
The Designer’s Guide Community downloaded from www.designers-guide.org

Copyright 2016, Accellera – All Rights Reserved

Version 2.4.0, 30 May 2014 This is the complete Verilog-AMS LRM. It is also available from www.accellera.com.

Last updated on May 9, 2016. You can find the most recent version at www.designers-
guide.org.

Permission to make copies, either paper or electronic, of this work for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage and that the copies are complete and unmodified. To distribute other-
wise, to publish, to post on servers, or to distribute to lists, requires prior written permission.

Verilog-AMS Language Reference Manual
Analog & Mixed-Signal Extensions to Verilog-HDL

Accellera

http://www.designers-guide.org
http://www.accellera.com
http://www.accellera.org/activities/verilog-ams/VAMS_v2.3.pdf
http://www.designers-guide.org/
http://www.designers-guide.org/

Verilog-AMS
Language Reference Manual

Version 2.4.0

May 30, 2014

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Copyright© 2014 Accellera Systems Initiative. All rights reserved.

Accellera Systems Initiative Inc., 1370 Trancas Street #163, Napa, CA 94558, USA

Verilog® is a registered trademark of Cadence Design Systems, Inc.

Notices

Accellera Systems Initiative (Accellera) standards documents are developed within Accellera by its
Technical Committee. Accellera develops its standards through a consensus development process, approved
by its members and board of directors, which brings together volunteers representing varied viewpoints and
interests to achieve the final product. Volunteers are members of Accellera and serve without compensation.
While Accellera administers the process and establishes rules to promote fairness in the consensus develop-
ment process, Accellera does not independently evaluate, test, or verify the accuracy of any of the informa-
tion contained in its standards.

Use of an Accellera standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-
erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera stan-
dard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly dis- claims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent infringe-
ment. Accellera standards documents are supplied "AS IS."

The existence of an Accellera standard does not imply that there are no other ways to produce, test, measure,
purchase, market or provide other goods and services related to the scope of an Accellera standard. Further-
more, the viewpoint expressed at the time a standard is approved and issued is subject to change due to
developments in the state of the art and comments received from users of the standard. Every Accellera stan-
dard is subjected to review periodically for revision and update. Users are cautioned to check to determine
that they have the latest edition of any Accellera standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellera will initiate action to prepare appropriate responses. Since Accellera standards represent a consen-
sus of concerned interests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason, Accellera and the members of its Technical Committee are not able
to provide an instant response to interpretation requests except in those cases where the matter has previ-
ously received formal consideration.
ii Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Comments for revision of Accellera standards are welcome from any interested party, regardless of member-
ship affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments. Comments on standards and requests for
interpretations should be addressed to:

Accellera Systems Initiative Inc.
1370 Trancas Street #163
Napa, CA 94558
USA

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
marks to indicate compliance with the materials set forth herein.

Authorization to reuse portions of any Accellera standard for any purpose other than internal or personal use
must be granted by Accellera, provided that permission is obtained from and any required fee is paid to
Accellera. To arrange for authorization please contact Lynn Bannister, Accellera, 1370 Trancas Street #163,
Napa, CA 94558, phone (707) 251-9977, e-mail lynn@accellera.org. Permission to copy portions of an
Accellera standard for educational or classroom use can also be obtained from Accellera.

Suggestions for improvements to the Verilog-AMS Language Reference Manual are welcome. They should
be sent to the Verilog-AMS e-mail reflector

v-ams@lists.accellera.org

Note: Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. Accellera shall not be responsible for
identifying patents for which a license may be required by an Accellera standard or for conducting inquiries
into the legal validity or scope of those patents that are brought to its attention.
Copyright © 2014 Accellera Systems Initiative. iii

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The following people contributed to the creation, editing, and review of this document.

The following people have made contributions to previous versions of this document.

Scott Little, Intel Corporation, Chair
Martin O’Leary, Qualcomm, Vice-Chair
David Miller, Freescale Semiconductor, Technical Editor, Secretary

Chandrashekar Chetput, Cadence Design Systems Inc.
Kenneth Bakalar, Mentor Graphics
Martin Barnasconi, NXP Semiconductors
Xavier Bestel, Mentor Graphics
Shalom Bresticker, Intel Corporation
Kevin Cameron, Synopsys
James Cavanaugh, Intel Corporation
Srikanth Chandrasekaran, IEEE
Geoffrey Coram, Analog Devices
Dave Cronauer, Synopsys
Paul Floyd, Atrenta Inc.
Bob Floyd, Independent Consultant
Graham Helwig, ASTC

Junwei Hou, Cadence Design Systems Inc.
Robert Hughes, Intel Corporation
Marq Kole, NXP Semiconductors
Abhi Kolpekwar, Cadence Design Systems Inc.
Top Lertpanyavit, Intel Corporation
Scott Morrison, Texas Instruments
Patrick O’Halloran, Tiburon Design Automation
Farzin Rasteh, Synopsys
George Tipple, Intel Corporation
Alessandro Valerio, STMicroelectronics
Martin Vlach, Mentor Graphics
Ian Wilson, Mentor Graphics

Ramana Aisola
Andre Baguenier
Jim Barby
Graham Bell
William Bell
Ed Chang
Joe Daniels
Jonathan David
Al Davis
Raphael Dorado
John Downey
Dan FitzPatrick
Vassilios Gerousis
Ian Getreu
Kim Hailey
Steve Hamm
William Hobson
Dick Klaassen
Ken Kundert
Laurent Lemaitre
Oskar Leuthold
S. Peter Liebmann
Colin McAndrew
Steve Meyer
Marek Mierzwinski

Ira Miller
Michael Mirmak
John Moore
Arpad Muranyi
Don O'Riordan
Jeroen Paasschens
Rick Poore
Tom Reeder
Steffen Rochel
Jon Sanders
David Sharrit
John Shields
James Spoto
Stuart Sutherland
Prasanna Tamhankar
Richard Trihy
Yatin Trivedi
Boris Troyanovsky
Don Webber
Frank Weiler
Ilya Yusim
Alex Zamfirescu
Amir Zarkesh
David Zweidinger
iv Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Table of Contents

1. Verilog-AMS introduction... 1
1.1 Overview.. 1
1.2 Mixed-signal language features ... 1
1.3 Systems .. 2

1.3.1 Conservative systems.. 2
1.3.2 Kirchhoff’s Laws .. 4
1.3.3 Natures, disciplines, and nets .. 5
1.3.4 Signal-flow systems .. 5
1.3.5 Mixed conservative/signal flow systems .. 6

1.4 Conventions used in this document ... 8
1.5 Contents ... 9

2. Lexical conventions ... 11
2.1 Overview.. 11
2.2 Lexical tokens .. 11
2.3 White space.. 11
2.4 Comments .. 11
2.5 Operators.. 11
2.6 Numbers... 12

2.6.1 Integer constants ... 13
2.6.2 Real constants ... 15

2.7 String literals.. 16
2.8 Identifiers, keywords, and system names .. 17

2.8.1 Escaped identifiers .. 17
2.8.2 Keywords .. 17
2.8.3 System tasks and functions ... 17
2.8.4 Compiler directives ... 18

2.9 Attributes ... 19
2.9.1 Syntax.. 20
2.9.2 Standard attributes... 23

3. Data types .. 24
3.1 Overview.. 24
3.2 Integer and real data types ... 24

3.2.1 Output variables .. 25
3.3 String data type .. 25
3.4 Parameters.. 27

3.4.1 Type specification ... 28
3.4.2 Value range specification.. 29
3.4.3 Parameter units and descriptions... 30
3.4.4 Parameter arrays.. 30
3.4.5 Local parameters ... 30
3.4.6 String parameters .. 31
3.4.7 Parameter aliases... 31
3.4.8 Multidimensional parameter array examples .. 32

3.5 Genvars .. 33
3.6 Net_discipline .. 34

3.6.1 Natures .. 34
3.6.2 Disciplines... 37
3.6.3 Net discipline declaration.. 41
3.6.4 Ground declaration.. 43
3.6.5 Implicit nets... 43

3.7 Real net declarations .. 44
Copyright © 2014 Accellera Systems Initiative. i

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
3.8 Default discipline ... 45
3.9 Disciplines of primitives .. 45
3.10 Discipline precedence .. 45
3.11 Net compatibility ... 45

3.11.1 Discipline and Nature Compatibility .. 46
3.12 Branches... 48

3.12.1 Port Branches .. 49
3.13 Namespace ... 50

3.13.1 Nature and discipline .. 50
3.13.2 Access functions ... 50
3.13.3 Net ... 50
3.13.4 Branch ... 50

4. Expressions .. 51
4.1 Overview.. 51
4.2 Operators.. 51

4.2.1 Operators with real operands .. 52
4.2.2 Operator precedence ... 53
4.2.3 Expression evaluation order.. 54
4.2.4 Arithmetic operators ... 54
4.2.5 Relational operators .. 55
4.2.6 Case equality operators ... 56
4.2.7 Logical equality operators... 56
4.2.8 Logical operators... 56
4.2.9 Bitwise operators... 57
4.2.10 Reduction operators .. 58
4.2.11 Shift operators ... 58
4.2.12 Conditional operator ... 58
4.2.13 Concatenations .. 59
4.2.14 Assignment patterns .. 60

4.3 Built-in mathematical functions... 61
4.3.1 Standard mathematical functions .. 61
4.3.2 Transcendental functions .. 62

4.4 Signal access functions .. 63
4.5 Analog operators.. 64

4.5.1 Vector or array arguments to analog operators ... 65
4.5.2 Analog operators and equations .. 65
4.5.3 Time derivative operator ... 65
4.5.4 Time integral operator... 66
4.5.5 Circular integrator operator... 68
4.5.6 Derivative operator ... 69
4.5.7 Absolute delay operator .. 70
4.5.8 Transition filter ... 71
4.5.9 Slew filter .. 75
4.5.10 last_crossing function ... 75
4.5.11 Laplace transform filters ... 76
4.5.12 Z-transform filters ... 79
4.5.13 Limited exponential .. 81
4.5.14 Constant versus dynamic arguments... 81
4.5.15 Restrictions on analog operators ... 82

4.6 Analysis dependent functions .. 82
4.6.1 Analysis... 83
4.6.2 DC analysis ... 84
4.6.3 AC stimulus... 84
4.6.4 Noise ... 84
ii Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
4.7 User defined functions ... 88
4.7.1 Defining an analog user defined function ... 88
4.7.2 Returning a value from an analog user defined function .. 90
4.7.3 Calling an analog user defined function ... 91

5. Analog behavior... 93
5.1 Overview.. 93
5.2 Analog procedural block.. 93

5.2.1 Analog initial block... 93
5.3 Block statements .. 94

5.3.1 Sequential blocks .. 94
5.3.2 Block names.. 94

5.4 Analog signals.. 95
5.4.1 Access functions ... 95
5.4.2 Probes and sources .. 96
5.4.3 Accessing flow through a port .. 97
5.4.4 Unassigned sources ... 98

5.5 Accessing net and branch signals and attributes.. 98
5.5.1 Accessing net and branch signals.. 98
5.5.2 Signal access for vector branches ... 100
5.5.3 Accessing attributes .. 101
5.5.4 Creating unnamed branches using hierarchical net references 102
5.5.5 Accessing nets and branch signals hierarchically ... 102

5.6 Contribution statements ... 103
5.6.1 Direct branch contribution statements .. 103
5.6.2 Examples... 107
5.6.3 Resistor and conductor.. 107
5.6.4 RLC circuits .. 108
5.6.5 Switch branches .. 108
5.6.6 Implicit Contributions ... 109
5.6.7 Indirect branch contribution statements .. 110
5.6.8 Contributing hierarchically ... 112

5.7 Analog procedural assignments ... 113
5.8 Analog conditional statements... 114

5.8.1 if-else-if statement... 114
5.8.2 Examples... 115
5.8.3 Case statement... 115
5.8.4 Restrictions on conditional statements.. 116

5.9 Looping statements .. 116
5.9.1 Repeat and while statements ... 116
5.9.2 For statements ... 117
5.9.3 Analog For Statements.. 117

5.10 Analog event control statements.. 118
5.10.1 Event OR operator .. 120
5.10.2 Global events... 120
5.10.3 Monitored events... 122
5.10.4 Named events .. 127
5.10.5 Digital events in analog behavior.. 128

6. Hierarchical structures ... 129
6.1 Overview.. 129
6.2 Modules ... 129

6.2.1 Top-level modules and $root .. 131
6.2.2 Module instantiation ... 131

6.3 Overriding module parameter values... 133
Copyright © 2014 Accellera Systems Initiative. iii

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
6.3.1 Defparam statement .. 133
6.3.2 Module instance parameter value assignment by order .. 135
6.3.3 Module instance parameter value assignment by name.. 135
6.3.4 Parameter dependence... 136
6.3.5 Detecting parameter overrides .. 136
6.3.6 Hierarchical system parameters .. 136

6.4 Paramsets ... 138
6.4.1 Paramset statements .. 139
6.4.2 Paramset overloading.. 140
6.4.3 Paramset output variables ... 142

6.5 Ports ... 142
6.5.1 Port definition ... 142
6.5.2 Port declarations.. 143
6.5.3 Real valued ports... 144
6.5.4 Connecting module ports by ordered list .. 145
6.5.5 Connecting module ports by name.. 146
6.5.6 Detecting port connections.. 147
6.5.7 Port connection rules... 147
6.5.8 Inheriting port natures ... 147

6.6 Generate constructs.. 147
6.6.1 Loop generate constructs .. 149
6.6.2 Conditional generate constructs .. 152
6.6.3 External names for unnamed generate blocks... 154

6.7 Hierarchical names ... 155
6.7.1 Usage of hierarchical references ... 156

6.8 Scope rules .. 157
6.9 Elaboration... 157

6.9.1 Concatenation of analog blocks .. 157
6.9.2 Elaboration and paramsets .. 158
6.9.3 Elaboration and connectmodules .. 158
6.9.4 Order of elaboration .. 158

7. Mixed signal .. 159
7.1 Overview.. 159
7.2 Fundamentals ... 159

7.2.1 Domains .. 159
7.2.2 Contexts .. 160
7.2.3 Nets, nodes, ports, and signals .. 160
7.2.4 Mixed-signal and net disciplines... 161

7.3 Behavioral interaction.. 161
7.3.1 Accessing discrete nets and variables from a continuous context 162
7.3.2 Accessing X and Z bits of a discrete net in a continuous context................................... 163
7.3.3 Accessing continuous nets and variables from a discrete context 164
7.3.4 Detecting discrete events in a continuous context .. 165
7.3.5 Detecting continuous events in a discrete context .. 166
7.3.6 Concurrency .. 167
7.3.7 Function calls .. 168

7.4 Discipline resolution .. 168
7.4.1 Compatible discipline resolution .. 169
7.4.2 Connection of discrete-time disciplines .. 169
7.4.3 Connection of continuous-time disciplines... 170
7.4.4 Resolution of mixed signals .. 170
7.4.5 Discipline resolution of continuous signals .. 172

7.5 Connect modules.. 173
7.6 Connect module descriptions... 173
iv Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
7.7 Connect specification statements... 174
7.7.1 Connect module auto-insertion statement... 175
7.7.2 Discipline resolution connect statement ... 175
7.7.3 Parameter passing attribute ... 177
7.7.4 connect_mode ... 177

7.8 Automatic insertion of connect modules ... 177
7.8.1 Connect module selection ... 178
7.8.2 Signal segmentation .. 180
7.8.3 connect_mode parameter .. 182
7.8.4 Rules for driver-receiver segregation and connect module selection and insertion 185
7.8.5 Instance names for auto-inserted instances ... 186
7.8.6 Supply sensitive connect module examples.. 187

7.9 Driver-receiver segregation ... 193
8. Scheduling semantics... 195

8.1 Overview.. 195
8.2 Simulation initialization... 195
8.3 Analog simulation cycle .. 196

8.3.1 Nodal analysis ... 197
8.3.2 Transient analysis.. 197
8.3.3 Convergence.. 198

8.4 Mixed-signal simulation cycle... 199
8.4.1 Circuit initialization .. 199
8.4.2 Mixed-signal DC analysis ... 199
8.4.3 Mixed-signal transient analysis... 200
8.4.4 The synchronization loop.. 204
8.4.5 Synchronization and communication algorithm ... 206
8.4.6 absdelta interpolated A2D events ... 207
8.4.7 Assumptions about the analog and digital algorithms .. 208

8.5 Scheduling semantics for the digital engine .. 208
8.5.1 The stratified event queue ... 209
8.5.2 The Verilog-AMS digital engine reference model ... 210
8.5.3 Scheduling implication of assignments... 210

9. System tasks and functions .. 213
9.1 Overview.. 213
9.2 Categories of system tasks and functions .. 213
9.3 System tasks/functions executing in the context of the Analog Simulation Cycle 220
9.4 Display system tasks .. 220

9.4.1 Behavior of the display tasks in the analog context.. 220
9.4.2 Escape sequences for special characters ... 221
9.4.3 Format specifications .. 222
9.4.4 Hierarchical name format.. 222
9.4.5 String format ... 223
9.4.6 Behavior of the display tasks in the analog block during iterative solving 223
9.4.7 Extensions to the display tasks in the digital context.. 223

9.5 File input-output system tasks and functions... 223
9.5.1 Opening and closing files.. 223
9.5.2 File output system tasks .. 225
9.5.3 Formatting data to a string .. 225
9.5.4 Reading data from a file.. 226
9.5.5 File positioning ... 228
9.5.6 Flushing output ... 229
9.5.7 I/O error status .. 229
9.5.8 Detecting EOF... 229
Copyright © 2014 Accellera Systems Initiative. v

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
9.5.9 Behavior of the file I/O tasks in the analog block during iterative solving 229
9.6 Timescale system tasks .. 229
9.7 Simulation control system tasks .. 230

9.7.1 $finish.. 230
9.7.2 $stop .. 230
9.7.3 $fatal, $error, $warning, and $info ... 231

9.8 PLA modeling system tasks... 232
9.9 Stochastic analysis system tasks .. 232
9.10 Simulator time system functions.. 232
9.11 Conversion system functions ... 232
9.12 Command line input... 232
9.13 Probabilistic distribution system functions.. 232

9.13.1 $random and $arandom... 232
9.13.2 distribution functions .. 234
9.13.3 Algorithm for probabilistic distribution.. 235

9.14 Math system functions ... 235
9.15 Analog kernel parameter system functions.. 236
9.16 Dynamic simulation probe function .. 238
9.17 Analog kernel control system tasks and functions... 239

9.17.1 $discontinuity.. 239
9.17.2 $bound_step task... 240
9.17.3 $limit ... 241

9.18 Hierarchical parameter system functions... 243
9.19 Explicit binding detection system functions .. 245
9.20 Analog node alias system functions... 247
9.21 Table based interpolation and lookup system function ... 249

9.21.1 Table data source .. 252
9.21.2 Control string .. 253
9.21.3 Example control strings .. 255
9.21.4 Interpolation algorithms.. 255
9.21.5 Example .. 256

9.22 Connectmodule driver access system functions and operator ... 257
9.22.1 $driver_count .. 257
9.22.2 $driver_state.. 257
9.22.3 $driver_strength .. 257
9.22.4 driver_update .. 258
9.22.5 Receiver net resolution.. 258
9.22.6 Connect module example using driver access functions .. 259

9.23 Supplementary connectmodule driver access system functions .. 260
9.23.1 $driver_delay .. 261
9.23.2 $driver_next_state ... 261
9.23.3 $driver_next_strength ... 261
9.23.4 $driver_type .. 261

10. Compiler directives.. 263
10.1 Overview.. 263
10.2 `default_discipline ... 263
10.3 `default_transition .. 264
10.4 `define and `undef .. 265
10.5 Predefined macros.. 265
10.6 `begin_keywords and `end_keywords ... 266

11. Using VPI routines... 268
11.1 Overview.. 268
11.2 The VPI interface... 268
vi Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.2.1 VPI callbacks .. 268
11.2.2 VPI access to Verilog-AMS HDL objects and simulation objects 268
11.2.3 Error handling ... 269

