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Abstract

Timing jitter in oscillators is akey factor determining
the phase noise performance of phase-locked loops.
This paper reviews atheory of phase noisein
oscillators, and presents timing jitter models suitable
for discrete event simulation of these systems.

1. Introduction

Oscillators are used everywhere. They provide timing
information that is needed to synchronize operations
in electronic systems. A noise-free oscillator
generates aperiodically time-variant signal that isa
perfect time reference. In redlity, al oscillators
exhibit phase noise and timing jitter. In Section 2, we
review atheory of phase noisein oscillators. We then
present two timing jitter models for oscillators used
in conjunction with other digital circuits such as
frequency dividers. The first model, given in Section
3, simulates time-domain jitter due to white noise.
The second model, presented in Section 4, includes
the effect of flicker noise. To the best of the author’s
knowledge, thisisthe first in which nonstationary
and self-similar nature of flicker noiseis modeled.
These simulation models are useful for predicting
phase noise and timing jitter in phase-locked loops,
clock recovery circuits, and RF frequency
synthesizers. We verify our resultsusing aCMOS

V CO circuit described in Section 5, and conclude the
paper with a summary.
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Figure 1. Periodic waveform of a noise-free
oscillator

2. Theory of Noise in Oscillators
A noiseless oscillator provides a perfect time
reference because the time-varying oscillator output
at steady state, X,(t),isa T -periodic waveform, i.e.
X(t+T) = x(t) , dividing time into equal lengths.
Thisisdepicted in Figure 1. Figure 2 shows what
happens when the oscillator is perturbed by noise.
Noise causes amplitude deviation y(.) and phase
deviation f (t) . We represent the noisy oscillator
waveform X(t) using the additive model:

X(s(t)) = x,(s(1)) + y(s(t)) with s(t) =t + %f (t).

Phase deviation f (t) naturally accumulates with
time and drifts without bound, as oscillators are
autonomous circuits. After the phase of an
autonomous circuit has been perturbed, it persists and
cannot be restored without information from other

timing references. Amplitude deviation y(s(t))

aways remains small and bounded due to the fact
that nonlinear oscillators by design operate around
very stable orbits, abit like a person riding aroller
coaster. Alternatively, we can define amplitude a(.)

y(s()
X, (s(1))

not near a zero, and use the multiplicative model:

X(s(t)) = a(s(t)) x,(s(t)) -

as a(s(t))° 1+ , provided the trgjectory is

oscillator perturbed by noise

a 1e9 209 ?e-'ug 4609 5e-D9

Figure 2. Waveforms of oscillator with phase and
amplitude noise
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We note that if there are no phase deviations,
amplitude noiseis periodically time-variant (T -
cyclostationary), and has the same characteristics as
noise found in amixer that is periodically driven by a
noise-free local oscillator. More important, due to the
autonomous nature of oscillators, phase deviations
cause “time”-shiftsin X,(.) and in the amplitude
process, Y(.) and a(.). It isacommon practice to

ignore random time-drifts in the amplitude process,
thereby introducing subtle modeling inconsistency.

Phase and amplitude deviation causes random
variation in transition times and results in timing
jitter that is depicted in Figure 3. Note the cumulative
nature of phase errors with time. Timing jitter in

oscillators can be attributed to X(S(t)) primarily,

and to asmaller extent, y(s(t)) or a(s(t)) near the

point of output transition. We first focus on the
theory of oscillator phase noise, and then turn our
attention to the modeling of timing jitter.

oscillator timing jitters
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Figure 3. Oscillator timing jitter

We review severa asymptotic results from the
theoretical work of Kartner' and Demir et. al.? for the
case in which an oscillator is perturbed by white
noise. First, the phase deviation f(t) is a
nonstationary® Wiener process, or Brownian motion.
Second, s(t) is Gaussian with variance that grows
with time at alinear rate, say C. Third, the symmetric
two-sided power spectral density* for the phase
deviation is given by

&efg

&1

.2

S(f)=c

Q-0

where f, =1/T isthe oscillation frequency. Lastly,
the oscillator output X(s(t)) (and individualy,
X,(s(t)) and y(s(t))) isastationary process, and the
power spectrum of X (S(t)) isthe sum of lorentzians

about the fundamental and its harmonics, as shownin
Figure 4. In Figure 5, we plot the same spectrum at a

positive frequency f . offset from the fundamental.

