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Abstract

Timing jitter in oscillators is a key factor determining
the phase noise performance of phase-locked loops.
This paper reviews a theory of phase noise in
oscillators, and presents timing jitter models suitable
for discrete event simulation of these systems.

1. Introduction

Oscillators are used everywhere. They provide timing
information that is needed to synchronize operations
in electronic systems. A noise-free oscillator
generates a periodically time-variant signal that is a
perfect time reference. In reality, all oscillators
exhibit phase noise and timing jitter. In Section 2, we
review a theory of phase noise in oscillators. We then
present two timing jitter models for oscillators used
in conjunction with other digital circuits such as
frequency dividers. The first model, given in Section
3, simulates time-domain jitter due to white noise.
The second model, presented in Section 4, includes
the effect of flicker noise. To the best of the author’s
knowledge, this is the first in which nonstationary
and self-similar nature of flicker noise is modeled.
These simulation models are useful for predicting
phase noise and timing jitter in phase-locked loops,
clock recovery circuits, and RF frequency
synthesizers. We verify our results using a CMOS
VCO circuit described in Section 5, and conclude the
paper with a summary.

Figure 1. Periodic waveform of a noise-free
oscillator

2. Theory of Noise in Oscillators

A noiseless oscillator provides a perfect time
reference because the time-varying oscillator output
at steady state, )(txs , is a T -periodic waveform, i.e.

)()( txTtx ss =+ , dividing time into equal lengths.
This is depicted in Figure 1. Figure 2 shows what
happens when the oscillator is perturbed by noise.
Noise causes amplitude deviation (.)y  and phase
deviation )(tφ . We represent the noisy oscillator
waveform )(tx  using the additive model:
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Phase deviation )(tφ  naturally accumulates with
time and drifts without bound, as oscillators are
autonomous circuits. After the phase of an
autonomous circuit has been perturbed, it persists and
cannot be restored without information from other
timing references. Amplitude deviation ))(( tsy
always remains small and bounded due to the fact
that nonlinear oscillators by design operate around
very stable orbits, a bit like a person riding a roller
coaster. Alternatively, we can define amplitude (.)a

as 
))((
))((

1))((
tsx
tsy

tsa
s

+≡ , provided the trajectory is

not near a zero, and use the multiplicative model:
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Figure 2. Waveforms of oscillator with phase and
amplitude noise



www.mentor.com/dsm                                                                                                                                                                                                                    

We note that if there are no phase deviations,
amplitude noise is periodically time-variant (T -
cyclostationary), and has the same characteristics as
noise found in a mixer that is periodically driven by a
noise-free local oscillator. More important, due to the
autonomous nature of oscillators, phase deviations
cause “time”-shifts in (.)sx  and in the amplitude

process, (.)y  and (.)a . It is a common practice to
ignore random time-drifts in the amplitude process,
thereby introducing subtle modeling inconsistency.

Phase and amplitude deviation causes random
variation in transition times and results in timing
jitter that is depicted in Figure 3. Note the cumulative
nature of phase errors with time. Timing jitter in
oscillators can be attributed to ))(( tsxs  primarily,

and to a smaller extent, ))(( tsy  or ))(( tsa  near the
point of output transition. We first focus on the
theory of oscillator phase noise, and then turn our
attention to the modeling of timing jitter.

Figure 3. Oscillator timing jitter

We review several asymptotic results from the
theoretical work of Kärtner1 and Demir et. al.2 for the
case in which an oscillator is perturbed by white
noise. First, the phase deviation )(tφ  is a
nonstationary3 Wiener process, or Brownian motion.
Second, )(ts  is Gaussian with variance that grows
with time at a linear rate, say c . Third, the symmetric
two-sided power spectral density4 for the phase
deviation is given by
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where Tf /10 =  is the oscillation frequency. Lastly,

the oscillator output ))(( tsx  (and individually,

))(( tsxs  and ))(( tsy ) is a stationary process, and the

power spectrum of ))(( tsxs  is the sum of lorentzians
about the fundamental and its harmonics, as shown in
Figure 4. In Figure 5, we plot the same spectrum at a
positive frequency mf  offset from the fundamental.
The power spectrum has no discrete impulses
(spectral lines), as we would expect from an
oscillator without a perfect frequency (time)
reference. Phase noise causes spectral spreading of
these impulses.