11.3 VPI object classifications... 269
11.3.1 Accessing object relationships and properties .. 270
11.3.2 Delays and values.. 271

11.4 List of VPI routines by functional category... 271
11.5 Key to object model diagrams ... 273

11.5.1 Diagram key for objects and classes .. 274
11.5.2 Diagram key for accessing properties .. 274
11.5.3 Diagram key for traversing relationships ... 275

11.6 Object data model diagrams .. 276
11.6.1 Module .. 277
11.6.2 Nature, discipline .. 278
11.6.3 Scope, task, function, IO declaration .. 279
11.6.4 Ports .. 280
11.6.5 Nodes .. 281
11.6.6 Branches.. 282
11.6.7 Quantities .. 283
11.6.8 Nets ... 284
11.6.9 Regs... 285
11.6.10 Variables, named event ... 286
11.6.11 Memory... 287
11.6.12 Parameter, specparam ... 288
11.6.13 Primitive, prim term.. 289
11.6.14 UDP... 290
11.6.15 Module path, timing check, intermodule path .. 291
11.6.16 Task and function call ... 292
11.6.17 Continuous assignment ... 293
11.6.18 Simple expressions.. 294
11.6.19 Expressions ... 295
11.6.20 Contribs ... 296
11.6.21 Process, block, statement, event statement ... 297
11.6.22 Assignment, delay control, event control, repeat control ... 298
11.6.23 If, if-else, case ... 300
11.6.24 Assign statement, deassign, force, release, disable... 301
11.6.25 Callback, time queue... 302

12. VPI routine definitions... 303
12.1 Overview.. 303
12.2 vpi_chk_error() .. 303
12.3 vpi_compare_objects()... 304
12.4 vpi_free_object().. 305
12.5 vpi_get()... 305
12.6 vpi_get_cb_info()... 306
12.7 vpi_get_analog_delta() .. 307
12.8 vpi_get_analog_freq().. 307
12.9 vpi_get_analog_time() ... 307
12.10 vpi_get_analog_value() ... 308
12.11 vpi_get_delays()... 309
12.12 vpi_get_str()... 312
12.13 vpi_get_analog_systf_info() .. 312
12.14 vpi_get_systf_info()... 313
12.15 vpi_get_time().. 314
12.16 vpi_get_value() .. 315
Copyright © 2014 Accellera Systems Initiative. vii

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
12.17 vpi_get_vlog_info() ... 320
12.18 vpi_get_real()... 321
12.19 vpi_handle() ... 321
12.20 vpi_handle_by_index() .. 322
12.21 vpi_handle_by_name() .. 323
12.22 vpi_handle_multi()... 323

12.22.1 Derivatives for analog system task/functions ... 323
12.22.2 Examples... 324

12.23 vpi_iterate().. 326
12.24 vpi_mcd_close()... 327
12.25 vpi_mcd_name() .. 328
12.26 vpi_mcd_open() ... 328
12.27 vpi_mcd_printf() .. 329
12.28 vpi_printf()... 329
12.29 vpi_put_delays() .. 330
12.30 vpi_put_value() .. 332
12.31 vpi_register_cb() .. 334

12.31.1 Simulation-event-related callbacks ... 335
12.31.2 Simulation-time-related callbacks... 336
12.31.3 Simulator analog and related callbacks... 337
12.31.4 Simulator action and feature related callbacks ... 337

12.32 vpi_register_analog_systf() ... 339
12.32.1 System task and function callbacks .. 339
12.32.2 Declaring derivatives for analog system task/functions ... 340
12.32.3 Examples... 340

12.33 vpi_register_systf() .. 344
12.33.1 System task and function callbacks .. 344
12.33.2 Initializing VPI system task/function callbacks.. 345

12.34 vpi_remove_cb() .. 346
12.35 vpi_scan()... 347
12.36 vpi_sim_control()... 348

Annex A
(normative)
Formal syntax definition ... 349

A.1 Source text ... 349
A.1.1 Library source text ... 349
A.1.2 Verilog source text... 349
A.1.3 Module parameters and ports... 350
A.1.4 Module items ... 350
A.1.5 Configuration source text... 351
A.1.6 Nature Declaration ... 351
A.1.7 Discipline Declaration ... 351
A.1.8 Connectrules Declaration... 352
A.1.9 Paramset Declaration ... 352

A.2 Declarations ... 353
A.2.1 Declaration types ... 353

A.2.1.1 Module parameter declarations.. 353
A.2.1.2 Port declarations .. 353
A.2.1.3 Type declarations ... 353

A.2.2 Declaration data types.. 354
A.2.2.1 Net and variable types.. 354
A.2.2.2 Strengths .. 354
A.2.2.3 Delays .. 355

A.2.3 Declaration lists ... 355
viii Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
A.2.4 Declaration assignments .. 355
A.2.5 Declaration ranges ... 356
A.2.6 Function declarations ... 356
A.2.7 Task declarations ... 357
A.2.8 Block item declarations ... 357

A.3 Primitive instances ... 358
A.3.1 Primitive instantiation and instances ... 358
A.3.2 Primitive strengths ... 358
A.3.3 Primitive terminals... 358
A.3.4 Primitive gate and switch types ... 359

A.4 Module instantiation and generate construct ... 359
A.4.1 Module instantiation .. 359
A.4.2 Generate construct ... 359

A.5 UDP declaration and instantiation ... 360
A.5.1 UDP declaration... 360
A.5.2 UDP ports .. 360
A.5.3 UDP body .. 361
A.5.4 UDP instantiation... 361

A.6 Behavioral statements .. 361
A.6.1 Continuous assignment statements .. 361
A.6.2 Procedural blocks and assignments ... 362
A.6.3 Parallel and sequential blocks.. 362
A.6.4 Statements .. 362
A.6.5 Timing control statements ... 363
A.6.6 Conditional statements... 365
A.6.7 Case statements.. 365
A.6.8 Looping statements .. 365
A.6.9 Task enable statements .. 366
A.6.10 Contribution statements ... 366

A.7 Specify section... 366
A.7.1 Specify block declaration... 366
A.7.2 Specify path declarations ... 366
A.7.3 Specify block terminals ... 367
A.7.4 Specify path delays .. 367
A.7.5 System timing checks .. 368

A.7.5.1 System timing check commands.. 368
A.7.5.2 System timing check command arguments ... 369
A.7.5.3 System timing check event definitions .. 369

A.8 Expressions .. 370
A.8.1 Concatenations and assignment patterns ... 370
A.8.2 Function calls ... 371
A.8.3 Expressions .. 372
A.8.4 Primaries .. 374
A.8.5 Expression left-side values .. 375
A.8.6 Operators.. 375
A.8.7 Numbers... 375
A.8.8 Strings .. 376
A.8.9 Analog references .. 376

A.9 General... 377
A.9.1 Attributes ... 377
A.9.2 Comments .. 377
A.9.3 Identifiers ... 378
A.9.4 White space.. 379

A.10 Details .. 379
Copyright © 2014 Accellera Systems Initiative. ix

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Annex B
(normative)
List of keywords .. 381
Annex C
(normative)
Analog language subset ... 383

C.1 Verilog-A overview ... 383
C.2 Verilog-A language features .. 383
C.3 Lexical conventions ... 384
C.4 Data types .. 384
C.5 Expressions .. 384
C.6 Analog signals.. 384
C.7 Analog behavior... 384
C.8 Hierarchical structures ... 385
C.9 Mixed signal .. 385
C.10 Scheduling semantics... 385
C.11 System tasks and functions .. 385
C.12 Compiler directives.. 385
C.13 Using VPI routines... 385
C.14 VPI routine definitions... 385
C.15 Analog language subset ... 385
C.16 List of keywords .. 385
C.17 Standard definitions ... 386
C.18 SPICE compatibility .. 386
C.19 Changes from previous Verilog-A LRM versions... 386
C.20 Obsolete functionality.. 386

Annex D
(normative)
Standard definitions ... 387

D.1 The disciplines.vams file ... 387
D.2 The constants.vams file.. 391
D.3 The driver_access.vams file... 393

Annex E
(normative)
SPICE compatibility .. 395

E.1 Introduction.. 395
E.1.1 Scope of compatibility ... 395
E.1.2 Degree of incompatibility .. 395

E.2 Accessing Spice objects from Verilog-AMS HDL.. 396
E.2.1 Case sensitivity .. 396
E.2.2 Examples.. 396

E.2.2.1 Accessing Spice models... 396
E.2.2.2 Accessing Spice subcircuits... 397
E.2.2.3 Accessing Spice primitives .. 397

E.3 Preferred primitive, parameter, and port names .. 398
E.3.1 Unsupported primitives.. 401
E.3.2 Discipline of primitives ... 401

E.3.2.1 Setting the discipline of analog primitives .. 401
E.3.2.2 Resolving the disciplines of analog primitives .. 401

E.3.3 Name scoping of SPICE primitives ... 402
E.3.4 Limiting algorithms ... 402

E.4 Other issues.. 402
E.4.1 Multiplicity factor on subcircuits... 402
x Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
E.4.2 Binning and libraries.. 403
Annex F
(normative)
Discipline resolution methods ... 404

F.1 Discipline resolution .. 404
F.2 Resolution of mixed signals... 404

F.2.1 Default discipline resolution algorithm ... 404
F.2.2 Alternate expanded analog discipline resolution algorithm .. 405

Annex G
(informative)
Change history ... 407

G.1 Changes from previous LRM versions .. 407
G.2 Obsolete functionality.. 416

G.2.1 Forever ... 416
G.2.2 NULL... 416
G.2.3 Generate ... 416
G.2.4 `default_function_type_analog ... 418

Annex H
(informative)
Glossary ... 419
Copyright © 2014 Accellera Systems Initiative. xi

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
1. Verilog-AMS introduction

1.1 Overview

This Verilog-AMS Hardware Description Language (HDL) language reference manual defines a behavioral
language for analog and mixed-signal systems. Verilog-AMS HDL is derived from IEEE Std 1364-2005
Verilog HDL. This document is intended to cover the definition and semantics of Verilog-AMS HDL as
proposed by Accellera.

Verilog-AMS HDL consists of the complete IEEE Std 1364-2005 Verilog HDL specification, an analog
equivalent for describing analog systems (also referred to as Verilog-A as described in Annex C), and exten-
sions to both for specifying the full Verilog-AMS HDL.

Verilog-AMS HDL lets designers of analog and mixed-signal systems and integrated circuits create and use
modules which encapsulate high-level behavioral descriptions as well as structural descriptions of systems
and components. The behavior of each module can be described mathematically in terms of its ports and
external parameters applied to the module. The structure of each component can be described in terms of
interconnected sub-components. These descriptions can be used in many disciplines such as electrical,
mechanical, fluid dynamics, and thermodynamics.

For continuous systems, Verilog-AMS HDL is defined to be applicable to both electrical and non-electrical
systems description. It supports conservative and signal-flow descriptions by using the concepts of nets,
nodes, branches, and ports as terminology for these descriptions. The solution of analog behaviors which
obey the laws of conservation fall within the generalized form of Kirchhoff’s Potential and Flow Laws (KPL
and KFL). Both of these are defined in terms of the quantities (e.g., voltage and current) associated with the
analog behaviors.

Verilog-AMS HDL can also be used to describe discrete (digital) systems (per IEEE Std 1364-2005 Verilog
HDL) and mixed-signal systems using both discrete and continuous descriptions as defined in this LRM.

1.2 Mixed-signal language features

Verilog-AMS HDL extends the features of the digital modeling language (IEEE Std 1364-2005 Verilog
HDL) to provide a single unified language with both analog and digital semantics with backward compati-
bility. Below is a list of salient features of the resulting language:

— signals of both analog and digital types can be declared in the same module
— initial, always, and analog procedural blocks can appear in the same module
— both analog and digital signal values can be accessed (read operations) from any context (analog or

digital) in the same module
— digital signal values can be set (write operations) from any context outside of an analog proce-

dural block
— analog potentials and flows can only receive contributions (write operations) from inside an analog

procedural block
— the semantics of the initial and always blocks remain the same as in IEEE Std 1364-2005 Ver-

ilog HDL; the semantics for the analog block are described in this manual
— the discipline declaration is extended to digital signals
— a new construct, connect statement, is added to facilitate auto-insertion of user-defined connection

modules between the analog and digital domains
1 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
— when hierarchical connections are of mixed type (i.e., analog signal connected to digital port or dig-
ital signal connected to analog port), user-defined connection modules are automatically inserted to
perform signal value conversion

1.3 Systems

A system is considered to be a collection of interconnected components which are acted upon by a stimulus
and produce a response. The components themselves can also be systems, in which case a hierarchical sys-
tem is defined. If a component does not have any subcomponents, it is considered to be a primitive compo-
nent. Each primitive component connects to zero or more nets. Each net connects to a signal which can
traverse multiple levels of the hierarchy. The behavior of each component is defined in terms of values at
each net.

A signal is a hierarchical collection of nets which, because of port connections, are contiguous. If all the nets
which make up a signal are in the discrete domain, the signal is a digital signal. If, on the other hand, all the
nets which make up a signal are in the continuous domain, the signal is an analog signal. A signal which
consists of nets from both domains is called a mixed signal.

Similarly, a port whose connections are both analog is an analog port, a port whose connections are both
digital is a digital port, and a port whose connections are both analog and digital is a mixed port. The compo-
nents connect to nodes through ports and nets to build a hierarchy, as shown in Figure 1-1.

Figure 1-1: Components connect to nodes through ports

If a signal is analog or mixed, it is associated with a node (see 3.6), while a purely digital signal is not asso-
ciated with a node. Regardless of the number of analog nets in an analog or mixed signal or how the analog
nets in a mixed signal are interspersed with digital nets, the analog portion of an analog or mixed signal is
represented by only a single node. This guarantees a mixed or analog signal has only one value which repre-
sents its potential with respect to the global reference voltage (ground).

In order to simulate systems, it is necessary to have a complete description of the system and all of its com-
ponents. Descriptions of systems are usually given structurally. That is, the description of a system contains
instances of components and how they are interconnected. Descriptions of components are given using
behavior and or structure. A behavior is a mathematical description which relates the signals at the ports of
the components.

1.3.1 Conservative systems

An important characteristic of conservative systems is that there are two values associated with every node,
the potential (also known as the across value or voltage in electrical systems) and the flow (the through
value or current in electrical systems). The potential of the node is shared with all continuous ports and nets

Module Module

Module

Node

Ports
Copyright © 2014 Accellera Systems Initiative. 2

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
connected to the node so all continuous ports and nets see the same potential. The flow is shared so flow
from all continuous ports and nets at a node shall sum to zero (0). In this way, the node acts as an infinitesi-
mal point of interconnection in which the potential is the same everywhere on the node and on which no
flow can accumulate. Thus, the node embodies Kirchhoff's Potential and Flow Laws (KPL and KFL). When
a component connects to a node through a conservative port or net, it can either affect, or be affected by,
either the potential at the node, and/or the flow onto the node through the port or net.

With conservative systems it is also useful to define the concept of a branch. A branch is a path of flow
between two nodes through a component. Every branch has an associated potential (the potential difference
between the two nodes) and flow.

A behavioral description of a conservative component is constructed as a collection of interconnected
branches. The constitutive equations of the component are formulated as to relate the branch potentials and
flows. In the probe/source approach (see 5.4.2), the branch potential or flow is specified as a function of
branch potentials and flows. If the branch potential and flow are left unspecified, not on the left-hand side of
a contribution statement, then the branch acts as a probe. In this case, if the branch flow appears in an
expression, the branch potential is forced to zero (0). Otherwise the branch flow is assumed to be zero (0)
and the branch potential is available for use in an expression. The potential and flow of a probe branch may
not both appear in expressions in a given module, nor is it allowed to specify both the potential and flow of a
source branch simultaneously. (While these last two conditions are not really necessary, they do eliminate
conditions which are useless and confusing.)

1.3.1.1 Reference nodes

The potential of a single node is given with respect to a reference node. The potential of the reference node,
which is called ground in electrical systems, is always zero (0). Any net of continuous discipline can be
declared to be ground. In this case, the node associated with the net shall be the global reference node in the
circuit. This is compatible with all analog disciplines and can be used to bind a port of an instantiated mod-
ule to the reference node.

1.3.1.2 Reference directions

The reference directions for a generic branch are shown in Figure 1-2.

Figure 1-2: Reference directions

The reference direction for a potential is indicated by the plus and minus symbols near each port. Given the
chosen reference direction, the branch potential is positive whenever the potential of the port marked with a
plus sign (A) is larger than the potential of the port marked with a minus sign (B). Similarly, the flow is pos-
itive whenever it moves in the direction of the arrow (in this case from + to -).

Verilog-AMS HDL uses associated reference directions. A positive flow enters a branch through the port
marked with the plus sign and exits the branch through the port marked with the minus sign.

A B
flow

+ potential -
3 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
1.3.2 Kirchhoff’s Laws

In formulating continuous system equations, Verilog-AMS HDL uses two sets of relationships. The first are
the constitutive relationships which describe the behavior of each component. Constitutive relationships can
be kept inside the simulator as built-in primitives or they can be provided by Verilog-AMS HDL module
definitions.

The second set of relationships, interconnection relationships, describe the structure of the network. Inter-
connection relationships, which contain information on how the components are connected to each other, are
only a function of the system topology. They are independent of the nature of the components.

A Verilog-AMS HDL simulator uses Kirchhoff’s Laws to define the relationships between the nodes and the
branches. Kirchhoff’s Laws are typically associated with electrical circuits that relate voltages and currents.
However, by generalizing the concepts of voltages and currents to potentials and flows, Kirchhoff’s Laws
can be used to formulate interconnection relationships for any type of system.

Kirchhoff’s Laws provide the following properties relating the quantities present on nodes and branches, as
shown in Figure 1-3.

— Kirchhoff's Flow Law (KFL)
The algebraic sum of all flows out of a node at any instant is zero (0).

— Kirchhoff's Potential Law (KPL)
The algebraic sum of all the branch potentials around a loop at any instant is zero (0).

These laws imply a node is infinitely small; so there is negligible difference in potential between any two
points on the node and a negligible accumulation of flow.

Figure 1-3: Kirchhoff’s Flow Law (KFL) and Potential Law (KPL)

flow3 +
potential

-

flow1

+
potential
-

+
-

+ -
potential2

+ -
potential4

+
-

+
-

po
te

nt
ia

l 3

po
te

nt
ia

l 1

po
te

nt
ia

l

flo
w

2

KFL KPL

flow1 + flow2 + flow3 = 0
-potential1 -potential2

+potential3 + potential4 = 0
Copyright © 2014 Accellera Systems Initiative. 4

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
1.3.3 Natures, disciplines, and nets

Verilog-AMS HDL allows definition of nets based on disciplines. The disciplines associate potential and
flow natures for conservative systems or either only potential or only flow nature for signal-flow systems.
The natures are a collection of attributes, including user-defined attributes, which describes the units (meter,
gram, newton, etc.), absolute tolerance for convergence, and the names of potential and flow access func-
tions.

The disciplines and natures can be shared by many nets. The compatibility rules help enforce the legal oper-
ations between nets of different disciplines.

1.3.4 Signal-flow systems

A discipline may specify two nature bindings, potential and flow, or it may specify only a single bind-
ing, either potential or flow. Disciplines with two natures are know as conservative disciplines because
nodes which are bound to them exhibit Kirchhoff’s Flow Law, and thus, conserve charge (in the electrical
case). A discipline with only a potential nature or only a flow nature is known as a signal flow discipline.

As a result of port connections of analog nets, a single node may be bound to a number of nets of different
disciplines. If a node is bound only to disciplines which have potential nature only, current contributions to
that node are not legal. Flow for such a node is not defined. Conversely, if a node is bound only to disci-
plines which have flow nature only, potential contributions to that node are not legal. Potential for such a
node is not defined.