The power spectrum has no discrete impulses
(spectral lines), as we would expect from an
oscillator without a perfect frequency (time)
reference. Phase noise causes spectral spreading of
these impul ses.

oscillator power spectrum
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Figure 4. Oscillator power spectrum
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Figure 5. Logarithmic plot of oscillator power
spectrum
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A common metric for oscillator phase noiseisthe
single sideband phase-noise spectrum,

N0|
L(f,) =
the noisy waveform Xs(s(t)) at frequency f,+ f,,

in the numerator, and the discrete power spectrum of
theideal signa X,(t) at the fundamental frequency

, aratio with the spectral density of

f, in the denominator. This power ratio has a mean-
square spectrum given by alorentzian with cutoff at
2
—pzfofgf+ o L, )@céEf 0
for frequencies above the corner frequency. Notice
that the numerator has X (S(t)) that embeds a
random s(t) within a deterministic, “time”-varying

f =p fic,

X (.) . So this phase “noise” spectrum is quite
different from the usual noise spectrum that
characterizes just the time-averaged, additive
amplitude noise riding on top of adeterministic
signal in a non-autonomous circuit. We a so note that

the L(f,,) spectrum is sometimes specified and
measured using the spectral density of x(s(t)) and/or

the total signal power. In contrast, the SF (f)

spectrum is uniquely defined, independent of a
signal, and isidentical for all waveformsin an
oscillator circuit. Another popular metric isthe

double sideband phase-noise spectrum, 2L(f_).In

Eldo RF, the reported PHNOISE is \/2L(f,).To

extract ¢, we measure PHNOISE at afrequency in
the f ? region where the slope of DB(PHNOI SE)

O
is-20 dB/decade, and let C be 1E?:’HNOISE 1; )
0 ﬂ

Alternatively, we equate %(PH NOI SE)2 to the

lorentzian function, and let ¢ be a solution to the
quadratic equation. Once the parameter C isknown,
we can simulate the oscillator waveform using

X< (S(t)) , where the random component of s(t) is

Brownian motion with variance growing at the linear
rate C.

These results differ qualitatively and quantitatively
from other worksin severa ways. In the theory
proposed by Hajimiri and Lee’, the phase deviation
f (t) ismodeled asthetime-integral of stationary

noise W(t) modulated by adeterministic, T -periodic
“impulse sensitivity function” p(t) , i.e.

f(t) = p(t) w(t).

The T -cyclostationary process, p(t) w(t) , is
inconsistent with the fact that afree-running
oscillator is not locked to a perfect phase reference,
and isitself not a perfect time or frequency reference.
We remark that the differential equation,

fqt) = p(t +%f ) W),

includes random phase modulation of the T -periodic
function, and is a self-consistent model even as noise
w(t) causes the phase deviation f (t) to drift and
become large, but we fedl that it is not sufficiently
compact and parsimonious for discrete event
simulation.

In textbook analyses, the oscillator output spectrumis
often determined using the superposition principle, a
small-signal analysis, and afirst-order additive
model:

T T
t+—1F (1)) » x_(t t)—fF (1).
Xs(+2p ) Xs()+xs¢()2p (t)

The assumption that the phase deviation f (t) is
small isonly valid over ashort timeinterval. Such a
simplified analysis predicts (incorrectly) that the
output spectrum contains discrete impulses, and the
oscillator output is a nonstationary process. Thereisa

common misconception that x{(t) %f (t) (and the

oscillator output) is cyclostationary, even though

f (t) isneither stationary nor cyclostationary. Over a
short time interval, the phase variance remains small,
and a single waveform is nearly periodic. Over along
time span, the phase variance grows large, asingle
waveform is not synchronous with itself over a
widely separated time interval, and two oscillators
cannot maintain synchronicity with a bounded phase
difference. With the passage of time, f (t) mod 2p
for an ensemble of oscillators becomes randomized —
ruling out a cyclostationary process, the ensemble
statistics of the waveforms reach steady state and
become stationary (independent of time). For

instance, the ensemble average of X, (s(t)) is

asymptotically aconstant, not the ideal X, (t)
waveform. Time- and frequency-domain analysis

fechniguesthat fail foiakeintg account the
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unbounded phase variance inherent in oscillators will
make predictions that are inconsistent with the long-
term behavior of oscillators and oscillatory systems
such as frequency/phase locked |oops.

Lastly, the phase noise spectrum L(f_,) derived by

Kundert® and othersisin error by afactor of two, or
-3.01 dBc/Hz, likely due to an inconsistent use of
two-sided vs. one-sided quantities.