Figure 4. Oscillator power spectrum

Figure 5. Logarithmic plot of oscillator power
spectrum
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A common metric for oscillator phase noise is the
single sideband phase-noise spectrum,

Signal
Noise

fL m =)( , a ratio with the spectral density of

the noisy waveform ))(( tsxs  at frequency mff +0

in the numerator, and the discrete power spectrum of
the ideal signal )(txs  at the fundamental frequency

0f  in the denominator. This power ratio has a mean-
square spectrum given by a lorentzian with cutoff at
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for frequencies above the corner frequency. Notice
that the numerator has ))(( tsxs  that embeds a

random )(ts  within a deterministic, “time”-varying

(.)sx . So this phase “noise” spectrum is quite
different from the usual noise spectrum that
characterizes just the time-averaged, additive
amplitude noise riding on top of a deterministic
signal in a non-autonomous circuit. We also note that
the )( mfL  spectrum is sometimes specified and

measured using the spectral density of ))(( tsx  and/or
the total signal power. In contrast, the )( fSφ
spectrum is uniquely defined, independent of a
signal, and is identical for all waveforms in an
oscillator circuit. Another popular metric is the
double sideband phase-noise spectrum, )(2 mfL . In

Eldo RF, the reported PHNOISE  is )(2 mfL . To

extract c , we measure PHNOISE  at a frequency in
the 2−

mf  region where the slope of )(PHNOISEDB

is -20 dB/decade, and let c  be 
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Alternatively, we equate ( )2

2
1

PHNOISE  to the

lorentzian function, and let c  be a solution to the
quadratic equation. Once the parameter c  is known,
we can simulate the oscillator waveform using

))(( tsxs , where the random component of )(ts  is
Brownian motion with variance growing at the linear
rate c .

These results differ qualitatively and quantitatively
from other works in several ways. In the theory
proposed by Hajimiri and Lee5, the phase deviation

)(tφ  is modeled as the time-integral of stationary

noise )(tw  modulated by a deterministic, T -periodic
“impulse sensitivity function” )(tp , i.e.

)()()( twtpt =′φ .

The T -cyclostationary process, )()( twtp , is
inconsistent with the fact that a free-running
oscillator is not locked to a perfect phase reference,
and is itself not a perfect time or frequency reference.
We remark that the differential equation,

)())(
2

()( twt
T

tpt φ
π

φ +=′ ,

includes random phase modulation of the T -periodic
function, and is a self-consistent model even as noise

)(tw  causes the phase deviation )(tφ  to drift and
become large, but we feel that it is not sufficiently
compact and parsimonious for discrete event
simulation.

In textbook analyses, the oscillator output spectrum is
often determined using the superposition principle, a
small-signal analysis, and a first-order additive
model:
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The assumption that the phase deviation )(tφ  is
small is only valid over a short time interval. Such a
simplified analysis predicts (incorrectly) that the
output spectrum contains discrete impulses, and the
oscillator output is a nonstationary process. There is a

common misconception that )(
2

)( t
T

txs φ
π

′  (and the

oscillator output) is cyclostationary, even though
)(tφ  is neither stationary nor cyclostationary. Over a

short time interval, the phase variance remains small,
and a single waveform is nearly periodic. Over a long
time span, the phase variance grows large, a single
waveform is not synchronous with itself over a
widely separated time interval, and two oscillators
cannot maintain synchronicity with a bounded phase
difference. With the passage of time, πφ 2mod)(t
for an ensemble of oscillators becomes randomized –
ruling out a cyclostationary process, the ensemble
statistics of the waveforms reach steady state and
become stationary (independent of time). For
instance, the ensemble average of ))(( tsxs  is

asymptotically a constant, not the ideal )(txs

waveform. Time- and frequency-domain analysis
techniques that fail to take into account the
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unbounded phase variance inherent in oscillators will
make predictions that are inconsistent with the long-
term behavior of oscillators and oscillatory systems
such as frequency/phase locked loops.

Lastly, the phase noise spectrum )( mfL  derived by
Kundert6 and others is in error by a factor of two, or
-3.01 dBc/Hz, likely due to an inconsistent use of
two-sided vs. one-sided quantities.