1.3.4.1 Potential signal-flow systems

Potential signal flow models may be written so potentials of module outputs are purely functions of poten-
tials at the inputs without taking flow into account.

The following example is a level shifting voltage follower:

module shiftPlus5(in, out);
input in;
output out;
voltage in, out; //voltage is a signal flow

//discipline compatible with
//electrical, but having a
//potential nature only

analog begin
V(out) <+ 5.0 + V(in);

end
endmodule

If a number of such modules were cascaded in series, it would not be necessary to conserve charge (i.e., sum
the flows) at any intervening node.

If, on the other hand, the output of this device were bound to a node of a conservative discipline (e.g., elec-
trical), then the output of the device would appear to be a controlled voltage source to ground at that
node. In that case, the flow (i.e., current) through the source would contribute to charge conservation at the
node. If the input of this device were bound to a node of a conservative discipline then the input would act as
a voltage probe to ground. Thus, when a net of signal flow discipline with potential nature only is bound to a
conservative node, contributions made to that net behave as voltage sources to ground.

Nets of potential signal flow disciplines in modules may only be bound to input or output ports of the
module, not to inout ports. In that case, potential contributions may not be made to input ports.
5 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
1.3.4.2 Flow signal-flow systems

Flow signal-flow models may be written so flows of module outputs are purely functions of flows at the
inputs without taking potential into account.

The following example is a current mirror:
module currmir(in, out);

input in;
output out;
current in, out; // current is a signal flow

// discipline compatible with
 // electrical, but having a
 // flow nature only

analog begin
I(out) <+ -I(in);

end
endmodule

If a number of such modules were cascaded in series, it would not be necessary to conserve charge (i.e., sum
the potentials) at any loop of branches.

However, if the output of this device were bound to a node of a conservative discipline (e.g., electrical), then
the output of the device would appear to be a controlled current source flowing out of that node. In that case,
the potential (i.e., voltage) across the source would contribute to charge conservation at the node. If the input
of this device were bound to a node of a conservative discipline then the input would act as a current probe
inbound from that node. Thus, when a net of signal flow discipline with flow nature only is bound to a con-
servative node, contributions made to that net behave as current sources.

Nets of flow signal-flow disciplines in modules may only be bound to input or output ports of the module,
not to inout ports. Flow contributions may not be made to input ports in this case.

1.3.5 Mixed conservative/signal flow systems

When practicing the top-down design style, it is extremely useful to mix conservative and signal-flow com-
ponents in the same system. Users typically use signal-flow models early in the design cycle when the sys-
tem is described in abstract terms, and gradually convert component models to conservative form as the
design progresses. Thus, it is important to be able to initially describe a component using a signal-flow
model, and later convert it to a conservative model, with minimum changes. It is also important to allow
conservative and signal-flow components to be arbitrarily mixed in the same system.

The approach taken is to write component descriptions using conservative semantics, except port and net
declarations only require types for those values which are actually used in the description. Thus, signal-flow
ports only require the type of either potential or flow to be specified, whereas conservative ports require
types for both values (the potential and flow).

For example, consider a differential voltage amplifier, a differential current amplifier, and a resistor. The
amplifiers are written using signal-flow ports and the resistor uses conservative ports.

module voltage_amplifier (out, in);
input in;
output out;
voltage out, // Discipline voltage defined elsewhere

in; // with access function V()
parameter real GAIN_V = 10.0;
Copyright © 2014 Accellera Systems Initiative. 6

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
analog
V(out) <+ GAIN_V * V(in);

endmodule

In this case, only the voltage on the ports are declared because only voltage is used in the body of the model.

module current_amplifier (out, in);
input in;
output out;
current out, // Discipline current defined elsewhere

in; // with access function I()
parameter real GAIN_I = 10.0;

analog
I(out) <+ GAIN_I * I(in);

endmodule

Here, only current is used in the body of the model, so only current need be declared at the ports.

module resistor (a, b);
inout a, b;
electrical a, b; // access functions are V() and I()
parameter real R = 1.0;

analog
V(a,b) <+ R * I(a,b);

endmodule

The description of the resistor relates both the voltage and current on the ports. Both are defined in the con-
servative discipline electrical.

In summary, only those signals types declared on the ports are accessible in the body of the model. Con-
versely, only those signals types used in the body need be declared.

This approach provides all of the power of the conservative formulation for both signal-flow and conserva-
tive ports, without forcing types to be declared for unused signals on signal-flow nets and ports. In this way,
the first benefit of the traditional signal-flow formulation is provided without the restrictions.

The second benefit, that of a smaller, more efficient set of equations to solve, is provided in a manner which
is hidden from the user. The simulator begins by treating all ports as being conservative, which allows the
connection of signal-flow and conservative ports. This results in additional unnecessary equations for those
nodes which only have signal-flow ports. This situation can be recognized by the simulator and those equa-
tions eliminated.

Thus, this approach to allowing mixed conservative/signal-flow descriptions provides the following bene-
fits:

— Conservative components and signal-flow components can be freely mixed. In addition, signal-flow
components can be converted to conservative components, and vice versa, by modifying only the
component behavioral description.
7 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
— Many of the capabilities of conservative ports, such as the ability to access flow and the ability to
access floating potentials, are available with signal-flow ports.

— Natures only have to be given for potentials and flows if they are accessed in a behavioral descrip-
tion.

— If nets and ports are used only in a structural description (only in instance statements), then no
natures need be specified.

1.4 Conventions used in this document

This document is organized into sections, each of which focuses on some specific area of the language.
There are subsections within each section to discuss individual constructs and concepts. The discussion
begins with an introduction and an optional rationale for the construct or the concept, followed by syntax
and semantic description, followed by some examples and notes.

The formal syntax of Verilog-AMS HDL is described using Backus-Naur Form (BNF). The following con-
ventions are used:

1) Lower case words, some containing embedded underscores, are used to denote syntactic categories.
For example:

module_declaration

2) Boldface red characters denote reserved keywords, operators and punctuation marks as required part
of the syntax. For example:

module = ;

3) Blue characters are used to denote syntax productions that are Verilog-AMS extensions to IEEE Std
1364-2005 Verilog HDL syntax. For example:

connectrules_declaration ::=
connectrules connectrules_identifier ;
{ connectrules_item }
endconnectrules

4) A vertical bar (|) that is not in boldface-red separates alternative items. For example:
attribute ::=
abstol | units | identifier

5) Square brackets ([]) that are not in boldface-red enclose optional items. For example:
input_declaration ::=
input [range] list_of_ports ;

6) Braces ({ }) that are not in boldface-red enclose a repeated item unless the braces appear in bold
face, in which case it stands for itself. The item can appear zero or more times; the repetitions occur
from left to right as with an equivalent left-recursive rule. Thus, the following two rules are equiva-
lent:

list_of_port_def ::=
port_def { , port_def }

list_of_port_def ::=
 port_def

| list_of_port_def , port_def
Copyright © 2014 Accellera Systems Initiative. 8

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
7) If the name of any category starts with an italicized part, it is equivalent to the category name with-
out the italicized part. The italicized part is intended to convey some semantic information. For
example, msb_constant_expression and lsb_constant_expression are equivalent to
constant_expression, and node_identifier is an identifier which is used to identify (declare or refer-
ence) a node.

The main text uses italicized font when a term is being defined, and constant-width font for examples,
file names, and while referring to constants. Reserved keywords in the main text and in examples are
in a constant-width bold font.

1.5 Contents

This document contains the following clauses and annexes:

1. Verilog-AMS introduction
This clause gives the overview of analog modeling, defines basic concepts, and describes Kirchhoff’s Poten-
tial and Flow Laws.

2. Lexical conventions
This clause defines the lexical tokens used in Verilog-AMS HDL.

3. Data types
This clause describes the data types: integer, real, parameter, nature, discipline, and net, used in Verilog-
AMS HDL.

4. Expressions
This clause describes expressions, mathematical functions, and time domain functions used in Verilog-AMS
HDL.

5. Analog behavior
This clause describes the basic analog block and procedural language constructs available in Verilog-AMS
HDL for behavioral modeling.

6. Hierarchical structures
This clause describes how to build hierarchical descriptions using Verilog-AMS HDL.

7. Mixed signal
This clause describes the mixed-signal aspects of the Verilog-AMS HDL language.

8. Scheduling semantics
This clause describes the basic simulation cycle as applicable to Verilog-AMS HDL.

9. System tasks and functions
This clause describes the system tasks and functions in Verilog-AMS HDL.

10. Compiler directives
This clause describes the compiler directives in Verilog-AMS HDL.

11. Using VPI routines
This clause describes how the VPI routines are used.
9 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
12. VPI routine definitions
This clause defines each of the VPI routines in alphabetical order.

A. (normative) Formal syntax definition
This annex describes formal syntax for all Verilog-AMS HDL constructs in Backus-Naur Form (BNF).

B. (normative) List of keywords
This annex lists all the words which are recognized in Verilog-AMS HDL as keywords.

C. (normative) Analog language subset
This annex describes the analog subset of Verilog-AMS HDL.

D. (normative) Standard definitions
This annex provides the definitions of several natures, disciplines, and constants which are useful for writing
models in Verilog-AMS HDL.

E. (normative) SPICE compatibility
This annex describes the Spice compatibility with Verilog-AMS HDL.

F. (normative) Discipline resolution methods
This annex provides the semantics for two methods of resolving the discipline of undeclared interconnect.

G. (informative) Change history
This annex provides a list of changes between various versions of the Verilog-AMS Language Reference
Manual.

H. (informative) Glossary
This annex describes various terms used in this document.
Copyright © 2014 Accellera Systems Initiative. 10

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
2. Lexical conventions

2.1 Overview

This clause describes the lexical tokens used in Verilog-AMS HDL source text and their conventions.

2.2 Lexical tokens

Verilog-AMS HDL source text files shall be a stream of lexical tokens. A lexical token shall consist of one
or more characters. The layout of tokens in a source file is free format — that is, spaces and newlines shall
not be syntactically significant other than being token separators, except escaped identifiers (see 2.8.1).

The types of lexical tokens in the language are as follows:
— white space
— comment
— operator
— number
— string
— identifier
— keyword

2.3 White space

White space shall contain the characters for spaces, tabs, newlines, and formfeeds. These characters shall be
ignored except when they serve to separate other lexical tokens. However, blanks and tabs shall be consid-
ered significant characters in strings (see 2.7).

2.4 Comments

The Verilog-AMS HDL has two forms to introduce comments. A one-line comment shall start with the two
characters // and ends with a newline. Block comments shall start with /* and end with */. Block com-
ments shall not be nested. The one-line comment token // shall not have any special meaning in a block
comment.

comment ::= // from A.9.2
one_line_comment

| block_comment
one_line_comment ::= // comment_text \n
block_comment ::= /* comment_text */
comment_text ::= { Any_ASCII_character }

Syntax 2-1—Syntax for comments

2.5 Operators

Operators are single, double, or triple character sequences and are used in expressions. Clause 4 discusses
the use of operators in expressions.
11 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Unary operators shall appear to the left of their operand. Binary operators shall appear between their oper-
ands. A conditional operator shall have two operator characters which separate three operands.

2.6 Numbers

Constant numbers can be specified as integer constants (defined in 2.6.1) or real constants.

number ::= // from A.8.7
decimal_number

| octal_number
| binary_number
| hex_number
| real_number

real_number ::=
unsigned_number . unsigned_number

| unsigned_number [. unsigned_number] exp [sign] unsigned_number
| unsigned_number [. unsigned_number] scale_factor

exp ::= e | E
scale_factor ::= T | G | M | K | k | m | u | n | p | f | a
decimal_number ::=

unsigned_number
| [size] decimal_base unsigned_number
| [size] decimal_base x_digit { _ }
| [size] decimal_base z_digit { _ }

binary_number ::= [size] binary_base binary_value
octal_number ::= [size] octal_base octal_value
hex_number ::= [size] hex_base hex_value
sign ::= + | -
size ::= non_zero_unsigned_number

non_zero_unsigned_number ::= non_zero_decimal_digit { _ | decimal_digit}

unsigned_number2 ::= decimal_digit { _ | decimal_digit }

binary_value2 ::= binary_digit { _ | binary_digit }

octal_value2 ::= octal_digit { _ | octal_digit }

hex_value2 ::= hex_digit { _ | hex_digit }

decimal_base2 ::= '[s|S]d | '[s|S]D

binary_base2 ::= '[s|S]b | '[s|S]B

octal_base2 ::= '[s|S]o | '[s|S]O

hex_base2 ::= '[s|S]h | '[s|S]H
non_zero_decimal_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
binary_digit ::= x_digit | z_digit | 0 | 1
octal_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
hex_digit ::=

x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Copyright © 2014 Accellera Systems Initiative. 12

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
| a | b | c | d | e | f | A | B | C | D | E | F
x_digit ::= x | X
z_digit ::= z | Z | ?

2) Embedded spaces are illegal.

Syntax 2-2—Syntax for integer and real constants

2.6.1 Integer constants

Integer constants can be specified in decimal, hexadecimal, octal, or binary format. There are two forms to
express integer constants. The first form is a simple decimal number, which shall be specified as a sequence
of digits 0 through 9, optionally starting with a plus or minus unary operator. The second form specifies a
based constant, which shall be composed of up to three tokens—an optional size constant, an apostrophe
character (', ASCII 0x27) followed by a base format character, and the digits representing the value of the
number. It shall be legal to macro substitute these three tokens.

The first token, a size constant, shall specify the size of the constant in terms of its exact number of bits. It
shall be specified as a non-zero unsigned decimal number. For example, the size specification for two hexa-
decimal digits is 8, because one hexadecimal digit requires 4 bits.

The second token, a base_format, shall consist of a case insensitive letter specifying the base for the number,
optionally preceded by the single character s (or S) to indicate a signed quantity, preceded by the apostrophe
character. Legal base specifications are d, D, h, H, o, O, b, or B, for the bases decimal, hexadecimal, octal,
and binary respectively. The apostrophe character and the base format character shall not be separated by
any white space.

The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The
unsigned number token shall immediately follow the base format, optionally preceded by white space. The
hexadecimal digits a to f shall be case insensitive.

Simple decimal numbers without the size and the base format shall be treated as signed integers, whereas the
numbers specified with the base format shall be treated as signed integers if the s designator is included or as
unsigned integers if the base format only is used. The s designator does not affect the bit pattern specified,
only its interpretation. A plus or minus operator preceding the size constant is a unary plus or minus opera-
tor. A plus or minus operator between the base format and the number is an illegal syntax. Negative numbers
shall be represented in 2’s complement form.

An x represents the unknown value in hexadecimal, octal, and binary constants. A z represents the high-
impedance value. See 4.1 of IEEE Std 1364-2005 Verilog HDL for a discussion of the Verilog HDL value
set. An x shall set 4 bits to unknown in the hexadecimal base, 3 bits in the octal base, and 1 bit in the binary
base. Similarly, a z shall set 4 bits, 3 bits, and 1 bit, respectively, to the high-impedance value. If the size of
the unsigned number is smaller than the size specified for the constant, the unsigned number shall be padded
to the left with zeros. If the left-most bit in the unsigned number is an x or a z, then an x or a z shall be used
to pad to the left respectively. If the size of the unsigned number is larger than the size specified for the con-
stant, the unsigned number shall be truncated from the left.

The number of bits that make up an unsized number (which is a simple decimal number or a number without
the size specification) shall be at least 32. Unsized unsigned constants where the high order bit is unknown
(X or x) or three-state (Z or z) shall be extended to the size of the expression containing the constant.

NOTE—In IEEE 1364-1995 Verilog HDL, in unsized constants where the high order bit is unknown or three-state, the x
or z was only extended to 32 bits.
13 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The use of x and z in defining the value of a number is case insensitive.

When used in a number, the question-mark (?) character is a Verilog-AMS HDL alternative for the z char-
acter. It sets 4 bits to the high-impedance value in hexadecimal numbers, 3 bits in octal, and 1 bit in binary.
The question mark can be used to enhance readability in cases where the high-impedance value is a don’t-
care condition. See the discussion of casez and casex in 9.5.1 of IEEE Std 1364-2005 Verilog HDL. The
question-mark character is also used in user-defined primitive state tables. See Table 8-1 in 8.1.6 of IEEE
Std 1364-2005 Verilog HDL.

In a decimal constant, the unsigned number token shall not contain any x, z, or ? digits, unless there is
exactly one digit in the token, indicating that every bit in the decimal constant is x or z.

The underscore character (_) shall be legal anywhere in a number except as the first character. The under-
score character is ignored. This feature can be used to break up long numbers for readability purposes.

Example 1 — Unsized Constant numbers

659 // is a decimal number
'h 837FF // is a hexadecimal number
'o7460 // is an octal number
4af // is illegal (hexadecimal format requires 'h)

Example 2 — Sized constant numbers

4'b1001 // is a 4-bit binary number
'D 3 // is a 5-bit decimal number
3'b01x // is a 3-bit number with the least

// significant bit unknown
12'hx // is a 12-bit unknown number
16'hz // is a 16-bit high-impedance number

Example 3 — Using sign with constant numbers

8 'd -6 // this is illegal syntax
-8 'd 6 // this defines the two's complement of 6,

// held in 8 bits—equivalent to -(8'd 6)
4 'shf // this denotes the 4-bit number '1111', to

// be interpreted as a 2's complement number,
// or '-1'. This is equivalent to -4'h 1

-4 'sd15 // this is equivalent to -(-4'd 1), or '0001'
16'sd? // the same as 16'sbz

Example 4 — Automatic left padding

reg [11:0] a, b, c, d;
initial begin

a = 'h x; // yields xxx
b = 'h 3x; // yields 03x
c = 'h z3; // yields zz3
d = 'h 0z3; // yields 0z3

end
reg [84:0] e, f, g;

e = 'h5; // yields {82{1'b0},3'b101}
f = 'hx; // yields {85{1'hx}}
g = 'hz; // yields {85{1'hz}}
Copyright © 2014 Accellera Systems Initiative. 14

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Example 5 — Using underscore character in numbers

27_195_000
16'b0011_0101_0001_1111
32 'h 12ab_f001

Sized negative constant numbers and sized signed constant numbers are sign-extended when assigned to a
reg data type, regardless of whether or not the reg itself is signed.

The default length of x and z is the same as the default length of an integer.

2.6.2 Real constants

The real constant numbers are represented as described by IEEE Std 754-1985, an IEEE standard for double
precision floating point numbers.

Real numbers shall be specified in either decimal notation (e.g., 14.72), in scientific notation (e.g., 39e8,
which indicates 39 multiplied by 10 to the 8th power) or in scaled notation (e.g., 24.7K, which indicates
24.7 multiplied by 10 to the third power). Real numbers expressed with a decimal point shall have at least
one digit on each side of the decimal point. The underscore character is legal anywhere in a real constant
except as the first character of the constant or the first character after the decimal point. The underscore
character is ignored.

Examples:

1.2
0.1
2394.26331
1.2E12 // the exponent symbol can be e or E
1.30e-2
0.1e-0
23E10
29E-2
236.123_763_e-12 // underscores are ignored
1.3u
7k

The following are invalid forms of real numbers because they do not have at least one digit on each side of
the decimal point:

.12
9.
4.E3
.2e-7
.1p
34.M

Table 2-1 describes each symbol and their value used in scaled notation or a real number.

Table 2-1—Scaled Symbols and notation

Symbol Value

T 1e12

G 1e9
15 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
No space is permitted between the number and the symbol. Scale factors are not allowed to be used in defin-
ing digital delays (e.g., #5u).

See 4.2.1.1 for a discussion of real to integer conversion and 4.2.1.2 for a discussion of integer to real con-
version.

2.7 String literals

A string is a sequence of characters enclosed by double quotes (") and contained on a single line. Strings
used as operands in expressions and assignments shall be treated as unsigned integer constants represented
by a sequence of 8-bit ASCII values, with one 8-bit ASCII value representing one character. The string data
type can be used to store strings (see 3.3). String parameters are treated differently and are described in
3.4.6.