3. Timing Jitter Model
We now proceed to develop atiming jitter model for
oscillators perturbed by white noise. We model
Xs(s(t)) as

X(s(t) = x(t +eQu(t) dt),

where W(t) is stationary white noise. Discretization
of s(t) with atimestep Dt resultsin the discrete-
time process defined by

k
St =@ Dt+ycDtw,,
n=0

with W, asindependent, standard Gaussians. The

second term is arandom walk with stationary,
independent increments whose variance is
proportional to the timestep. We can simulate the
oscillator waveform using the phase-modul ated

source X,(S,) with atimestep that ensures each cycle

has about 10 to 20 points. When the oscillator is used
with digital circuits, we are interested in the output
transition times, and not the detailed waveform. For

level crossingsat X (kDt), transition times are the

first passage times s *(k Dt) . In the statistical

literature, it is known that the inverse Gaussian
distribution characterizes the first passagetimein
Brownian motion with linear drift. We notice that
the Gaussian distribution of s(kDt) can approximate

the transition time distribution for large kDt/c.
Therefore, we simulate the jittered transition times
s'(kDt) of the oscillator using the discrete-time

process S, with Dt =T /2. The rmsjitter for one
cycle of oscillation (cycle-to-cyclejitter) is /CT .

4. Timing Jitter Model Including 1/f Noise

A typical oscillator phase-noise spectrum is of the
form

L(f,)» foz(c fn_qz * Cey fn;s)

for frequencies above the corner frequency. Thisisin
the same general form as Leeson’ s phenomenol ogical

model” without aflat region®. The ¢ f;? termisdue

to white noise such as thermal noise and shot noisein
devices. Flicker or 1/f noisein devicesresultsin the

Co f-% term, which is dominant at small frequency

offsets. We now extend our timing jitter model to
include the effect of nonstationary 1/f noise. One
common method to generate noise with an arbitrary
spectral density isto use a sum of sinusoids with
random phases’. The simulated “noise” isa
deterministic, smooth waveform. It has a discrete
spectrum that samples the continuous spectral
density. Another method isto synthesize alinear
time-invariant network to filter and reshape white
noise. For example, acausal transfer function H (S)

that approximates 1/ /s can be used to model L/f
noise™. White noise is generated using sum of
sinusoids with random phases or piecewise constant
pulses with random amplitudes™. Noises with power-
law spectrasuchas f ™2 and 1/ f have unique,
fundamental propertiesthat these methods fail to
address. First, the f > process has infinite memory
(long-term correlation), and is nonstationary. Thisis
not unlike the Brownian motion that characterizes the
phase deviation in oscillators that are perturbed by
white noise. Second, the f ~® process exhibits self-
similar features, and is scale invariant. Changing
measurement time or frequency scales does not alter
the autocorrelation function or the spectral density
function, except for a scaling of the magnitude by a
multiplying constant. One method, commonly used in
the field of computer graphics, isthe random
displacement algorithm'. We use an accurate method
that was proposed by Hosking™® and has the desired
statistical properties. The f 2 processis simulated

by convolving independent Gaussians with the
discrete-time transfer function

H(2)=1/@- z)*2.
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To model nonstationary oscillator phase deviation
with spectral density

f2 f2
S (f)=c2 +co 2%,
f f

we define the continuous-time process
S(t) =t +JE(‘jw(t) dt+ ./ coy dWFN () dt,

where W(t) is stationary white noiseand W, (t) is
nonstationary 1/ f noise. We simulate this

continuous-time process with timestep Dt using the
discrete-time process defined by

k k
S<+1:a(Dt+VCDth)+'\/2pCFN[Ia hk_nV\@,
n=0 n=0

with w,, and W{ as independent Gaussians. The last

term has increments with standard deviation
proportional to the time scale. Note that the
convolution sum is expensive to evaluate directly.
One way to compute the entire sequence of
convolution sumsisto apply FFT to h and wt,
multiply the two resulting vectors, and apply inverse
FFT. It takes several CPU seconds to generate a 2*'-
point noise sequence (with 131,072 samples), instead
of one hour required by direct convolution in the time
domain. The phase noise spectral density is given by

I cD’ . 2pc,D°{
'TI'(Zsinprt)2 |25inprt|3ig'

(20 f)°

and this matches the desired spectrum for frequencies
below the Nyquist frequency. As before, we simulate
the random transition times of an oscillator using the

S, processwith Dt =T/2,0r Dt =T /4 for an
oscillator with quadrature outputs. When a divide-by-
R circuit follows the oscillator, we use the S,

process with Dt = RT /2 to generate thejittered
transition times of the divider.