3. Timing Jitter Model

We now proceed to develop a timing jitter model for
oscillators perturbed by white noise. We model

))(( tsxs  as

))(())((
0∫+=
t

ss dttwctxtsx ,

where )(tw  is stationary white noise. Discretization
of )(ts  with a timestep t∆  results in the discrete-
time process defined by

∑
=

+ ∆+∆=
k

n
nk wtcts

0
1 ,

with nw  as independent, standard Gaussians. The
second term is a random walk with stationary,
independent increments whose variance is
proportional to the timestep. We can simulate the
oscillator waveform using the phase-modulated
source )( ks sx  with a timestep that ensures each cycle
has about 10 to 20 points. When the oscillator is used
with digital circuits, we are interested in the output
transition times, and not the detailed waveform. For
level crossings at )( tkxs ∆ , transition times are the

first passage times )(1 tks ∆− . In the statistical
literature, it is known that the inverse Gaussian
distribution characterizes the first passage time in
Brownian motion with linear drift.  We notice that
the Gaussian distribution of )( tks ∆  can approximate
the transition time distribution for large ctk /∆ .
Therefore, we simulate the jittered transition times

)(1 tks ∆−  of the oscillator using the discrete-time

process ks  with 2/Tt =∆ . The rms jitter for one

cycle of oscillation (cycle-to-cycle jitter) is Tc .

4. Timing Jitter Model Including 1/f Noise

A typical oscillator phase-noise spectrum is of the
form

)()( 322
0

−− +≈ mFNmm fcfcffL

for frequencies above the corner frequency. This is in
the same general form as Leeson’s phenomenological
model7 without a flat region8. The 2−

mfc  term is due
to white noise such as thermal noise and shot noise in
devices. Flicker or 1/f noise in devices results in the

3−
mFN fc  term, which is dominant at small frequency

offsets. We now extend our timing jitter model to
include the effect of nonstationary 1/f noise. One
common method to generate noise with an arbitrary
spectral density is to use a sum of sinusoids with
random phases9. The simulated “noise” is a
deterministic, smooth waveform. It has a discrete
spectrum that samples the continuous spectral
density. Another method is to synthesize a linear
time-invariant network to filter and reshape white
noise. For example, a causal transfer function )(sH

that approximates s/1  can be used to model 1/f
noise10. White noise is generated using sum of
sinusoids with random phases or piecewise constant
pulses with random amplitudes11. Noises with power-
law spectra such as 3−f  and f/1  have unique,
fundamental properties that these methods fail to
address. First, the 3−f  process has infinite memory
(long-term correlation), and is nonstationary. This is
not unlike the Brownian motion that characterizes the
phase deviation in oscillators that are perturbed by
white noise. Second, the 3−f  process exhibits self-
similar features, and is scale invariant. Changing
measurement time or frequency scales does not alter
the autocorrelation function or the spectral density
function, except for a scaling of the magnitude by a
multiplying constant. One method, commonly used in
the field of computer graphics, is the random
displacement algorithm12. We use an accurate method
that was proposed by Hosking13 and has the desired
statistical properties. The 3−f  process is simulated
by convolving independent Gaussians with the
discrete-time transfer function

2/31)1(1)( −−= zzH .
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To model nonstationary oscillator phase deviation
with spectral density

3
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we define the continuous-time process
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where )(tw  is stationary white noise and )(twFN  is

nonstationary f/1  noise. We simulate this
continuous-time process with timestep t∆  using the
discrete-time process defined by

∑ ∑
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with nw  and nw′  as independent Gaussians. The last
term has increments with standard deviation
proportional to the time scale. Note that the
convolution sum is expensive to evaluate directly.
One way to compute the entire sequence of
convolution sums is to apply FFT to h  and w′ ,
multiply the two resulting vectors, and apply inverse
FFT. It takes several CPU seconds to generate a 217-
point noise sequence (with 131,072 samples), instead
of one hour required by direct convolution in the time
domain. The phase noise spectral density is given by
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and this matches the desired spectrum for frequencies
below the Nyquist frequency. As before, we simulate
the random transition times of an oscillator using the

ks  process with 2/Tt =∆ , or 4/Tt =∆  for an
oscillator with quadrature outputs. When a divide-by-
R  circuit follows the oscillator, we use the ks
process with 2/RTt =∆  to generate the jittered
transition times of the divider.