Certain characters can only be used in strings when preceded by an introductory character called an escape
character. Table 2-2 lists these characters in the right-hand column, with the escape sequence that represents
the character in the left-hand column.

M 1e6

K, k 1e3

m 1e-3

u 1e-6

n 1e-9

p 1e-12

f 1e-15

a 1e-18

Table 2-2—Specifying special characters in string

Escape
string

Character produced by
escape string

\n New line character

\t Tab character

\\ \ character

\" " character

\ddd A character specified in 1–3 octal digits
(0 ≤ d ≤ 7)

If less than three characters are used, the fol-
lowing character shall not be an octal digit.
Implementations may issue an error if the char-
acter represented is greater than \377.

Table 2-1—Scaled Symbols and notation (continued)

Symbol Value
Copyright © 2014 Accellera Systems Initiative. 16

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
2.8 Identifiers, keywords, and system names

An identifier shall be used to give an object a unique name so it can be referenced. An identifier shall either
be a simple identifier or an escaped identifier (see 2.8.1). A simple identifier shall be any sequence of letters,
digits, dollar signs ($), and the underscore characters (_).

The first character of an identifier shall not be a digit or $; it can be a letter or an underscore. Identifiers shall
be case sensitive.

Examples:

shiftreg_a
busa_index
error_condition
merge_ab
_bus3
n$657

Implementations may set a limit on the maximum length of identifiers, but they shall be at least 1024 charac-
ters. If an identifier exceeds the implementation-specified length limit, an error shall be reported.

2.8.1 Escaped identifiers

Escaped identifiers shall start with the backslash character (\) and end with white space (space, tab, newline,
or formfeed). They provide a means of including any of the printable ASCII characters in an identifier (the
decimal values 33 through 126 or 21 through 7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the iden-
tifier. Therefore, an escaped identifier \cpu3 is treated the same as a non-escaped identifier cpu3.

Examples:

\busa+index
\-clock
error-condition
\net1/\net2
\{a,b}
\a*(b+c)

2.8.2 Keywords

Keywords are predefined simple identifiers which are used to define the language constructs. A Verilog-
AMS HDL keyword preceded by an escape character is not interpreted as a keyword.

All keywords are defined in lowercase only. Annex B lists all defined Verilog-AMS HDL keywords.

2.8.3 System tasks and functions

The $ character introduces a language construct which enables development of user-defined tasks and func-
tions. System constructs are not design semantics, but refer to simulator functionality. A name following the
$ is interpreted as a system task or a system function.

The syntax for a system task or function is given in Syntax 2-3.
17 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
analog_system_task_enable ::= // from A.6.9
analog_system_task_identifier [([analog_expression] { , [analog_expression] })] ;

system_task_enable ::= system_task_identifier [([expression] { , [expression] })] ;
task_enable ::= hierarchical_task_identifier [(expression { , expression })] ;

analog_system_function_call ::= // from A.8.2
analog_system_function_identifier [([analog_expression] { , [analog_expression] })]

system_function_call ::= system_function_identifier
[(expression { , expression })]

system_function_identifier ::= $ [a-zA-Z0-9_$] { [a-zA-Z0-9_$] } // from A.9.3
system_task_identifier ::= $ [a-zA-Z0-9_$] { [a-zA-Z0-9_$] }

Syntax 2-3—Syntax for system tasks and functions

The $identifier system task or function can be defined in five places
— A standard set of $identifier system tasks and functions, as defined in Clause 17 and Clause 18 of

IEEE Std 1364-2005 Verilog HDL.
— Additional $identifier system tasks and functions defined using the PLI, as described in Clause 20 of

IEEE Std 1364-2005 Verilog HDL.
— Additional $identifier system tasks and functions defined in Clause 4 and Clause 9 of this standard.
— Additional $identifier system tasks and functions defined using the VPI as described in Clause 11

and Clause 12 of this standard.
— Additional $identifier system tasks and functions defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct can be used as a
system task or function name. The system tasks and functions described in Clause 17 and Clause 18 of IEEE
Std 1364-2005 Verilog HDL are part of this standard.

Examples:

$display ("display a message");
$finish;

2.8.4 Compiler directives

The ` character (the ASCII value 0x60, called open quote or accent grave) introduces a language construct
used to implement compiler directives. The compiler behavior dictated by a compiler directive shall take
effect as soon as the compiler reads the directive. The directive shall remain in effect for the rest of the com-
pilation unless a different compiler directive specifies otherwise. A compiler directive in one description file
can therefore control compilation behavior in multiple description files.

The `identifier compiler directive construct can be defined in three places
— A standard set of `identifier compiler directives defined in Clause 19 of IEEE Std 1364-2005 Ver-

ilog HDL.
— Additional `identifier compiler directives defined in Clause 10 of this standard.
— Additional `identifier compiler directives defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct can be used as a
compiler directive name.
Copyright © 2014 Accellera Systems Initiative. 18

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The compiler directives described in Clause 19 of IEEE Std 1364-2005 Verilog HDL are part of this stan-
dard.

Example:

`define WORDSIZE 8

2.9 Attributes

With the proliferation of tools other than simulators that use Verilog-AMS HDL as their source, a mecha-
nism is included for specifying properties about objects, statements and groups of statements in the HDL
source that can be used by various tools, including simulators, to control the operation or behavior of the
tool. These properties shall be referred to as attributes. This section specifies the syntactic mechanism that
shall be used for specifying attributes.

The syntax is found in Syntax 2-4.

attribute_instance ::= (* attr_spec { , attr_spec } *) // from A.9.1
attr_spec ::= attr_name [= constant_expression]
attr_name ::= identifier

Syntax 2-4—Syntax for attributes

An attribute_instance can appear in the Verilog-AMS description as a prefix attached to a declaration, a
module item, a statement, or a port connection. It can appear as a suffix to an operator or a Verilog-AMS
function name in an expression.

If a value is not specifically assigned to the attribute, then its value shall be 1. If the same attribute name is
defined more than once for the same language element, the last attribute value shall be used and a tool can
give a warning that a duplicate attribute specification has occurred.

Nesting of attribute instances is disallowed. It shall be illegal to specify the value of an attribute with a con-
stant expression that contains an attribute instance.

Example 1 — The following example shows how to attach attributes to a case statement:

(* full_case, parallel_case *)
case (foo)

<rest_of_case_statement>

or

(* full_case=1 *)
(* parallel_case=1 *) // Multiple attribute instances also OK
case (foo)

<rest_of_case_statement>

or

(* full_case, // no value assigned
parallel_case=1 *)
case (foo)

<rest_of_case_statement>
19 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Example 2 — To attach the full_case attribute, but NOT the parallel_case attribute:

(* full_case *) // parallel_case not specified
case (foo)

<rest_of_case_statement>

or

(* full_case=1, parallel_case = 0 *)
case (foo)

<rest_of_case_statement>

Example 3 — To attach an attribute to a module definition:

(* optimize_power *)
module mod1 (<port_list>);

or

(* optimize_power=1 *)
module mod1 (<port_list>);

Example 4 — To attach an attribute to a module instantiation:

(* optimize_power=0 *)
mod1 synth1 (<port_list>);

Example 5 — To attach an attribute to a reg declaration:

(* fsm_state *) reg [7:0] state1;
(* fsm_state=1 *) reg [3:0] state2, state3;
reg [3:0] reg1; // this reg does NOT have fsm_state set
(* fsm_state=0 *) reg [3:0] reg2; // nor does this one

Example 6 — To attach an attribute to an operator:

a = b + (* mode = "cla" *) c;

This sets the value for the attribute mode to be the string cla.

Example 7 — To attach an attribute to a Verilog function call:

a = add (* mode = "cla" *) (b, c);

Example 8 — To attach an attribute to a conditional operator:

a = b ? (* no_glitch *) c : d;

2.9.1 Syntax

The syntax for legal statements with attributes is shown in Syntax 2-5 through Syntax 2-10.

The syntax for module declaration attributes is given in Syntax 2-5.

module_declaration ::= // from A.1.2
Copyright © 2014 Accellera Systems Initiative. 20

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
{ attribute_instance } module_keyword module_identifier [module_parameter_port_list]
list_of_ports ; { module_item }

endmodule
| { attribute_instance } module_keyword module_identifier [module_parameter_port_list]

[list_of_port_declarations] ; { non_port_module_item }
endmodule

Syntax 2-5—Syntax for module declaration attributes

The syntax for port declaration attributes is given in Syntax 2-6.

port_declaration ::= // from A.1.3
{attribute_instance} inout_declaration

| {attribute_instance} input_declaration
| {attribute_instance} output_declaration

Syntax 2-6—Syntax for port declaration attributes

The syntax for module item attributes is given in Syntax 2-7.

module_item ::= // from A.1.4
port_declaration ;

| non_port_module_item
module_or_generate_item ::=

{ attribute_instance } module_or_generate_item_declaration
| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } loop_generate_construct
| { attribute_instance } conditional_generate_construct
| { attribute_instance } analog_construct

module_or_generate_item_declaration ::=
net_declaration

| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration
| branch_declaration
| analog_function_declaration

non_port_module_item ::=
21 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
module_or_generate_item
| generate_region
| specify_block
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specparam_declaration
| aliasparam_declaration

Syntax 2-7—Syntax for module item attributes

The syntax for function port, task, and block attributes is given in Syntax 2-8.

function_port_list ::= // from A.2.6
{ attribute_instance } tf_input_declaration { , { attribute_instance } tf_input_declaration }

task_item_declaration ::= // from A.2.7
block_item_declaration

| { attribute_instance } tf_input_declaration ;
| { attribute_instance } tf_output_declaration ;
| { attribute_instance } tf_inout_declaration ;

task_port_item ::=
{ attribute_instance } tf_input_declaration

| { attribute_instance } tf_output_declaration
| { attribute_instance } tf_inout_declaration

block_item_declaration ::= // from A.2.8
{ attribute_instance } reg [discipline_identifier] [signed] [range]

list_of_block_variable_identifiers ;
| { attribute_instance } integer list_of_block_variable_identifiers ;
| { attribute_instance } time list_of_block_variable_identifiers ;
| { attribute_instance } real list_of_block_real_identifiers ;
| { attribute_instance } realtime list_of_block_real_identifiers ;
| { attribute_instance } event_declaration
| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_declaration ;

Syntax 2-8—Syntax for function port, task, and block attributes

The syntax for port connection attributes is given in Syntax 2-9.

ordered_port_connection ::= { attribute_instance } [expression] // from A.4.1
named_port_connection ::= { attribute_instance } . port_identifier ([expression])

Syntax 2-9—Syntax for port connection attributes

The syntax for udp attributes is given in Syntax 2-10.

udp_declaration ::= // from A.5.1
{ attribute_instance } primitive udp_identifier (udp_port_list) ;

udp_port_declaration { udp_port_declaration }
udp_body

endprimitive
Copyright © 2014 Accellera Systems Initiative. 22

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
| { attribute_instance } primitive udp_identifier (udp_declaration_port_list) ;
udp_body

endprimitive
udp_output_declaration ::= // from A.5.2

{ attribute_instance } output port_identifier
| { attribute_instance } output [discipline_identifier] reg port_identifier [= constant_expression]

udp_input_declaration ::= { attribute_instance } input list_of_port_identifiers
udp_reg_declaration ::= { attribute_instance } reg [discipline_identifier] variable_identifier

Syntax 2-10—Syntax for udp attributes

2.9.2 Standard attributes

The Verilog-AMS HDL standardizes the following attributes:
— The desc attribute is used to generate help messages when attached to parameter, variable and net

declarations within a module. The attribute must be assigned a string. See 3.4.3.
— The units attribute is used to describe the units of the parameter or variable which it is attached to

within a module. The attribute must be assigned a string. See 3.4.3.
— The op attribute is used to indicate whether a parameter or variable should be included in a short

report of the most useful operating-point values. The attribute must be assigned a value, which must
be either "yes" or "no". If the attribute is specified with the value "no", then the parameter or vari-
able will be omitted from the short report; otherwise, the parameter or variable will be included.

— The multiplicity attribute is used to describe how the value of a parameter or variable should be
scaled for reporting. The attribute must be assigned one of the following string values: "multiply",
"divide", or "none". If the attribute is specified with the value "multiply", the value for the
associated parameter or variable will be multiplied by the value of $mfactor for the instance in
any report of operating-point values. If the attribute is specified with the value "divide", the value
for the associated parameter or variable will be divided by the value of $mfactor for the instance
in any report of operating-point values. If the multiplicity attribute is not specified, or specified
with the value "none", then no scaling will be performed. Note that this scaling only applies to oper-
ating-point value reports; it does not affect the automatic scaling detailed in 6.3.6.

Example - The following example shows how to attach standard attributes to a variable:
(* desc="effective resistance" units="Ohms" op="yes" multiplicity="divide" *)
real reff;
23 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
3. Data types

3.1 Overview

Verilog-AMS HDL supports integer, genvar, real, and parameter data types as found in IEEE Std
1364-2005 Verilog HDL. It includes the string data type defined by IEEE Std 1800-2012 SystemVerilog.
It also modifies the parameter data types and introduces array of real as an extension of the real data
type. Plus, it extends the net data types to support a new type called wreal to model real value nets.

Verilog-AMS HDL introduces a new data type, called net_discipline, for representing analog nets and
declaring disciplines of all nets and regs. The disciplines define the domain and the natures of poten-
tial and flow and their associated attributes for continuous domains.

3.2 Integer and real data types

The syntax for declaring integer and real is shown in Syntax 3-1.

integer_declaration ::= integer list_of_variable_identifiers ; // from A.2.1.3
real_declaration ::= real list_of_real_identifiers ;
list_of_real_identifiers ::= real_type { , real_type } // from A.2.3
list_of_variable_identifiers ::= variable_type { , variable_type }
real_type ::= // from A.2.2.1

real_identifier { dimension } [= constant_arrayinit]
| real_identifier = constant_expression

variable_type ::=
variable_identifier { dimension } [= constant_arrayinit]

| variable_identifier = constant_expression
dimension ::= [dimension_constant_expression : dimension_constant_expression] // from A.2.5

Syntax 3-1—Syntax for integer and real declarations

An integer declaration declares one or more variables of type integer. These variables can hold values rang-
ing from -231 to 231-1. Arrays of integers can be declared using a range which defines the upper and lower
indices of the array. Both indices shall be constant expressions and shall evaluate to a positive integer, a neg-
ative integer, or zero (0).

Arithmetic operations performed on integer variables produce 2’s complement results.

A real declaration declares one or more variables of type real. The real variables are stored as 64-bit quan-
tities, as described by IEEE Std 754-1985, an IEEE standard for double precision floating point numbers.

Arrays of parameter can be declared using a range which defines the upper and lower indices of the
array. Both indices shall be constant expressions and shall evaluate to a positive integer, a negative integer,
or zero (0).

Integers are initialized at the start of a simulation depending on how they are used. Integer variables whose
values are assigned in an analog context default to an initial value of zero (0). Integer variables whose values
are assigned in a digital context default to an initial value of x. Real variables are initialized to zero (0) at the
start of a simulation.
Copyright © 2014 Accellera Systems Initiative. 24

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Examples:

integer a[1:64]; // an array of 64 integer values
real float; // a variable to store real value
real gain_factor[1:30]; // array of 30 gain multipliers

 // with floating point values
integer flag_array[0:8][0:3]; // a multidimensional integer array
real vtable[0:16][0:7][0:64]; // a multidimensional real array

See 4.2.1.1 for a discussion of real to integer conversion and 4.2.1.2 for a discussion of integer to real con-
version.

3.2.1 Output variables

The standard attributes for descriptions and units, described in , have a special meaning for variables
declared at module scope. Module scope variables with a description or units attribute, or both, shall be
known as output variables, and Verilog-AMS simulators shall provide access to their values. SPICE-like
simulators print the names, values, units, and descriptions of output variables for SPICE primitives along
with voltages and currents when displaying operating-point information, and these variables are available
for plotting as a function of time (or the swept variable of a dc sweep).

For example, a module for a MOS transistor with the following declaration at module scope provides the
output variable cgs.

(* desc="gate-source capacitance", units="F" *)
real cgs;

An operating-point display from the simulator might include the following information:

cgs = 4.21e-15 F gate-source capacitance

Units and descriptions specified for block-level variables shall be ignored by the simulator, but can be used
for documentation purposes.

3.3 String data type

Verilog-AMS includes the string data type from IEEE Std 1800-2012 SystemVerilog, which is an
ordered collection of characters. The length of a string variable is the number of characters in the collec-
tion. Variables of type string are dynamic as their length may vary during simulation.

IEEE Std 1364-2005 Verilog HDL supports string literals, but only at the lexical level. In Verilog, string lit-
erals behave like packed arrays of a width that is a multiple of 8 bits. A string literal assigned to a packed
array of an integral variable of a different size is either truncated to the size of the variable or padded with
zeroes to the left as necessary.

In Verilog-AMS, string literals behave exactly the same as in Verilog. However, Verilog-AMS also supports
the string data type to which a string literal can be assigned. When using the string data type instead of
an integral variable, strings can be of arbitrary length and no truncation occurs. Literal strings are implicitly
converted to the string type when assigned to a string type or used in an expression involving
string type operands.

The string variables can take on the special value "", which is the empty string. A string shall not con-
tain the special character "\0".
25 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The syntax to declare a string is as follows:

string variable_name [= initial_value] ;

where variable_name is a valid identifier and the optional initial_value can be a string literal, the value ""
for an empty string, or a string type constant expression, such as a string parameter (see 3.4.6). For example:

parameter string default_name = "John Smith";
string myName = default_name;

If an initial value is not specified in the declaration, the variable is initialized to "", the empty string. An
empty string has zero length.

Arrays and multidimensional arrays of string are also supported. For example:

string names[1:3] = '{"first", "middle", "last"};
string paths[0:2][0:1] =

'{ '{"dir1", "fileA"}, '{"dir2", "fileA"},'{"dir1","fileB"}};

Verilog-AMS provides a set of operators that can be used to manipulate combinations of string variables and
string literals. The basic operators defined on the string data type are listed in Table 3-3.

A string literal can be assigned to a string or an integral type. If their size differs, the literal is right justi-
fied and either truncated on the left or zero filled on the left, as necessary. For example:

reg [8*4:1] h = "hello"; // assigns to h "ello"
reg [10:0] a = "A"; // assigns to a 'b000_0100_0001

A string or a string literal can be assigned directly to a string variable. A string cannot be assigned
to an integral type. A string literal assigned to a string variable is converted according to the following
steps:

— All "\0" characters in the string literal are ignored (i.e., removed from the string).
— If the result of the first step is an empty string literal, the string is assigned the empty string.
— Otherwise, the string is assigned the remaining characters in the string literal.

For example:

string s1 = "hello\0world"; // sets s1 to "helloworld"

As a second example:

reg [15:0] r;
integer i = 1;
string b = "";
string a = {"Hi", b};
b = "Hi"; // OK
b = {5{"Hi"}}; // OK
a = {i{"Hi"}}; // OK (non constant replication)
r = {i{"Hi"}}; // invalid (non constant replication)
a = {i{b}}; // OK
a = {a,b}; // OK
a = {"Hi",b}; // OK
r = {"H",""}; // yields "H\0". "" is converted to 8’b0
b = {"H",""}; // yields "H". "" is the empty string
Copyright © 2014 Accellera Systems Initiative. 26

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
3.4 Parameters

The syntax for parameter declarations is shown in Syntax 3-2.

The list of parameter assignments shall be a comma-separated list of assignments, where the right hand side
of the assignment, called the initializer, shall be a constant expression, that is, an expression containing only
constant numbers and previously defined parameters.

For parameters defined as arrays, the initializer shall be a constant_param_arrayinit expression which is a
list of constant expressions containing only constant numbers and previously defined parameters using an
assignment pattern (see 4.2.14) , i.e. within '{ and } delimiters.