InListing 1, we giveaVHDL model of an oscillator-
divider circuit. Stationary, independent jitter dueto
divider amplitude noise at the time of transition as
well asjitter dueto oscillator phase noise is modeled.
We set the Josc generic to the rms cycle-to-cycle

jitter /CT dueto white noise, with T as 1/Fr eq

and ¢ extracted from the f* region of the oscillator
phase noise spectrum. The CFNosc genericisset to

Cqy extracted fromthe f° region that is dueto

flicker noise. A valuefor the Jdi v generic can be
determined from time-domain noise simulation of the
divider. The model makes two callsto a standard
Gaussian (normal) random number generator r nor m
for each output transition. Ther v3 vector is

computed by our fast f* random number generator

roscf n_vec that isimplemented in ADVance MS
using C code encapsulation.

5. Experimental Results
To verify thiswork, we simulated a 1.826 GHz
CMOS oscillator circuit™ using Eldo RF. The double
sideband phase-noise spectrum, 2L(f ), isshownin

Figure 6, and isin good agreement with
measurements. The effect of flicker noise becomes
dominant at frequency offsets below 100 kHz. At an

offset frequency f_ =600 kHz, the measured and the
simulated results are the same, L(f,) =-116
dBc/Hz. Fromthe 2L(f, ) » 2f2(cf > +c, f°)
spectrum, we extracted the two model parameters:
c=2.0e- 19 and c,, =2.5e- 14. Thermscycle-
to-cyclejitter, due to white noise, is \/CT or
0.0019%. We then simulated the oscillator using our
time-domain jitter model s, . The resulting phase-

noise spectrum, & (), isshownin Figure 7 and is
in excellent agreement with the expected spectrum.
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entity dosc_fd is

generic (Freq : real := 100.0e6; -- oscillator frequency in Hz
Ratio : real := 1.0; -- divider ratio
TD tinme := 0 sec; -- output delay
Jdiv : tinme := 0 sec; -- sigma(jitter at one divider transition)
Josc : tine := 0 sec; -- sigma(cycle-to-cycle oscillator jitter)
CFNosc : real = 0.0; -- oscillator phase noise due to 1/f noise
Kcycle : integer := 10; -- # of oscillator-divider cycle = 2 » Kecycle
Seedl : integer := 0;
Seed2 : integer := 129792743);

port (DOUT : out bit :="'0");

begi n
assert Freq > 0.0;
assert Ratio > 0.0;
end entity dosc_fd;

architecture bhv_jitter_fn of dosc_fd is
constant halfPeriod : time := ( 0.5 * Ratio/ Freq ) * sec;

begi n
process
variable delta : time := 0 sec;
variable state : bit :="'0";
variable seed_1 : integer := Seedl;
variable seed_2 : integer := Seed2;

variable rnl : real;
variable rn2 : real;
variable rv3 : real _vector( 1 to 2 ** (Kcycle+l) );

begi n
roscfn_vec( seed_1, seed_2, rv3, halfPeriod );
for i in rv3 range |oop

rnornm( seed_1, seed_2, rnl);
rnornm( seed_1, seed_2, rn2);
wait for halfPeriod + sqrt(Ratio/2.0) * Josc * rnl + (TD + Jdiv * rn2 - delta) +
0.5 * MATH 1_OVER PI * sqrt(CFNosc) * rv3(i);
state := not state;
DOUT <= state;
delta := TD + Jdiv * rn2;
end | oop;
assert FALSE report "roscfn_vec data exhausted" severity ERROR;
end process;
end bhv_jitter_fn;

Listing 1. VHDL model of oscillator-divider circuit with timing jitter

Figure 6. Double sideband phase-noise spectrum of CMOS oscillator circuit
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Figure 7. Phase noise spectrum of oscillator timing jitter model

6. Summary

In this paper, we reviewed a theory of phase noise in
oscillators, and identified some common
misconceptions in oscillator anayses. We linked
oscillator phase noise spectrum to timing jitter, and
derived timing jitter models suitable for discrete
event simulation. Oscillator transition-time jitter
caused by white noise is characterized by the inverse
Gaussian probability density function.  Oscillator
phase jitter due to white noise and flicker noise has
inherent nonstationary and self-similar properties,
and these properties are preserved in our model. We
presented simulation results for a CMOS oscillator
circuit. Jitter simulation of oscillators, VCOs,
frequency dividers, phase detectors, charge pumps
and loop filters in complete phase-locked loops will
be presented in a separate paper.
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