In Listing 1, we give a VHDL model of an oscillator-
divider circuit. Stationary, independent jitter due to
divider amplitude noise at the time of transition as
well as jitter due to oscillator phase noise is modeled.
We set the Josc generic to the rms cycle-to-cycle

jitter Tc  due to white noise, with T  as 1/Freq

and c  extracted from the 2−
mf  region of the oscillator

phase noise spectrum. The CFNosc generic is set to

FNc  extracted from the 3−
mf  region that is due to

flicker noise. A value for the Jdiv generic can be
determined from time-domain noise simulation of the
divider. The model makes two calls to a standard
Gaussian (normal) random number generator rnorm
for each output transition. The rv3 vector is
computed by our fast 3−f  random number generator
roscfn_vec that is implemented in ADVance MS
using C code encapsulation.

5. Experimental Results

To verify this work, we simulated a 1.826 GHz
CMOS oscillator circuit14 using Eldo RF. The double
sideband phase-noise spectrum, )(2 mfL , is shown in
Figure 6, and is in good agreement with
measurements. The effect of flicker noise becomes
dominant at frequency offsets below 100 kHz. At an
offset frequency mf  = 600 kHz, the measured and the

simulated results are the same, )( mfL  = -116

dBc/Hz. From the )(2)(2 322
0

−− +≈ mFNmm fcfcffL
spectrum, we extracted the two model parameters:

190.2 −= ec  and 145.2 −= ecFN . The rms cycle-

to-cycle jitter, due to white noise, is Tc  or
0.0019%. We then simulated the oscillator using our
time-domain jitter model ks . The resulting phase-

noise spectrum, )( fSφ , is shown in Figure 7 and is
in excellent agreement with the expected spectrum.
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Listing 1. VHDL model of oscillator-divider circuit with timing jitter

Figure 6. Double sideband phase-noise spectrum of CMOS oscillator circuit

entity dosc_fd is
  generic (Freq  : real := 100.0e6;  -- oscillator frequency in Hz

  Ratio : real := 1.0;      -- divider ratio
  TD    : time := 0 sec;    -- output delay
  Jdiv  : time := 0 sec;    -- sigma(jitter at one divider transition)
  Josc  : time := 0 sec;    -- sigma(cycle-to-cycle oscillator jitter)
  CFNosc : real    := 0.0;  -- oscillator phase noise due to 1/f noise
  Kcycle : integer := 10;   -- # of oscillator-divider cycle = 2 ^ Kcycle
  Seed1 : integer := 0;
  Seed2 : integer := 129792743);

  port (DOUT : out bit := '0');
begin
  assert Freq  > 0.0;
  assert Ratio > 0.0;
end entity dosc_fd;

architecture bhv_jitter_fn of dosc_fd is
constant halfPeriod : time := ( 0.5 * Ratio / Freq ) * sec;

begin
process
variable delta : time := 0 sec;

 variable state : bit  := '0';
variable seed_1 : integer := Seed1;
variable seed_2 : integer := Seed2;
variable rn1 : real;
variable rn2 : real;
variable rv3 : real_vector( 1 to 2 ** (Kcycle+1) );

begin
roscfn_vec( seed_1, seed_2, rv3, halfPeriod );
for i in rv3'range loop

rnorm( seed_1, seed_2, rn1 );
rnorm( seed_1, seed_2, rn2 );
wait for halfPeriod + sqrt(Ratio/2.0) * Josc * rn1 + (TD + Jdiv * rn2 - delta) +

0.5 * MATH_1_OVER_PI * sqrt(CFNosc) * rv3(i);
state := not state;
DOUT <= state;
delta := TD + Jdiv * rn2;

end loop;
assert FALSE report "roscfn_vec data exhausted" severity ERROR;

end process;
end bhv_jitter_fn;
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Figure 7. Phase noise spectrum of oscillator timing jitter model

6. Summary

In this paper, we reviewed a theory of phase noise in
oscillators, and identified some common
misconceptions in oscillator analyses. We linked
oscillator phase noise spectrum to timing jitter, and
derived timing jitter models suitable for discrete
event simulation. Oscillator transition-time jitter
caused by white noise is characterized by the inverse
Gaussian probability density function.  Oscillator
phase jitter due to white noise and flicker noise has
inherent nonstationary and self-similar properties,
and these properties are preserved in our model. We
presented simulation results for a CMOS oscillator
circuit. Jitter simulation of oscillators, VCOs,
frequency dividers, phase detectors, charge pumps
and loop filters in complete phase-locked loops will
be presented in a separate paper.
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