Parameters represent constants, hence it is illegal to modify their value at runtime. However, parameters can
be modified at compilation time to have values which are different from those specified in the declaration
assignment. This allows customization of module instances. A parameter can be modified with the def-
param statement or in the module_instance statement. It is not legal to use hierarchical name referencing
(from within the analog block) to access external analog variables or parameters.

local_parameter_declaration ::= // from A.2.1.1
localparam [signed] [range] list_of_param_assignments

| localparam parameter_type list_of_param_assignments
parameter_declaration ::=

parameter [signed] [range] list_of_param_assignments

Table 3-3—String operators

Operator Semantics

Str1 == Str2 Equality. Checks whether the two strings are equal. Result is 1 if they are equal and
0 if they are not. Both strings can be of type string, or one of them can be a
string literal which is implicitly converted to a string type for the comparison. If
both operands are string literals, the operator is the same Verilog equality operator
as for integer types.

Str1 != Str2 Inequality. Logical negation of ==

Str1 < Str2
Str1 <= Str2
Str1 > Str2
Str1 >= Str2

Comparison. Relational operators return 1 if the corresponding condition is true
using the lexicographical ordering of the two strings Str1 and Str2. Both oper-
ands can be of type string, or one of them can be a string literal which is implic-
itly converted to a string type for the comparison.

{Str1,Str2,...,Strn} Concatenation. Each operand can be of type string or a string literal (it shall be
implicitly converted to type string). If at least one operand is of type string,
then the expression evaluates to the concatenated string and is of type string. If
all the operands are string literals, then the expression behaves like a Verilog con-
catenation of integral types; if the result is then used in an expression involving
string types, it is implicitly converted to the string type.

{multiplier{Str}} Replication. Str can be of type string or a string literal. multiplier must be
of integral type and can be nonconstant. If multiplier is nonconstant or Str is
of type string, the result is a string containing N concatenated copies of Str,
where N is specified by multiplier. If Str is a literal and multiplier is
constant, the expression behaves like numeric replication in Verilog (if the result is
used in another expression involving string types, it is implicitly converted to the
string type).
27 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
| parameter parameter_type list_of_param_assignments
specparam_declaration ::= specparam [range] list_of_specparam_assignments ;
parameter_type ::=

integer | real | realtime | time | string
aliasparam_declaration ::= aliasparam parameter_identifier = parameter_identifier ;
list_of_param_assignments ::= param_assignment { , param_assignment } // from A.2.3
param_assignment ::= // from A.2.4

parameter_identifier = constant_mintypmax_expression { value_range }
| parameter_identifier range = constant_arrayinit { value_range }

range ::= [msb_constant_expression : lsb_constant_expression] // from A.2.5
value_range ::=

value_range_type (value_range_expression : value_range_expression)
| value_range_type (value_range_expression : value_range_expression]
| value_range_type [value_range_expression : value_range_expression)
| value_range_type [value_range_expression : value_range_expression]
| value_range_type '{ string { , string } }
| exclude constant_expression

value_range_type :: = from | exclude
value_range_expression ::= constant_expression | -inf | inf

Syntax 3-2—Syntax for parameter declaration

By nature, analog behavioral specifications are characterized more extensively in terms of parameters than
their digital counterparts. There are three fundamental extensions to the parameter declarations defined in
IEEE Std 1364-2005 Verilog HDL:

— A range of permissible values can be defined for each parameter. In IEEE Std 1364-2005 Verilog
HDL, this check had to be done in the user’s model or was left as an implementation specific detail.

— Parameter arrays of basic integer and real data types can be specified.
— String parameters may be declared.

3.4.1 Type specification

The parameter declaration can contain an optional type specification. In this sense, the parameter key-
word acts more as a type qualifier than a type specifier. A default value for the parameter shall be specified.

The following examples illustrate this concept:

parameter real slew_rate = 1e-3;
parameter integer size = 16;

If the type of a parameter is not specified, it is derived from the type of the final value assigned to the param-
eter, after any value overrides have been applied, as in IEEE Std 1364-2005 Verilog HDL. Note that the type
of a string parameter (see 3.4.6) and any of the array parameters (see 3.4.4) is mandatory.

If the type of the parameter is specified as integer or real, and the value assigned to the parameter con-
flicts with the type of the parameter, the value is converted to the type of the parameter (see 4.2.1.1). No
conversion shall be applied for strings; it shall be an error to assign a numeric value to a parameter declared
as string or to assign a string value to a real parameter, whether that parameter was declared as real
or had its type derived from the type of the value of the constant expression.
Copyright © 2014 Accellera Systems Initiative. 28

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Example:

parameter real size = 10;

Here, size is coerced to 10.0.

3.4.2 Value range specification

A parameter declaration can contain optional specifications of the permissible range of the values of a
parameter. More than one range can be specified for inclusion or exclusion of values as legal values for the
parameter.

Brackets, [and], indicate inclusion of the end points in the valid range. Parentheses, (and), indicate
exclusion of the end points from the valid range. It is possible to include one end point and not the other
using [) and (]. The first expression in the range shall be numerically smaller than the second expres-
sion in the range.

Examples:

parameter real neg_rail = -15 from [-50:0);
parameter integer pos_rail = 15 from (0:50);
parameter real gain = 1 from [1:1000];

Here, the default value for neg_rail is -15 and it is only allowed to acquire values within the range of
-50 <= neg_rail < 0. Similarly, the default value for parameter pos_rail is 15 and it is only allowed
to acquire values within the range of 0 < pos_rail < 50. And, the default value for gain is 1 and it is
allowed to acquire values within the range of 1 <= gain <= 1000.

The keyword inf can be used to indicate infinity. If preceded by a negative sign, it indicates negative infin-
ity.

Example:

parameter real val3=0 from [0:inf) exclude (10:20) exclude (30:40];

A single value can be excluded from the possible valid values for a parameter.

Example:

parameter real res = 1.0 exclude 0;

Here, the value of a parameter is checked against the specified range. Range checking applies to the value of
the parameter for the instance and not against the default values specified in the device. It shall be an error
only if the value of the parameter is out of range during simulation.

Valid values of string parameters are indicated differently. The from keyword may be used with a list of
valid string values, or the exclude keyword may be used with a list of invalid string values. In either case, the
list is constructed using an assignment pattern (see 4.2.14), i.e. enclosed in braces preceded by an apostro-
phe, '{ }, and the items are separated by commas.

Examples:

parameter string transistortype = "NMOS" from '{ "NMOS", "PMOS" };
parameter string filename = "output.dat" exclude '{ "" };
29 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
3.4.3 Parameter units and descriptions

The standard attributes for descriptions and units, described in , can be used for parameters.

Example:

(* desc="Resistance", units="Ohms" *)
parameter real res = 1.0 from [0:inf);

The units and descriptions are only for documentation of the module; in particular, no dimensional analysis
is performed on the units. However, it is often important for the user to know the units of a parameter, such
as an angle that could be specified in radians or degrees. It should be noted that the ‘timescale directive
of IEEE Std 1364-2005 Verilog HDL also affects units throughout the module, which can be confusing to
the user.

The units and descriptions are of particular value for compact models, where the number of parameters is
large and the description is not always clear from the parameter name. Simulators can use this information
when generating help messages for a module; many SPICE-like simulators can generate help messages with
this information for built-in primitives.

Units and descriptions specified for block-level parameters shall be ignored by the simulator, but can be
used for documentation purposes.

3.4.4 Parameter arrays

Verilog-AMS HDL includes behavioral extensions which utilize arrays. It requires these arrays be initialized
in their definitions and allows overriding their values, as with other parameter types. The declaration of
arrays of parameters is in a similar manner to that of parameters and register arrays of reals and integers in
IEEE Std 1364-2005 Verilog HDL.

Parameter arrays have the following restrictions. Failure to follow these restrictions shall result in an error.
— A type of a parameter array shall be given in the declaration.
— An array assigned to an instance of a module to override the default value of an array parameter

shall be of the exact size of the parameter array, as determined by its declaration.
— Since array range in the parameter array declaration may depend on previously-declared parameters,

the array size may be changed by overriding the appropriate parameters. If the array size is changed,
the parameter array shall be assigned an array of the new size from the same module as the parame-
ter assignment that changed the parameter array size.

Example:

parameter real poles[0:3] = '{ 1.0, 3.198, 4.554, 2.00 };

3.4.5 Local parameters

IEEE Std 1364-2005 Verilog HDL local parameters, identified by the localparam keyword, are identical
to parameters except that they cannot directly be modified with the defparam statement or by the ordered
or named parameter value assignment, as described in 6.3. Local parameters can be assigned to a constant
expression containing a parameter which can be modified with the defparam statement or by the ordered
or named parameter value assignment.
Copyright © 2014 Accellera Systems Initiative. 30

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
3.4.6 String parameters

String parameters can be declared. Strings are useful for parameters that act as flags, where the correspon-
dence between numerical values and the flag values may not be obvious. The set of allowed values for the
string can be specified as a comma-separated list of strings inside curly braces. String parameters may be
used with the string operators listed in Table 3-3.

Example:

module ebersmoll (c,b,e);
inout c, b, e;
electrical c, b, e;
parameter string transistortype = "NPN" from '{ "NPN", "PNP" };
parameter real alphaf = 0.99 from (0:inf);
parameter real alphar = 0.5 from (0:inf);
parameter real ies = 1.0e-17 from (0:inf);
parameter real ics = 1.0e-17 from (0:inf);
real sign, ifor, irev;
analog begin

sign = (transistortype == "NPN") ? 1.0 : -1.0;
ifor = ies * (limexp(sign*V(b,e)/$vt)-1);
irev = ics * (limexp(sign*V(b,c)/$vt)-1);
I(b,e) <+ sign*(ifor - alphar * irev);
I(b,c) <+ sign*(irev - alphaf * ifor);

end
endmodule

Note how the string parameter transistortype associates the string "PNP" with a negative one (-1) value
for the variable sign. It is common in compact modeling of transistors for the equations to be formulated
for NPN or NMOS devices, and behavior of a PNP or PMOS can be described by multiplying all the volt-
ages and currents by -1, even though the “p” denotes positively-charged carriers in the channel of the
PMOS.

3.4.7 Parameter aliases

Aliases can be defined for parameters. This allows an alternate name to be used when overriding module
parameter values as described in 6.3. Parameters with different names may be used for the same purpose in
different simulators; some compact models accept parameter names with the letter “O” in place of the num-
ber “0.”

Parameter aliases are subject to the following rules.
— The type of an alias (real, integer, or string) shall be determined by the original parameter,

as is its range of allowed values, if specified.
— The alias_identifier shall not occur anywhere else in the module; in particular, it shall not conflict

with a different parameter_identifier, and the equations in the module shall reference the parameter
by its original name, not the alias.

— Multiple aliases can point to the same parameter.
— When overriding parameters, it shall be an error to specify an override for a parameter by its original

name and one or more aliases, or by more than one alias, regardless of how the override is done (by
name or using the defparam statement).

— When the simulator generates a list of parameter values used, such as for an operating point analysis,
only the original name shall appear in the list.
31 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
For example, suppose a module named nmos2 has the following declarations in the module:

parameter real dtemp = 0 from [-‘P_CELSIUS0:inf);
aliasparam trise = dtemp;

Then the following two instantiations of the module are valid:

nmos2 #(.trise(5)) m1(.d(d), .g(g), .s(s), .b(b));
nmos2 #(.dtemp(5)) m2(.d(d), .g(g), .s(s), .b(b));

and the value of the parameter dtemp, as used in the module equations for both instances, is 5.

This last instantiation is an error:

nmos2 #(.trise(5), .dtemp(5)) m3(.d(d), .g(g), .s(s), .b(b)); //error

because an override is specified for the parameter dtemp and its alias, even though the values are equal.

Parameter aliases may also be declared for the hierarchical parameter system functions (see 9.18) as in the
example below:

aliasparam m = $mfactor;

3.4.8 Multidimensional parameter array examples

The following example demonstrates the usage of a multidimensional real array parameter, a multidimen-
sional real array variable, a multidimensional string array variable and various usages of assignment pat-
terns.

module test;
electrical out[0:2];
electrical in[0:2];
/* Instantiate crosstalk module passing a
 * multidimensional parameter array literal
 * for channel coupling
 */
crosstalk #(.c('{'{0.0,0.1,0.1},'{0.1,0.0,0.1},'{0.1,0.1,0.0}}))

C1(out,in,1'b1);

gen G1(in);
sink S1(out);

endmodule

module crosstalk(out, in, distort_enable);
input in[0:2];
input distort_enable;
output out[0:2];
// A multidimensional real parameter array for channel coupling
parameter real c[0:2][0:2] =

'{'{0.0,0.2,0.2},'{0.2,0.0,0.2},'{0.2,0.2,0.0}};

electrical in[0:2];
electrical out[0:2];

/* A multidimensional real variable to hold the distortion calculations
 * all elements are initialized to 0.0 using
 * an assignment pattern and replication operator
 */
Copyright © 2014 Accellera Systems Initiative. 32

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
real distort[0:2][0:2] = '{ 3{ '{3{0.0}}}};

/* multidimensional string to flag excessive distortion
 * all elements are initialized to " " using
 * an assignment pattern and replication operator
 */
string above_0p5[0:2][0:2] = '{ 3{ '{3{" "}}}};

real in_val[0:2];
integer ii, jj;
analog begin

// assign to variable using an assignment pattern
in_val = '{V(in[0]),V(in[1],V(in[2])};

if (distort_enable) begin
for(ii=0; ii <= 2; ii++) begin

for (jj=0; jj<= 2; jj++) begin
distort[ii][jj] = c[ii][jj]*in_val[jj];
if (distort[ii][jj] > 0.1)

above_0p5[ii][jj] = "*";
end

end
end

V(out[0]) <+ in_val[0] + distort[0][1] + distort[0][2];
V(out[1]) <+ distort[1][0] + in_val[1] + distort[1][2];
V(out[2]) <+ distort[2][0] + distort[2][1] + in_val[2];

@(final_step) begin
$display("Table of distortions greater than 0.5");
$display("#012"); // write the table header
for(ii=0; ii <= 2; ii++) begin

$write("%0d",ii); // %0d means write int in minimum width
for (jj=0; jj<= 2; jj++) begin

$write(above_0p5[ii][jj]);
end
$display; // print a newline

end
end

end
endmodule

3.5 Genvars

Genvars are integer-valued variables which compose static expressions for instantiating structure behavior-
ally such as accessing analog signals within behavioral looping constructs. The syntax for declaring genvar
variables is shown in Syntax 3-3.

genvar_declaration ::= // from A.4.2
genvar list_of_genvar_identifiers ;

list_of_genvar_identifiers ::=
genvar_identifier { , genvar_identifier }

Syntax 3-3—Syntax for genvar declaration
33 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The static nature of genvar variables is derived from the limitations upon the contexts in which their values
can be assigned.

Examples:

genvar i;
analog begin

...
for (i = 0; i < 8; i = i + 1) begin

V(out[i]) <+ transition(value[i], td, tr);
end
...

end

The genvar variable i can only be assigned within the for-loop control. Assignments to the genvar variable
i can consist only of expressions of static values, e.g., parameters, literals, and other genvar variables.

3.6 Net_discipline

In addition to the data types supported by IEEE Std 1364-2005 Verilog HDL, an additional data type,
net_discipline, is introduced in Verilog-AMS HDL for continuous time and mixed-signal simulation.
net_discipline is used to declare analog nets, as well as declaring the domains of digital nets and regs.

A signal can be digital, analog, or mixed, and is a hierarchical collection of nets which are contiguous
(because of port connections). For analog and mixed signals, a single node is associated with all continuous
net segments of the signal. The fundamental characteristic of analog and mixed signals is the values of the
associated node are determined by the simultaneous solution of equations defined by the instances con-
nected to the node using Kirchhoff’s conservation laws. In general, a node represents a point of physical
connections between nets of continuous-time description and it obeys conservation-law semantics.

A net is characterized by the discipline it follows. For example, all low-voltage nets have certain common
characteristics, all mechanical nets have certain common characteristics, etc. Therefore, a net is always
declared as a type of discipline. In this sense, a discipline is a user-defined type for declaring a net.

A discipline is characterized by the domain and the attributes defined in the natures for potential and
flow.

3.6.1 Natures

A nature is a collection of attributes. In Verilog-AMS HDL, there are several pre-defined attributes. In addi-
tion, user-defined attributes can be declared and assigned constant values in a nature.

The nature declarations are at the same level as discipline and module declarations in the source text. That is,
natures are declared at the top level and nature declarations do not nest inside other nature declarations, dis-
cipline declarations, or module declarations.

The syntax for defining a nature is shown in Syntax 3-4.

nature_declaration ::= // from A.1.6
nature nature_identifier [: parent_nature] [;]

{ nature_item }
endnature

parent_nature ::=
Copyright © 2014 Accellera Systems Initiative. 34

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
nature_identifier
| discipline_identifier . potential_or_flow

nature_item ::= nature_attribute
nature_attribute ::= nature_attribute_identifier = nature_attribute_expression ;
potential_or_flow ::= potential | flow // from A.1.7
nature_attribute_identifier ::= // from A.9.3

abstol | access | ddt_nature | idt_nature | units | identifier

Syntax 3-4—Syntax for nature declaration

A nature shall be defined between the keywords nature and endnature. Each nature definition shall
have a unique identifier as the name of the nature and shall include all the required attributes specified in
3.6.1.2.

Examples:

nature current;
units = "A";
access = I;
idt_nature = charge;
abstol = 1u;

endnature

nature voltage;
units = "V";
access = V;
abstol = 1u;

endnature

3.6.1.1 Derived natures

A nature can be derived from an already declared nature. This allows the new nature to have the same attri-
butes as the attributes of the existing nature. The new nature is called a derived nature and the existing
nature is called a parent nature. If a nature is not derived from any other nature, it is called a base nature.

In order to derive a new nature from an existing nature, the new nature name shall be followed by a colon
(:) and the name of the parent nature in the nature definition.

A derived nature can declare additional attributes or override attribute values of the parent nature, with cer-
tain restrictions (as outlined in 3.6.1.2) for the predefined attributes.

The attributes of the derived nature are accessed in the same manner as accessing attributes of any other
nature.

Examples:

nature ttl_curr;
units = "A";
access = I;
abstol = 1u;

endnature

// An alias
nature ttl_net_curr : ttl_curr;
35 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
endnature

nature new_curr : ttl_curr; // derived, but different
abstol = 1m; // modified for this nature
maxval = 12.3; // new attribute for this nature

endnature

3.6.1.2 Attributes

Attributes define the value of certain quantities which characterize the nature. There are five predefined
attributes: abstol, access, idt_nature, ddt_nature, and units. In addition, user-defined attri-
butes can be defined in a nature (see 3.6.1.3). Attribute declaration assigns a constant expression to the attri-
bute name, as shown in the example in 3.6.1.1.

abstol
The abstol attribute provides a tolerance measure (metric) for convergence of potential or flow
calculations. It specifies the maximum negligible value for signals associated with the nature.
This attribute is required for all base natures. It is legal for a derived nature to change abstol, but
if left unspecified it shall inherit the abstol from its parent nature. The constant expression
assigned to it shall evaluate to a real value.

access
The access attribute identifies the name for the access function. When the nature is used to bind a
potential, the name is used as an access function for the potential; when the nature is used to bind a
flow, the name is used as an access function for the flow. The usage of access functions is described
further in 4.4.
This attribute is required for all base natures. It is illegal for a derived nature to change the access
attribute; the derived nature always inherits the access attribute of its parent nature. If specified, the
constant expression assigned to it shall be an identifier (by name, not as a string).

idt_nature
The idt_nature attribute provides a relationship between a nature and the nature representing its
time integral.
idt_nature can be used to reduce the need to specified tolerances on the idt() operator. If this
operator is applied directly on nets, the tolerance can be taken from the node, which eliminates the
need to give a tolerance with the operator.
If specified, the constant expression assigned to idt_nature shall be the name (not a string) of a
nature which is defined elsewhere. It is possible for a nature to be self-referencing with respect to its
idt_nature attribute. In other words, the value of idt_nature can be the nature that the
attribute itself is associated with.
The idt_nature attribute is optional; the default value is the nature itself. While it is possible
to override the parent’s value of idt_nature using a derived nature, the nature thus specified
shall be related (share the same base nature) to the nature the parent uses for its idt_nature.

ddt_nature
The ddt_nature attribute provides a relationship between a nature and the nature representing its
time derivative.
ddt_nature can be used to reduce the need to specified tolerances on the ddt() operator. If this
operator is applied directly on nets, the tolerance can be taken from the node, eliminating the need to
give a tolerance with the operator.
Copyright © 2014 Accellera Systems Initiative. 36

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
If specified, the constant expression assigned to ddt_nature shall be the name (not a string) of a
nature which is defined elsewhere. It is possible for a nature to be self-referencing with respect to its
ddt_nature attribute. In other words, the value of ddt_nature can be the nature that the
attribute itself is associated with.
The ddt_nature attribute is optional; the default value is the nature itself. While it is possible
to override the parent’s value of ddt_nature using a derived nature, the nature thus specified
shall be related (share the same base nature) to the nature the parent uses for its ddt_nature.

units
The units attribute provides a binding between the value of the access function and the units for
that value. The units field is provided so simulators can annotate the continuous signals with their
units and is also used in the net compatibility rule check.
This attribute is required for all base natures. It is illegal for a derived nature to define or change the
units; the derived nature always inherits its parent nature units. If specified, the constant
expression assigned to it shall be a string.

