) C1 and C2 are independent if the voltage (or charge) on each capacitor can be assigned arbitrarily. 
In this case the KVL imposes V1=V2 as C1 and C2 are in parallel. Typical cases when C1 and C2 
are not independent is when they are in parallel or in series. 

(Vin=0)

( )( )2121 // RRCCp +=τ



7

Poles/zeros in basic circuits (3)

• Circuit with 2 independent capacitors (n=2)
• When we have 2 independent capacitors we have n=2 poles. 
• To compute the poles we have to check if they are interacting or non-interacting. Non-interacting 

means that the equivalent resistance associated to one capacitance is not affected by the other 
capacitance(s). Let us see it through the following examples.

• Case of 2 RC’s decoupled by an ideal buffer

• The caps are clearly independent but also non interacting because of the ideal voltage buffer. We 
have two separated subcircuits, therefore each capacitance gives rise to a pole: p1=-1/(R1C1), 
p2=-1/(R2C2). It can be easily checked that the equivalent resistance seen by C1 is R1, 
irrespective of the state of C2 (for instance if C2 is an open-circuit or a short-circuit).
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Poles/zeros in basic circuits (4)
• Case of 2 coupled RC’s
• In this case, due to the presence of R2, we can 

define the voltages on C1, C2 arbitrarily, so they are 
independent (once you define V1, the KVL at loop 
C1-R2-C2 still allows any value for V2).       
Moreover now the caps are also interacting as the 
equivalent resistance seen by one capacitance is 
influenced by the other cap. In this case p1 and p2 
can be estimated with the MTC.

( )21211 RRCRCL ++=τ

• Computation of pL=-(1/τL) with MTC:

• Computation of pH=-(1/τH) with MTC:
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• Note: the equivalent resistances seen by C1 at ω=0 and at ω=∞ are different. The same occurs for 
C2. This is the confirmation of “interacting” capacitances. 

• Finally, we can easily check that there are no zeros in the H(s)=Vout/ Vin.
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Poles/zeros in basic circuits (5)
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• In the case of 2 poles, a special situation that is often encountered is when one of the time 
constants is dominant over the other. For instance, while computing τL, you may find that the time 
constant associated with C2 is dominant:

• This happens when  C2*(R1+R2)>>C1*R1. By multiplying both sides by R2 (and rearranging the 
terms) the previous condition becomes C2*R2>>C1*R1*R2/(R1+R2)=C1*(R1//R2) which 
highlights that also the time constants for the computation of τH are in the same ratio. 

• Therefore τH can be approximated with: 

• In other words, from the computation of  τL we may realize if one time constant is dominant. If so,  
we can approximate τL with the dominant time constant (C2) while the other capacitance (C1) is 
considered still “open” at LF. For the computation of  τH it will be now the smaller time constant 
that dominates, that is you can approximate τH as given by C1 only, assuming C2 already “closed”
at HF. 
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Exact result for the double RC

• The exact H(s) =Vout/ Vin (from circuit theory) is:
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• The exact poles p1, p2 can be found with the known expressions for the roots of the quadratic form 
at the denominator. 

• Comparison of the quadratic form with the estimates pL, pH - found with MTC previously - reveals 
the following interesting link:
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• This shows how the MTC can be used not just for the direct estimation of the poles p1, p2 but also 
to compute the coefficients of the quadratic form, from which the exact roots can be computed.

• The possibility of computing the exact roots applies only to the case n=2, while for the general case 
of n poles we can obtaine only the estimates pL, pH. 
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A frequent case: dependent capacitors
• Let us add now a 3rd capacitor C3 in parallel to R2 in the previous circuit. We obtain a circuit with 3 

caps which are linearly dependent due to the KVL at the C1-C2-C3 loop. Therefore we have only 
n=2 poles. As the capacitors are dependent we cannot apply the MCT to find pL and pH. This is a 
frequent situation encountered when analyzing multi-transistor amplifying stages.  

• However, if we compute τL, as in the MTC, we get:

• The exact transfer function, computed from basic circuit theory, is:
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• In the denominator, the coefficient of s still corresponds exactly to τL, as in the previous case of 2 
independent capacitors. Therefore τL can be still used as an estimate of the low-frequency 
pole also in case of dependent capacitors.

• The zero at s=-1/(R2C3) was expected, as the pair R2-C3 becomes an open-circuit (i.e. infinite 
impedance) at that complex frequency. 

• We do not have any information on the HF pole if we do not solve the circuit from basic theory. 