3.6.1.3 User-defined attributes

In addition to the predefined attributes listed above, a nature can specify other attributes which can be useful
for analog modeling. Typical examples include certain maximum and minimum values to define a valid
range.

A user-defined attribute can be declared in the same manner as any predefined attribute. The name of the
attribute shall be unique in the nature being defined and the value being assigned to the attribute shall be
constant.

3.6.2 Disciplines

A discipline description consists of specifying a domain type and binding any natures to potential or
flow.

The syntax for declaring a discipline is shown in Syntax 3-5.

discipline_declaration ::= // from A.1.7
discipline discipline_identifier [;]

{ discipline_item }
enddiscipline

discipline_item ::=
nature_binding

| discipline_domain_binding
| nature_attribute_override

nature_binding ::= potential_or_flow nature_identifier ;
potential_or_flow ::= potential | flow
discipline_domain_binding ::= domain discrete_or_continuous ;
discrete_or_continuous ::= discrete | continuous
nature_attribute_override ::= potential_or_flow . nature_attribute

Syntax 3-5—Syntax for discipline declaration
37 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
A discipline shall be defined between the keywords discipline and enddiscipline. Each discipline
shall have a unique identifier as the name of the discipline.

The discipline declarations are at the same level as nature and module declarations in the source text. That
is, disciplines are declared at the top level and discipline declarations do not nest inside other discipline dec-
larations, nature declarations, or module declarations. Analog behavioral nets (nodes) must have a discipline
defined for them but interconnect and digital nets do not. It is possible to set the discipline of interconnect
and digital nets through discipline declaration with hierarchical references to these nets. It shall be an error
to hierarchically override the discipline of a net that was explicitly declared unless it is a compatible disci-
pline.

3.6.2.1 Nature binding

Each discipline can bind a nature to its potential and flow.

Only the name of the nature is specified in the discipline. The nature binding for potential is specified using
the keyword potential. The nature binding for flow is specified using the keyword flow.

The access function defined in the nature bound to potential is used in the model to describe the signal-flow
which obeys Kirchhoff’s Potential Law (KPL). This access function is called the potential access function.

The access function defined in the nature bound to flow is used in the model to describe a quantity which
obeys Kirchhoff’s Flow Law (KFL). This access function is called the flow access function.

Disciplines with two natures are called conservative disciplines and the nets associated with conservative
disciplines are called conservative nets. Conservative disciplines shall not have the same nature specified
for both the potential and the flow. Disciplines with a single nature are called signal-flow disciplines
and the nets with signal-flow disciplines are called signal-flow nets. A signal-flow discipline may specify
either the potential or the flow nature, as shown in the following examples.

Examples:

Conservative discipline

discipline electrical;
potential Voltage;
flow Current;

enddiscipline

Signal-flow disciplines

discipline voltage;
potential Voltage;

enddiscipline

discipline current;
flow Current;

enddiscipline

Multi-disciplinary example

Disciplines in Verilog-AMS HDL allow designs of multiple disciplines to be easily defined and simulated.
Disciplines can be used to allow unique tolerances based on the size of the signals and outputs displayed in
the actual units of the discipline. This example shows how an application spanning multiple disciplines can
be modeled in Verilog-AMS HDL. It models a DC-motor driven by a voltage source.
Copyright © 2014 Accellera Systems Initiative. 38

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
module motorckt;
parameter real freq=100;
electrical gnd; ground gnd;

electrical drive;
rotational shaft;

motor m1 (drive, gnd, shaft);
vsine #(.freq(freq), .ampl(1.0)) v1 (drive, gnd);

endmodule

// vp: positive terminal [V,A] vn: negative terminal [V,A]
// shaft:motor shaft [rad,Nm]
// INSTANCE parameters
// Km = motor constant [Vs/rad] Kf = flux constant [Nm/A]
// j = inertia factor [Nms^2/rad] D= drag (friction) [Nms/rad]
// Rm = motor resistance [Ohms] Lm = motor inductance [H]
// A model of a DC motor driving a shaft
module motor(vp, vn, shaft);

inout vp, vn, shaft;
electrical vp, vn;
rotational shaft;

parameter real Km = 4.5, Kf = 6.2;
parameter real j = 0.004, D = 0.1;
parameter real Rm = 5.0, Lm = 0.02;

analog begin
V(vp, vn) <+ Km*Theta(shaft) + Rm*I(vp, vn) + ddt(Lm*I(vp, vn));
Tau(shaft) <+ Kf*I(vp, vn) - D*Theta(shaft) - ddt(j*Theta(shaft));

end
endmodule

3.6.2.2 Domain binding

Analog signal values are represented in continuous time, whereas digital signal values are represented in dis-
crete time. The domain attribute of the discipline stores this property of the signal. It takes two possible
values, discrete or continuous. Signals with continuous-time domains are real valued. Signals with
discrete-time domains can either be binary (0, 1, X, or Z), integer or real values.

Examples:

discipline electrical;
domain continuous;
potential Voltage;
flow Current;

enddiscipline

discipline ddiscrete;
domain discrete;

enddiscipline

The domain attribute is optional. The default value for domain is continuous for disciplines which
specify nature bindings. It is an error for a discipline to have a domain binding of discrete if it has
nature bindings.
39 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
3.6.2.3 Natureless disciplines and domainless disciplines

It is possible to define a discipline with no nature bindings. These are known as natureless disciplines (his-
torically referred to as empty disciplines).

Such disciplines may have a domain binding or they may be domainless, thus allowing the domain to be
determined by the connectivity of the net (see 7.4 and Annex F).

Disciplines without a domain binding and without a nature binding are known as domainless disciplines.
The domain binding of a discipline with nature bindings defaults to continuous if not specified. A
discipline with nature bindings cannot be a domainless discipline.

Example:

discipline natureless;
domain continuous;

enddiscipline

discipline domainless
enddiscipline

Usage of domainless disciplines and continuous natureless disciplines is discouraged. Domainless and con-
tinuous natureless disciplines are provided for backward compatibility with previous versions of the Ver-
ilog-AMS and Verilog-A standards. Furthermore, domainless disciplines are deprecated and the definition
of a domainless discipline may be made an error in future versions of Verilog-AMS HDL.

3.6.2.4 Discipline of nets and undeclared nets

It is possible for a module to have nets where there are no discipline declarations. If such a net appears
bound only to ports in module instantiations, it may have no declaration at all or may be declared to have a
net type such as wire, tri, wand, wor, etc. If it is referenced in behavioral code, then it must have a net
type.

In these cases, the net shall be treated as having no discipline. If the net is referenced in behavioral code,
then it shall be treated as having no discipline with a domain binding of discrete, otherwise it shall be
treated as having no discipline and no domain binding. If a net has a wire type but is not connected to behav-
ioral code (interconnect) and it resolved to domain discrete then its wire type shall be used in any net type
resolution steps per IEEE Std 1364-2005 Verilog HDL.

The discipline and domain of all nets of a mixed or continuous signal is determined by discipline resolution
if these nets do not already have a declared discipline and domain binding (see 7.4 and Annex F).

3.6.2.5 Overriding nature attributes from discipline

A discipline can override the value of the bound nature for the pre-defined attributes (except as restricted by
3.6.1.2), as shown for the flow ttl_curr in the example below. To do so from a discipline declaration, the
bound nature and attribute needs to be defined, as shown for the abstol value within the discipline ttl in
the example below. The general form is shown as the attr_override terminal in Syntax 3-5: the keyword
flow or potential, then the hierarchical separator . and the attribute name, and, finally, set all of this
equal to (=) the new value (e.g., flow.abstol = 10u).

Examples:

nature ttl_curr;
units = "A";
Copyright © 2014 Accellera Systems Initiative. 40

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
access = I;
abstol = 1u;

endnature

nature ttl_volt;
units = "V";
access = V;
abstol = 100u;

endnature

discipline ttl;
potential ttl_volt;
flow ttl_curr;
flow.abstol = 10u;

enddiscipline

3.6.2.6 Deriving natures from disciplines

A nature can be derived from the nature bound to the potential or flow in a discipline. This allows the
new nature to have the same attributes as the attributes for the nature bound to the potential or the flow
of the discipline.

If the nature binding to the potential or the flow of a discipline changes, the new nature shall automatically
inherit the attributes for the changed nature.

In order to derive a new nature from flow or potential of a discipline, the nature declaration shall also
include the discipline name followed by the hierarchical separator (.) and the keyword flow or poten-
tial, as shown for ttl_net_curr in the example below.

A nature derived from the flow or potential of a discipline can declare additional attributes or override val-
ues of the attributes already declared.

Examples:

nature ttl_net_curr : ttl.flow; // from the example in 3.6.2.5
endnature // abstol = 10u as modified in ttl

nature ttl_net_volt : ttl.potential; // from the example in 3.6.2.5
abstol = 1m; // modified for this nature
maxval = 12.3; // new attribute for this nature

endnature

3.6.2.7 User-defined attributes

Like natures, a discipline can specify user-defined attributes. Discipline user-defined attributes are use-
ful for the same reasons as nature user-defined attributes (see 3.6.1.3).

3.6.3 Net discipline declaration

Each net_discipline declaration associates nets and regs with an already declared discipline. Syntax 3-6
shows how to declare disciplines of nets and regs.

net_declaration ::= // from A.2.1.3
...

| discipline_identifier [range] list_of_net_identifiers ;
41 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
| discipline_identifier [range] list_of_net_decl_assignments ;
...

range ::= [msb_constant_expression : lsb_constant_expression] // from A.2.5
list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment } // from A.2.3
list_of_net_identifiers ::= ams_net_identifier { , ams_net_identifier }
net_decl_assignment ::= ams_net_identifier = expression // from A.2.4

Syntax 3-6—Syntax for net discipline declaration

If a range is specified for a net, the net is called a vector net; otherwise it is called a scalar net. A vector net
is also called a bus.

Examples:

electrical [MSB:LSB] n1; // MSB and LSB are parameters
voltage [5:0] n2, n3;
magnetic inductor;
ddiscrete [10:1] connector1;

Nets represent the abstraction of information about signals. As with ports, nets represent component inter-
connections. Nets declared in the module interface define the ports to the module (see 6.5.4).

A net used for modeling a conservative system shall have a discipline with both access functions (poten-
tial and flow) defined. When modeling a signal-flow system, the discipline of a net can have only
potential access functions. When modeling a discrete system, the discipline of a net can only have a
domain of discrete defined.

Nets declared with a natureless discipline or declared without a discipline do not have declared natures, so
such nets can not be used in analog behavioral descriptions (because the access functions are not known).
However, such nets can be used in structural descriptions, where they inherit the natures from the ports of
the instances of modules that connect to them.

3.6.3.1 Net descriptions

Nets can be declared with a description attribute. This information can be used by the simulator to generate
help messages for a module.

Example:

(* desc="drain terminal" *) electrical d;

If a net is also a module port, the description attribute may also be specified on the port declaration line (in
which the net is declared as input, inout, or output). If the description attribute is specified for the
same net_identifier in both the net discipline declaration and the port declaration, then the last attribute value
shall be used and the tool can give a warning that a duplicate attribute specification has occurred.

3.6.3.2 Net Discipline Initial (Nodeset) Values

Nets with continuous disciplines are allowed to have initializers on their net discipline declarations; how-
ever, nets of non-continuous disciplines are not.

electrical a = 5.0;
electrical [0:4] bus = '{2.3,4.5,,6.0};
Copyright © 2014 Accellera Systems Initiative. 42

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
mechanical top.foo.w = 250.0;

The initializer shall be a constant_expression and will be used as a nodeset value for the potential of the net
by the analog solver. In the case of analog buses, a constant array expression is used as an initializer. A null
value in the constant array indicates that no nodeset value is being specified for this element of the bus.

If different nets of a node have conflicting initializers, then initializers on hierarchical net declarations win.
If there are multiple hierarchical declarations, then the declaration on the highest level wins. If there are mul-
tiple hierarchical declarations on the highest level, then it is a race condition for which the initializer wins. If
the multiple conflicting initializers are not hierarchical, then it is also a race condition for which the initial-
izer wins.

3.6.4 Ground declaration

Each ground declaration is associated with an already declared net of continuous discipline. The node asso-
ciated with the net will be the global reference node in the circuit. The net must be assigned a continuous
discipline to be declared ground.

Syntax 3-7 shows the syntax used for declaring the global reference node (ground).

net_declaration ::= // from A.2.1.3
...

| ground [discipline_identifier] [range] list_of_net_identifiers ;

Syntax 3-7—Syntax for declaring ground

Examples:

module loadedsrc(in, out);
input in;
output out;
electrical in, out;
electrical gnd;
ground gnd;
parameter real srcval = 5.0;

resistor #(.r(10K)) r1(out,gnd);
analog begin

V(out) <+ V(in,gnd)*2;
end

endmodule

3.6.5 Implicit nets

Nets can be used in structural descriptions without being declared. In this case, the net’s discipline and
domain binding will be determined by discipline resolution (see 7.4 and Annex F).

Examples:

module top(i1, i2, o1, o2, o3);
input i1, i2;
output o1, o2, o3;
electrical i1, i2, o1, o2, o3;
43 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
// ab1, ab2, cb1, cb2 are implicit nets, not declared
blk_a a1(i1, ab1);
blk_a a2(i2, ab2);
blk_b b1(ab1, cb1);
blk_b b2(ab2, cb2);
blk_c c1(o1, o2, o3, cb1, cb2);

endmodule

3.7 Real net declarations

The wreal, or real net data type, represents a real-valued physical connection between structural entities. A
wreal net shall not store its value. A wreal net can be used for real-valued nets which are driven by a single
driver, such as a continuous assignment. If no driver is connected to a wreal net, its value shall be zero
(0.0). Unlike other digital nets which have an initial value of ‘z’, wreal nets shall have an initial value of
zero.

wreal nets can only be connected to compatible interconnect and other wreal or real expressions. They can-
not be connected to any other wires, although connection to explicitly declared 64-bit wires can be done via
system tasks $realtobits and $bitstoreal. Compatible interconnect are nets of type wire, tri, and wreal
where the IEEE Std 1364-2005 Verilog HDL net resolution is extended for wreal. When the two nets con-
nected by a port are of net type wreal and wire/tri, the resulting single net will be assigned as wreal.
Connection to other net types will result in an error.

Syntax 3-8 shows the syntax for declaring digital nets.

net_declaration ::= // from A.2.1.3
...

| wreal [discipline_identifier] [range] list_of_net_identifiers ;
| wreal [discipline_identifier] [range] list_of_net_decl_assignments ;

Syntax 3-8—Syntax for declaring digital nets

Examples:

module drv(in, out);
input in;
output out;
wreal in;
electrical out;
analog begin

V(out) <+ in;
end

endmodule

module top();
real stim;
electrical load;
wreal wrstim;
assign wrstim = stim;
drv f1(wrstim, load);
always begin

#1 stim = stim + 0.1;
end

endmodule
Copyright © 2014 Accellera Systems Initiative. 44

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
3.8 Default discipline

Verilog-AMS HDL supports the `default_discipline compiler directive. This directive specifies a
default discrete discipline to be applied to any discrete net which does not have an explicit discipline decla-
ration as part of discipline resolution (see 7.4 and Annex F). A description and its syntax is shown in 10.2.

3.9 Disciplines of primitives

With internal simulator primitives the discipline of the vpiLoConn to be used in discipline resolution during
a mixed-signal simulation must be known. For digital primitives the domain is discrete and thus the disci-
pline is set via the default_discipline directive as it is for digital modules. If the discipline of digital connec-
tions (vpiLoConn) to a mixed net are unknown then the default_discipline must be specified (via the
directive or other vendor specific method). If not specified, an error will result during discipline resolution.

For analog primitives, the discipline will be defined by the attribute port_discipline on that instance. If no
attribute is found then it will acquire the discipline of other compatible continuous disciplines connected to
that net segment. If no disciplines are connected to that net, then the default discipline is set to electrical.
This is further described in E.3.2.2.

3.10 Discipline precedence

While a net itself can be declared only in the module to which it belongs, the discipline of the net can be
specified in a number of ways.

— The discipline name can appear in the declaration of the net.
— The discipline name can be used in a declaration which makes an out of context reference to the net

from another module.

Discipline conflicts can arise if more than one of these methods is applied to the same net. Discipline con-
flicts shall be resolved using the following order of precedence:

1) A declaration from a module other than the module to which the net belongs using an out-of-module
reference, e.g.,

module example1;
electrical example2.net;

endmodule

2) The local declaration of the net in the module to which it belongs, e.g.,

module example2;
electrical net;

endmodule

3) Discipline resolution (see 7.4 and Annex F)

It is not legal to have two different disciplines at the same level of precedence for the same net.

3.11 Net compatibility

Certain operations can be done on nets only if the two (or more) nets are compatible. For example, if an
access function has two nets as arguments, they must be compatible. The following rules shall apply to
determine the compatibility of two (or more) nets:
45 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Discrete Domain Rule: Digital nets with the same signal value type (i.e., real, integer) are compatible
with each other if their disciplines are compatible (i.e., the discipline has a discrete domain or is empty.

Signal Domain Rule: It shall be an error to connect two ports or nets of different domains unless there is a
connect statement (see 7.4) defined between the disciplines of the nets or ports.

Signal Connection Rule: It shall be an error to connect two ports or nets of the same domain with incompat-
ible disciplines.

3.11.1 Discipline and Nature Compatibility

The following rules shall apply to determine discipline compatibility:
— Self Rule (Discipline): A discipline is compatible with itself.
— Natureless Discipline Rule: A natureless discipline is compatible with all other disciplines of the

same domain.
— Domainless Discipline Rule: A domainless discipline is compatible with all disciplines as there is no

nature or domain conflict. Note that domainless disciplines are deprecated.
— Domain Incompatibility Rule: Disciplines with different domain attributes are incompatible.
— Potential Incompatibility Rule: Disciplines with incompatible potential natures are incompatible.
— Flow Incompatibility Rule: Disciplines with incompatible flow natures are incompatible.

The following rules shall apply to determine nature compatibility:
— Self Rule (Nature): A nature is compatible with itself.
— Non-Existent Binding Rule: A nature is compatible with a non-existent discipline binding.
— Base Nature Rule: A derived nature is compatible with its base nature.
— Derived Nature Rule: Two natures are compatible if they are derived from the same base nature.
— Units Value Rule: Two natures are compatible if they have the same value for the units attribute.

The following examples illustrates these rules.
Copyright © 2014 Accellera Systems Initiative. 46

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The following compatibility observations can be made from the above examples:
— Voltage and highvoltage are compatible natures because they both exist and are derived from

the same base natures.
— electrical and highvolt are compatible disciplines because the natures for both potential and

flow exist and are derived from the same base natures.
— electrical and sig_flow_v are compatible disciplines because the nature for potential is same

for both disciplines and the nature for flow does not exist in sig_flow_v.
— electrical and rotational are incompatible disciplines because the natures for both potential

and flow are not derived from the same base natures.
— electrical and sig_flow_x are incompatible disciplines because the nature for both potentials

are not derived from the same base nature.

nature Voltage;
access = V;
units = "V";
abstol = 1u;

endnature

nature Current;
access = I;
units = "A";
abstol = 1p;

endnature

nature highvoltage: Voltage;
abstol = 1;

endnature

discipline electrical;
potential Voltage;
flow Current;

endnature

discipline highvolt;
potential highvoltage;
flow Current;

endnature

discipline sig_flow_v;
potential Voltage;

enddiscipline

discipline sig_flow_i;
flow Current;

enddiscipline

nature Position;
access = X;
units = "m";
abstol = 1u;

endnature

nature Force;
access = F;
units = "N";
abstol = 1n;

endnature

discipline rotational;
potential Position;
flow Force;

enddiscipline

discipline sig_flow_x;
potential Position;

enddiscipline

discipline sig_flow_f;
flow Force;

enddiscipline

discipline domainless;
enddiscipline

discipline ddiscrete;
domain discrete;

enddiscipline

discipline natureless;
domain continuous;

enddiscipline

discipline continuous_elec;
domain continuous;
potential Voltage;
flow Current;

enddiscipline
47 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
— The natureless discipline natureless is compatible with all other disciplines of the same domain
(i.e continuous) because it does not have a potential or a flow nature. Without natures, there can be
no conflicting natures.

— domainless is compatible with all other disciplines from the domainless discipline rule.
— electrical and ddiscrete are incompatible disciplines because the domains are different. A

connect statement must be used to connect nets or ports of these disciplines together.
— electrical and continuous_elec are compatible disciplines because the default domain for

discipline electrical is continuous and the specified natures for potential and flow are the same.

3.12 Branches

A branch is a path between two nets. If both nets are conservative, then the branch is a conservative branch
and it defines a branch potential and a branch flow. If one net is a signal-flow net, then the branch is a signal-
flow branch and it defines either a branch potential or a branch flow, but not both.

Each branch declaration is associated with two nets from which it derives a discipline. These nets are
referred to as the branch terminals. Only one net need be specified, in which case the second net defaults to
ground and the discipline for the branch is derived from the specified net. The disciplines for the specified
nets shall be compatible (see 3.11).

Branches can either be explicitly or implicitly declared. Explicitly declared branches are referred to as
named branches. The syntax for declaring named branches is shown in Syntax 3-9. Unnamed branches are
created by applying an access function (see 4.4 and 5.4.1) to either a net or a pair of nets. If the access func-
tion is applied to a single net, then the branch is formed between that net and the global reference node
(ground). If it is applied to a pair of nets, the branch is formed between the two nets. There shall be at most
one unnamed branch between any two nets or between a net and implicit ground (in addition to any number
of named branches).

branch_declaration ::= // from A.2.1.3
branch (branch_terminal [, branch_terminal]) list_of_branch_identifiers ;

| port_branch_declaration
port_branch_declaration ::=

branch (< port_identifier >) list_of_branch_identifiers ;
| branch (< hierarchical_port_identifier >) list_of_branch_identifiers ;

branch_terminal ::=
net_identifier

| net_identifier [constant_expression]
| net_identifier [constant_range_expression]
| hierarchical_net_identifier
| hierarchical_net_identifier [constant_expression]
| hierarchical_net_identifier [constant_range_expression]

list_of_branch_identifiers ::= // from A.2.3
branch_identifier [range] { , branch_identifier [range] }

Syntax 3-9—Syntax for branch declaration

If one of the terminals of a branch is a vector net, then the other terminal shall either be a scalar net or a vec-
tor net of the same size. In the latter case, the branch is referred to as a vector branch. When both terminals
are vectors, the scalar branches that make up the vector branch connect to the corresponding scalar nets of
the vector terminals, as shown in Figure 3-1.
Copyright © 2014 Accellera Systems Initiative. 48

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

Figure 3-1: Two vector terminals

When one terminal is a vector and the other is a scalar, a singular scalar branch connects to each scalar net in
the vector terminal and each terminal of the vector branch connects to the scalar terminal, as shown in
Figure 3-2.

Figure 3-2: One vector and one scalar terminal

If the range of the vector branch is not specified then the indexing of the vector branch shall start at 0. For
example:

electrical [3:5]a;
electrical [1:3]b;
branch (a,b) br1; // Branch br1 is of size 3 and can be indexed from 0 to 2

3.12.1 Port Branches

A port branch is a special type of branch used to access the flow into a port of a module (see 5.4.3). It is a
branch between the upper and lower connections of the port. A port branch is a scalar branch if the port iden-
tifier is a scalar port. A port branch is a vector branch if the port identifier is a vector port.

Example:
module current_sink(p);

electrical p;
branch (<p>) probe_p;
analog

$strobe("current probed is %g", I(probe_p));
endmodule

Vector Branch

Vector TerminalVector Terminal

Vector Branch

Scalar TerminalVector Terminal
49 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
3.13 Namespace

The following subsections define the namespace.

3.13.1 Nature and discipline

Natures and disciplines are defined at the same level of scope as modules. Thus, identifiers defined as
natures or disciplines have a global scope, which allows nets to be declared inside any module in the same
manner as an instance of a module.

3.13.2 Access functions

Each access function name, defined before a module is parsed, is automatically added to that module’s name
space unless there is another identifier defined with the same name as the access function in that module’s
name space. Furthermore, the access function of each base nature shall be unique.

3.13.3 Net

The scope rules for net identifiers are the same as the scope rules for any other identifier declarations, except
nets can not be declared anywhere other than in the port of a module or in the module itself. A net can only
be declared inside a module scope; a net can not be declared local to a block.

Access functions are uniquely defined for each net based on the discipline of the net. Each access function is
used with the name of the net as its argument and a net can only be accessed through its access functions.

The hierarchical reference character (.) can be used to reference a net across the module boundary accord-
ing to the rules specified in IEEE Std 1364-2005 Verilog HDL.

3.13.4 Branch

The scope rules for branch identifiers are the same as the scope rules for net identifiers. A branch can only
be declared inside a module scope; a branch can not be declared local to a block.

Access functions are uniquely defined for each branch based on the discipline of the branch. The access
function is used with the name of the branch as its argument and a branch can only be accessed through its
access functions.

The hierarchical reference character (.) can be used to reference a branch across the module boundary
according to the rules specified in IEEE Std 1364-2005 Verilog HDL.
Copyright © 2014 Accellera Systems Initiative. 50

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
4. Expressions

4.1 Overview

This section describes the operators and operands available in the Verilog-AMS HDL, and how to use them
to form expressions.

An expression is a construct which combines operands with operators to produce a result which is a func-
tion of the values of the operands and the semantic meaning of the operator. Any legal operand, such as an
integer or an indexed element from an array of reals, without a operator is also considered an expression.
Wherever a value is needed in a Verilog-AMS HDL statement, an expression can be used.

Some statement constructs require an expression to be a constant expression. The operands of a constant
expression consists of constant numbers and parameter names, but they can use any of the operators defined
in Table 4-1, Table 4-14, and Table 4-15.

4.2 Operators

The symbols for the Verilog-AMS HDL operators are similar to those in the C programming language.
Table 4-1 lists these operators.

Table 4-1—Operators

{} {{}} Concatenation, replication

unary +, unary - Unary operators

+ - * / ** Arithmetic

% Modulus

> >= < <= Relational

! Logical negation

&& Logical and

|| Logical or

== Logical equality

!= Logical inequality

=== Case equality

!== Case inequality

~ Bitwise negation

& Bitwise and

| Bitwise inclusive or

^ Bitwise exclusive or

^~ or ~^ Bitwise equivalence

& Reduction and

~& Reduction nand

| Reduction or
51 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
4.2.1 Operators with real operands

The operators shown in Table 4-2 are legal when applied to real operands. All other operators are considered
illegal when used with real operands.

The result of using logical or relational operators on real numbers is an integer value 0 (false) or 1 (true).

If a real expression is used for the replication factor of a concatenation, the expression will first be converted
to an integer value using the rules described in 4.2.1.1, before it is used as the replication factor for the con-
catenation.

4.2.1.1 Real to integer conversion

Real numbers are converted to integers by rounding the real number to the nearest integer, rather than by
truncating it. Implicit conversion takes place when a real number is assigned to an integer. If the fractional
part of the real number is exactly 0.5, it shall be rounded away from zero.

Examples:

The real numbers 35.7 and 35.5 both become 36 when converted to an integer and 35.2 becomes 35.

Converting -1.5 to integer yields -2, converting 1.5 to integer yields 2.

~| Reduction nor

^ Reduction xor

~^ or ^~ Reduction xnor

<< Logical left shift

>> Logical right shift

<<< Arithmetic left shift

>>> Arithmetic right shift

?: Conditional

Table 4-2—Legal operators for use in real expressions

unary + unary - Unary operators

+ - * / ** Arithmetic

% Modulus

> >= < <= Relational

== != Logical equality

! && || Logical

?: Conditional

Table 4-1—Operators (continued)
Copyright © 2014 Accellera Systems Initiative. 52

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
4.2.1.2 Integer to real conversion

Implicit conversion shall take place when an expression is assigned to a real. Individual bits that are x or z in
the net or the variable shall be an error (see 7.3.2).

4.2.1.3 Arithmetic conversion

For operands, a common data type for each operand is determined before the operator is applied. If either
operand is real, the other operand is converted to real. Implicit conversion takes place when a integer num-
ber is used with a real number in an operand.

Examples:

a = 3 + 5.0;

The expression 3 + 5.0 is evaluated by “casting” the integer 3 to the real 3.0, and the result of the
expression is 8.0.

b = 1 / 2;

The above is integer division and the result is 0.

c = 8.0 + (1/2);

(1/2) is treated as integer division, but the result is cast to a real (0.0) during the addition, and the
result of the expression is 8.0.

d = 1 / 2.0;

Since the denominator is expressed as a real number (2.0) the above is treated as real division and
the result is 0.5;

4.2.2 Operator precedence

The precedence order of operators is shown in Table 4-3.

Table 4-3—Precedence rules for operators

+ - ! ~ & ~& | ~| ^ ~^ ^~ (unary) Highest precedence

**

* / %

+ - (binary)

 << >> <<< >>>

 < <= > >=

== != === !==

& (bitwise)

^ ^~ ~^ (bitwise)

| (bitwise)

&&

|| (logical) or (event) , (event)
53 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Operators shown on the same row in Table 4-3 have the same precedence. Rows are arranged in order of
decreasing precedence for the operators. For example, *, /, and % all have the same precedence, which is
higher than that of the binary + and - operators.

All operators associate left to right with the exception of the conditional operator which associates right to
left. Associativity refers to the order in which the operators having the same precedence are evaluated.

In the following example B is added to A and then C is subtracted from the result of A+B.

A + B - C

When operators differ in precedence, the operators with higher precedence associate first.

In the following example, B is divided by C (division has higher precedence than addition) and then the
result is added to A.

A + B / C

Parentheses can be used to change the operator precedence.

(A + B) / C // not the same as A + B / C

4.2.3 Expression evaluation order

The operators follow the associativity rules while evaluating an expression as described in 4.2.2. Some oper-
ators (&&, ||, and ?:) shall use short-circuit evaluation; in other words, some of their operand expressions
shall not be evaluated as long as the expression contains no analog operators and their value is not required
to determine the final value of the operation. All other operators shall not use short-circuit evaluation - all of
their operand expressions are always evaluated. When short circuiting occurs, any side effects or runtime
errors that would have occurred due to evaluation of the short-circuited operand expression shall not occur.

Examples:

integer A, B, C, result;
result = A & (B | C);

If A is known to be zero (0), the result of the expression can be determined as zero (0) without evaluating the
sub-expression B | C.

4.2.4 Arithmetic operators

Table 4-4 shows the binary arithmetic operators.

?: (conditional operator)

{} {{}} Lowest precedence

Table 4-4—Arithmetic operators defined

a + b a plus b

a – b a minus b

Table 4-3—Precedence rules for operators (continued)
Copyright © 2014 Accellera Systems Initiative. 54

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Integer division truncates any fractional part toward zero (0).

The unary arithmetic operators take precedence over the binary operators. Table 4-5 shows the unary opera-
tors.

The modulus operator, (for example a % b), gives the remainder when the first operand is divided by the
second, and thus is zero (0) when b divides a exactly. The result of a modulus operation takes the sign of the
first operand.

It shall be an error to pass zero (0) as the second argument to the modulus operator.

For the case of the modulus operator where either argument is real, the operation performed is:

a % b = ((a/b) < 0) ? (a - ceil(a/b)*b) : (a - floor(a/b)*b);

Table 4-6 gives examples of modulus operations.

4.2.5 Relational operators

Table 4-7 lists and defines the relational operators.

a * b a multiply by b

a / b a divide by b

a % b a modulo b

Table 4-5—Unary operators defined

+m Unary plus m (same as m)

-m Unary minus m

Table 4-6—Examples of modulus operations

Modulus expression Result Comments

11 % 3 2 11/3 yields a remainder of 2.

12 % 3 0 12/3 yields no remainder.

-10 % 3 -1 The result takes the sign of the first operand.

11 % -3 2 The result takes the sign of the first operand.

10 % 3.75 2.5 [10 - floor(10/3.75)*3.75] yields a remainder of 2.5.

Table 4-7—The relational operators defined

a < b a less than b

a > b a greater than b

Table 4-4—Arithmetic operators defined (continued)
55 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
An expression using these relational operators yields the value zero (0) if the specified relation is false or
the value one (1) if it is true.

All the relational operators have the same precedence. Relational operators have lower precedence than
arithmetic operators.

The following examples illustrate the implications of this precedence rule:

a < foo - 1 // this expression is the same as
a < (foo - 1) // this expression, but . . .
foo - (1 < a) // this one is not the same as
foo - 1 < a // this expression

When foo - (1 < a) is evaluated, the relational expression is evaluated first and then either zero (0) or
one (1) is subtracted from foo. When foo - 1 < a is evaluated, the value of foo operand is reduced by
one (1) and then compared with a.

4.2.6 Case equality operators

The case equality operators share the same level of precedence as the logical equality operators. These
operators have limited support in the analog block (see 7.3.2). Additional information on these operators can
also be found in the IEEE Std 1364-2005 Verilog HDL.

4.2.7 Logical equality operators

The logical equality operators rank lower in precedence than the relational operators. Table 4-8 lists and
defines the equality operators.

Both equality operators have the same precedence. These operators compare the value of the operands. As
with the relational operators, the result shall be zero (0) if comparison fails, one (1) if it succeeds.

4.2.8 Logical operators

The operators logical and (&&) and logical or (||) are logical connectives. The result of the evaluation of a
logical comparison can be one (1) (defined as true) or zero (0) (defined as false). The precedence of && is
greater than that of || and both are lower than relational and equality operators.

A third logical operator is the unary logical negation operator (!). The negation operator converts a non-zero
or true operand into zero (0) and a zero or false operand into one (1).

The following expression performs a logical and of three sub-expressions without needing any parentheses:

a <= b a less than or equal to b

a >= b a greater than or equal to b

Table 4-8—The equality operators defined

a ==b a equal to b

a !=b a not equal to b

Table 4-7—The relational operators defined (continued)
Copyright © 2014 Accellera Systems Initiative. 56

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
a < param1 && b != c && index != lastone

However, parentheses can be used to clearly show the precedence intended, as in the following rewrite of the
above example:

(a < param1) && (b != c) && (index != lastone)

4.2.9 Bitwise operators

The bitwise operators perform bitwise manipulations on the operands—that is, the operator combines a bit
in one operand with its corresponding bit in the other operand to calculate one bit for the result. The follow-
ing logic tables (Table 4-9 — Table 4-13) show the results for each possible calculation.

Table 4-9—Bitwise binary and operator

& 0 1

0 0 0

1 0 1

Table 4-10—Bitwise binary or operator

| 0 1

0 0 1

1 1 1

Table 4-11—Bitwise binary exclusive or operator

^ 0 1

0 0 1

1 1 0

Table 4-12—Bitwise binary exclusive nor operator

^~
~^ 0 1

0 1 0

1 0 1
57 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
When one or both operands are unsigned. the expression shall be interpreted as a comparison between
unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be zero-extended to the
size of the larger operand.

When both operands are signed, the expression shall be interpreted as a comparison between signed values.
If the operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger
operand.

4.2.10 Reduction operators

The reduction operators can not be used inside the analog block and only have meaning when used in the
digital context. Information on these operators can also be found in the IEEE Std 1364-2005 Verilog HDL.

4.2.11 Shift operators

There are two types of shift operators: the logical shift operators, << and >>, and the arithmetic shift opera-
tors, <<< and >>>. The arithmetic shift operators can not be used in an analog block. Further information on
these operators can be found in IEEE Std 1364-2005 Verilog HDL. The logical shift operators, << and >>,
perform left and right shifts of their left operand by the number of bit positions given by the right operand.
Both the << and >> shift operators fill the vacated bit positions with zeroes (0).The right operand is always
treated as an unsigned number and has no effect on the signedness of the result.

Examples:

integer start, result;
analog begin

start = 1;
result = (start << 2);

end

In this example, the integer result is assigned the binary value 0100, which is 0001 shifted to the
left two positions and zero-filled.

integer start, result;
analog begin

start = 3;
result = (start >> 1);

end

In this example, the integer result is assigned the binary value 0001, which is 0011 shifted to the
right one position and zero-filled.

4.2.12 Conditional operator

The conditional operator, also known as ternary operator, is right associative and shall be constructed using
three operands separated by two operators, as shown in Table 4-1.

Table 4-13—Bitwise unary negation operator

~

0 1

1 0
Copyright © 2014 Accellera Systems Initiative. 58

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
conditional_expression ::= // from A.8.3
expression1 ? { attribute_instance } expression2 : expression3

Syntax 4-1—Syntax for conditional operator

The evaluation of a conditional operator begins with the evaluation of expression1. If expression1 evaluates
to false (0), then expression3 is evaluated and used as the result of the conditional expression. If expression1
evaluates to true (any value other than zero (0)), then expression2 is evaluated and used as the result.

4.2.13 Concatenations

A concatenation is the result of the joining together of bits resulting from one or more expressions into a sin-
gle value. The concatenation shall be expressed using the brace characters { and }, with commas separating
the expressions within. It should not be confused with the assignment pattern '{ } which is used in Ver-
ilog-AMS to specify literal lists of constants and expressions for purposes such as the assignment of array
initializers and co-efficient arguments to the Laplace analog filters . Confusion can arise because { } is
used to describe lists of values for array initialization in the C language whereas it means something very
different (concatenation) in the Verilog HDL and Verilog-AMS HDL languages.

Unsized constant numbers shall not be allowed in concatenations. This is because the size of each operand in
the concatenation is needed to calculate the complete size of the concatenation.

This example concatenates two expressions:

{1'b1, 3'b101}

It is equivalent to the following example:

{1'b1, 1'b1, 1'b0, 1'b1}

Its value is 4'b1101.

The next example concatenates three strings:

{ "hello", " ", "world" }

Its value is "hello world".

An operator that can be applied only to concatenations is replication, which is expressed by a concatenation
preceded by a non-negative, non-x and non-z constant expression, called a replication constant, enclosed
together within brace characters, and which indicates a joining together of that many copies of the concate-
nation. Unlike regular concatenations, expressions containing replications shall not appear on the left-hand
side of an assignment and shall not be connected to output or inout ports.

The following example replicates w four times:

{4{w}} // This yields the same value as {w, w, w, w}

The next example illustrates a replication nested within a concatenation:

{b, {3{a, b}}} // This yields the same value as
// {b, a, b, a, b, a, b}
59 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
A replication operation may have a replication constant with a value of zero. This is useful in parameterized
code. A replication with a zero replication constant is considered to have a size of zero and is ignored. Such
a replication shall appear only within a concatenation in which at least one of the operands of the concatena-
tion has a positive size. For example:

parameter P = 32;

// The following is legal for all P from 1 to 32
assign b[31:0] = { {32-P{1'b1}}, a[P-1:0] };

// The following is illegal for P=32 because the zero
// replication appears alone within a concatenation
assign c[31:0] = { {{32-P{1'b1}}}, a[P-1:0] };

// The following is illegal for P=32
initial

$displayb({32-P{1'b1}}, a[P-1:0]);

When a replication expression is evaluated, the operands shall be evaluated exactly once, even if the replica-
tion constant is zero. For example:

result = {4{func(w)}} ;

would be computed as:

y = func(w) ;
result = {y, y, y, y} ;

4.2.14 Assignment patterns

The assignment pattern '{ }, is the way to specify lists of expressions of particular type in Verilog-AMS
during assignments, particularly array assignments. It is a feature imported from the IEEE Std 1800-2012
SystemVerilog language.

assignment_pattern ::= // from A.8.1
'{ expression { , expression } }

| '{ constant_expression { expression { , expression } } }

constant_assignment_pattern ::=
'{ constant_expression { , constant_expression } }

| '{ constant_expression { constant_expression { , constant_expression } } }

Syntax 4-2—Syntax for assignment pattern

In the example below, a real array is initialized using an assignment pattern

parameter real data1[0:4] = '{3.4, 5.6, 2.3, 4.5, 7.1};

In the example below, a real array variable is initialized using an assignment pattern. The example also uses
a replication operator to repeat 0.0 five times so that every element of data2 is assigned to 0.0.

parameter real data2[0:4] = '{ 5{0.0} };
Copyright © 2014 Accellera Systems Initiative. 60

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The example below assigns the array measurements in the analog block using an assignment pattern com-
posed of three variables; a,b,c.

real measurements[0:2];
real a,b,c;
analog begin

...
measurements = '{a,b,c};

Here are the contexts in Verilog-AMS where an array assignment pattern is allowed;
— Analog operator arguments which are expected to be of type array (see 4.5.1)
— The data_source argument of the $table_model system task
— Parameter array assignment in an instantiation
— The RHS of an array variable or array parameter default assignment
— The RHS of an array variable assignment
— Array arguments in calls to user-defined functions

IEEE Std 1800-2012 SystemVerilog has additional uses for the assignment pattern beyond array assign-
ments. IEEE Std 1800-2012 SystemVerilog disallows the usage of the assignment pattern in particular con-
texts e.g. arguments to system tasks: $my_system_task('{4.2,5.1,6.3}). Verilog-AMS also adopts
these restrictions. IEEE Std 1800-2012 SystemVerilog should be consulted for a more detailed understand-
ing of these restrictions.

4.3 Built-in mathematical functions

Verilog-AMS HDL supports both the standard and transcendental mathematical functions. Both the IEEE
Std 1364-2005 Verilog HDL system function syntax style and the traditional Verilog-AMS HDL style are
supported. Users are encouraged to adopt the IEEE Std 1364-2005 Verilog HDL system function style when
using the mathematical functions but the traditional Verilog-AMS HDL style will continue to be supported
for backwards compatibility. The following tables Table 4-14 and Table 4-15 show both syntax styles as
well as the equivalent C function.

4.3.1 Standard mathematical functions

The standard mathematical functions supported by Verilog-AMS HDL are shown in Table 4-14. The oper-
ands shall be numeric (integer or real). For min(), max(), and abs(), if either operand is real, both are
converted to real, as is the result. All other arguments are converted to real.

Table 4-14—Standard functions

Verilog
function style

Traditional
Verilog-AMS
function style

Equivalent C
function Description Domain

$ln(x) ln(x) log(x) Natural logarithm x > 0

$log10(x) log(x) log10(x) Decimal logarithm x > 0

$exp(x) exp(x) exp(x) Exponential All x

$sqrt(x) sqrt(x) sqrt(x) Square root x >= 0

- min(x, y) - Minimum All x, all y

- max(x, y) - Maximum All x, all y
61 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The min(), max(), and abs() functions have discontinuous derivatives; it is necessary to define the
behavior of the derivative of these functions at the point of the discontinuity. In this context, these functions
are defined so:

min(x,y) is equivalent to (x < y) ? x : y
max(x,y) is equivalent to (x > y) ? x : y
abs(x) is equivalent to (x > 0) x : –x

4.3.2 Transcendental functions

The trigonometric and hyperbolic functions supported by Verilog-AMS HDL are shown in Table 4-15. All
operands shall be numeric (integer or real) and are converted to real if necessary. Arguments to the trigono-
metric functions (sin, cos, tan) and return values of the inverse trigonometric functions (asin, acos,
atan, atan2) are in radians. Input values outside of the valid range for the operator shall report an error.

- abs(x) - Absolute All x

$pow(x,y) pow(x, y) pow(x,y) Power (xy) if x > 0, all y;
if x = 0, y > 0;
if x < 0, int(y)

$floor(x) floor(x) floor(x) Floor All x

$ceil(x) ceil(x) ceil(x) Ceiling All x

Table 4-15—Trigonometric and hyperbolic functions

Verilog function
style

Traditional
Verilog-AMS
function style

Equivalent C
function Description Domain

$sin(x) sin(x) sin(x) Sine All x

$cos(x) cos(x) cos(x) Cosine All x

$tan(x) tan(x) tan(x) Tangent x != n (π / 2), n is odd

$asin(x) asin(x) asin(x) Arc-sine -1 <= x <= 1

$acos(x) acos(x) acos(x) Arc-cosine -1 <= x <= 1

$atan(x) atan(x) atan(x) Arc-tangent All x

$atan2(y,x) atan2(y,x) atan2(y,x) Arc-tangent of y/x All x, all y ;
atan2(0,0) = 0

$hypot(x,y) hypot(x,y) hypot(x,y) All x, all y

$sinh(x) sinh(x) sinh(x) Hyperbolic sine All x

$cosh(x) cosh(x) cosh(x) Hyperbolic cosine All x

$tanh(x) tanh(x) tanh(x) Hyperbolic tangent All x

$asinh(x) asinh(x) asinh(x) Arc-hyperbolic sine All x

Table 4-14—Standard functions (continued)

Verilog
function style

Traditional
Verilog-AMS
function style

Equivalent C
function Description Domain

x2 y2+
Copyright © 2014 Accellera Systems Initiative. 62

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
4.4 Signal access functions

Access functions are used to access signals on nets, ports, and branches. There are two types of access func-
tions, branch access functions and port access functions. The name of the access function for a signal is
taken from the discipline of the net, port, or branch where the signal or port is associated and utilizes the ()
operator. A port access function also takes its name from the discipline of the port to which it is associated
but utilizes the port access (< >) operator.

As an alternative to using the access attribute specified in the discipline, the generic potential and flow
access functions are also supported (see 5.5.1).

If the signal or port access function is used in an expression, the access function returns the value of the sig-
nal. If the signal access function is being used on the left side of a branch assignment or contribution state-
ment, it assigns a value to the signal. A port access function can not be used on the left side of a branch
assignment or contribution statement.

Table 4-16 shows how access functions can be applied to branches, nets, and ports. In this table, b1 refers to
a branch, n1 and n2 represent either nets or ports, and p1 represents a port. These branches, nets, and ports
are assumed to belong to the electrical discipline, where V is the name of the access function for the voltage
(potential) and I is the name of the access function for the current (flow).

$acosh(x) acosh(x) acosh(x) Arc-hyperbolic cosine x >= 1

$atanh(x) atanh(x) atanh(x) Arc-hyperbolic tangent -1 < x < 1

Table 4-16—Access functions examples

Example Comments

V(b1) Accesses the voltage across branch b1

potential(b1) Alternative access of the voltage across the branch b1

V(n1) Accesses the voltage of n1 (a net or a port) relative to ground

V(n1,n2) Accesses the voltage difference between n1 and n2 (nets or ports)

V(n1,n1) Error

I(b1) Accesses the current flowing in branch b1

I(n1) Accesses the current flowing in the unnamed branch from n1 to ground

flow(n1) Alternative access of the current flowing in the unnamed branch from n1
to ground

I(n1,n2) Accesses the current flowing in the unnamed branch between n1 and n2

I(n1,n1) Error

I(<p1>) Accesses the current flow into the module through port p1

Table 4-15—Trigonometric and hyperbolic functions (continued)

Verilog function
style

Traditional
Verilog-AMS
function style

Equivalent C
function Description Domain
63 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The argument expression list for signal access functions shall be a branch identifier, or a list of one or two
nets or port expressions. If two net expressions are given as arguments to a flow access function, they shall
not evaluate to the same signal. The net identifiers shall be scalar or resolve to a constant net of a composite
net type (array or bus) accessed by a genvar expression. If only one net expression is given as the argument
to a signal access function, it is implicitly assumed that the second terminal of that unnamed branch is
ground.

The operands of an expression shall be unique to define a valid branch. The access function name shall
match the discipline declaration for the nets, ports, or branch given in the argument expression list. In this
case, V and I are used as examples of access functions for electrical potential and flow.

For port access functions, the expression list is a single port of the module. The port identifier shall be scalar
or resolve to a constant net of a bus port accessed by a genvar expression. The access function name shall
match the discipline declaration for the port identifier.

4.5 Analog operators

Analog operators are functions which operate on more than just the current value of their arguments.
Instead, they maintain their internal state and their output is a function of both the input and the internal
state.

Analog operators are also referred to as analog filter functions. They include the time derivative, time inte-
gral, and delay operators from calculus. They also include the transition and slew filters, which are used to
remove discontinuity from piecewise constant and piecewise continuous waveforms. Finally, they include
more traditional filters, such as those described with Laplace and Z-transform descriptions.

One special analog operator is the limexp() function, which is a version of the exp() function with
built-in limits to improve convergence.

The syntax for the analog operators is shown in Syntax 4-3.

analog_filter_function_call ::= // from A.8.2
ddt (analog_expression [, abstol_expression])

| ddx (analog_expression , branch_probe_function_call)
| idt (analog_expression [, analog_expression [, analog_expression [, abstol_expression]]])
| idtmod (analog_expression [, analog_expression [, analog_expression [, analog_expression

[, abstol_expression]]]])
| absdelay (analog_expression , analog_expression [, constant_expression])
| transition (analog_expression [, analog_expression [, analog_expression

[, analog_expression [, constant_expression]]]])
| slew (analog_expression [, analog_expression [, analog_expression]])
| last_crossing (analog_expression [, analog_expression])
| limexp (analog_expression)
| laplace_filter_name (analog_expression , [analog_filter_function_arg] ,

[analog_filter_function_arg] [, constant_expression])
| zi_filter_name (analog_expression , [analog_filter_function_arg] ,

[analog_filter_function_arg] , constant_expression
[, analog_expression [, constant_expression]])

Syntax 4-3—Syntax for the analog operators
Copyright © 2014 Accellera Systems Initiative. 64

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
4.5.1 Vector or array arguments to analog operators

Certain analog operators require arrays or vectors to be passed as arguments: Laplace filters, Z-transform fil-
ters, noise_table() and noise_table_log(). An array can either be passed as an array_identifier
(e.g. an array parameter or an array variable) or an array assignment pattern (see 4.2.14).

4.5.2 Analog operators and equations

Generally, simulators formulate the mathematical description of the system in terms of first-order differen-
tial equations and solve them numerically. There is no direct way to solve a set of nonlinear differential
equations so iterative approaches are used. When using iterative approaches, some criteria (tolerances) is
needed to determine when the algorithm knows when it is close enough to the solution and then stops the
iteration. Thus, each equation, at a minimum, shall have a tolerance defined and associated with it.

Occasionally, analog operators require new equations and new unknowns be introduced by the simulator to
convert a module description into a set of first-order differential equations. In this case, the simulator
attempts to determine from context which tolerance to associate with the new equation and new unknown.
Alternatively, these operators can be used to specify tolerances.

Specifying natures also directly enforces reusability and allows other signal attributes to be accessed by the
simulator.

4.5.3 Time derivative operator

The ddt operator computes the time derivative of its argument, as shown in Table 4-17.

In DC analysis, ddt() returns zero (0). The optional parameter abstol is used as an absolute tolerance if
needed. Whether an absolute tolerance is needed depends on the context where ddt() is used. See 4.5.2 for
more information on the application of tolerances to equations. The absolute tolerance, abstol or derived
from nature, applies to the output of the ddt operator and is the largest signal level that is considered negli-
gible.

Table 4-17—Time derivative

Operator Comments

ddt(expr)
Returns ,

the time-derivative of x, where x is expr.

ddt(expr, abstol) Same as above, except absolute tolerance is specified explicitly.

ddt(expr, nature) Same as above, except nature is specified explicitly.

td
d x t()
65 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
4.5.4 Time integral operator

The idt operator computes the time-integral of its argument, as shown in Table 4-18.

When used in DC or IC analyses, idt() returns the initial condition (ic) if specified. If not specified, the idt
operator must be contained within a negative feedback loop that forces its argument to zero. Otherwise the
output of the idt operator is undefined.

When specified with initial conditions but without assert, idt() returns the value of the initial condition on
the initial point of a transient analysis. When specified with both initial conditions and assert, idt()
returns the initial conditions during DC and IC analyses, and whenever assert is nonzero. Once assert
becomes zero, idt() returns the integral of the argument starting from the last instant where assert was
nonzero.

The optional parameter abstol or nature is used to derive an absolute tolerance if needed. Whether an abso-
lute tolerance is needed depends on the context where idt() is used. (See 4.5.2 for more information.) The
absolute tolerance applies to the input of the idt operator and is the largest signal level that is considered
negligible.

A simple example that demonstrates the first form is a simple model for an opamp.

module opamp(out, pin, nin);
output out;
input pin, nin;
voltage out, pin, nin;
analog

V(out) <+ idt(V(pin,nin));
endmodule

Here the opamp is simply modeled as an integrator. In this case the initial condition for the integrator is
found by the simulator, generally the DC operating point is used. For the DC operating point to exist for an
integrator that does not have an initial condition explicitly specified, the integrator must exist within a nega-

Table 4-18—Time integral

Operator Comments

idt(expr) Returns ,

where x(τ) is the value of expr at time τ, t0 is the start time of the simulation, t is
the current time, and c is the initial starting point as determined by the simulator
and is generally the DC value (the value that makes expr equal to zero).

idt(expr,ic) Returns ,

where in this case c is the value of ic at t0.

idt(expr,ic,assert) Returns ,

where c is the value of ic at ta, which is the time when assert was last nonzero or t0
if assert was never nonzero.

idt(expr,ic,assert,abstol) Same as above, except the absolute tolerance used to control the error in the
numerical integration process is specified explicitly with abstol.

idt(expr,ic,assert,nature) Same as above, except the absolute tolerance used to control the error in the
numerical integration process is take from the specified nature.

x τ() τdt0

t
∫ c+

x τ() τ c+dt0

t
∫

x τ() τ c+dta

t
∫

Copyright © 2014 Accellera Systems Initiative. 66

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
tive feedback loop that drives its argument to 0. Forcing the output of the integration operator to be a partic-
ular value at start of the simulation using something like

V(out) <+ idt(V(pin,nin), 0);

avoids this issue.

Using the assert argument, the output of the integration operator can be reset to a given value at any time.
This feature is demonstrated in the following model, which uses the idt() operator to generate a periodic
ramp waveform:

module ramp_generator(out);
output out;
voltage out;
integer reset;
analog begin

reset = 0;
@(timer(1, 1))

reset = 1;
V(out) <+ idt(1.0, 0, reset);

end
endmodule

The output of this model is show in Figure 4-3. Notice that in this model the reset occurs instantaneously.

Figure 4-3: The output from the ramp generator

0 V

200 mV

400 mV

600 mV

800 mV

1 V

0 s 500 ms 1 s 1.5 s 2 s

0 V

200 μV

1 s 1.0002 s
67 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
4.5.5 Circular integrator operator

The idtmod operator, also called the circular integrator, converts an expression argument into its indefi-
nitely integrated form similar to the idt operator, as shown in Table 4-19.

The initial condition is optional. If the initial condition is not specified, it defaults to zero (0). Regardless,
the initial condition shall force the DC solution to the system.

If idtmod() is used in a system with feedback configuration which forces expr to zero (0), the initial con-
dition can be omitted without any unexpected behavior during simulation. For example, an operational
amplifier alone needs an initial condition, but the same amplifier with the right external feedback circuitry
does not need a forced DC solution.

The output of the idtmod() function shall remain in the range

offset <= idtmod < offset+modulus

The modulus shall be an expression which evaluates to a positive value. If the modulus is not specified,
then idtmod() shall behave like idt() and not limit the output of the integrator.

The default for offset shall be zero (0).

The following relationship between idt() and idtmod() shall hold at all times.

If

y = idt(expr, ic);
z = idtmod(expr, ic, modulus, offset);

Table 4-19—Circular integrator

Operator Comments

idtmod(expr) Returns ,

where x(τ) is the value of expr at time τ, t0 is the start time of the simu-
lation, t is the current time, and c is the initial starting point as deter-
mined by the simulator and is generally the DC value (the value that
makes expr equal to zero).

idtmod(expr,ic) Returns ,

where in this case c is the value of ic at t0.

idtmod(expr,ic,modulus) Returns k, where 0 ≤ k < modulus and k is
, n = ... –3, –2, –1, 0, 1, 2, 3 ...,

and c is the value of ic at t0.

idtmod(expr,ic,modulus,offset) Returns k, where offset ≤ k < offset + modulus, k is
,

and c is the value of ic at t0.

idtmod(expr,ic,modulus,offset,abstol) Same as above, except the absolute tolerance used to control the error in
the numerical integration process is specified explicitly with abstol.

idtmod(expr,ic,modulus,offset nature) Same as above, except the absolute tolerance used to control the error in
the numerical integration process is take from the specified nature.

x τ() τdt0

t
∫ c+

x τ() τ c+dt0

t
∫

x τ() τdt0

t
∫ c+ n modulus k+×=

x τ() τdt0

t
∫ ic+ n modulus k+×=
Copyright © 2014 Accellera Systems Initiative. 68

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
then

y = n * modulus + z; // n is an integer

where

offset ≤ z < modulus + offset

In this example, the circular integrator is useful in cases where the integral can get very large, such as a
VCO. In a VCO, only the output values in the range [0,2π] are of interest, e.g.,

phase = idtmod(fc + gain*V(in), 0, 1, 0);
V(OUT) <+ sin(2*‘M_PI*phase);

Here, the circular integrator returns a value in the range [0,1].

4.5.6 Derivative operator

ddx() provides access to symbolically-computed partial derivatives of expressions in the analog block.
The analog simulator computes symbolic derivatives of expressions used in contribution statements in order
to use Newton-Raphson iteration to solve the system of equations. In many cases in compact modeling, the
values of these derivatives are useful quantities for design, such as the trans conductance of a transistor (gm)
or the capacitance of a nonlinear charge-storage element such as a varactor. The syntax for this operator is
shown in Syntax 4-3.

The general form for the ddx() operator is:

ddx (expr , unknown_quantity)

where:
— expr is the expression for which the symbolic derivative needs to be calculated.
— unknown_quantity is the branch probe (voltage or current probe) with respect to which the deriva-

tive of the expression needs to be computed.

The operator returns the partial derivative of its first argument with respect to the unknown indicated by the
second argument, holding all other unknowns fixed and evaluated at the current operating point. The second
argument shall be the potential of a scalar net or port or the flow through a branch, because these are the
unknown variables in the system of equations for the analog solver. For the modified nodal analysis used in
most SPICE-like simulators, these unknowns are the node voltages and certain branch currents.

If the expression does not depend explicitly on the unknown, then ddx() returns zero (0). Care must be
taken when using implicit equations or indirect assignments, for which the simulator may create internal
unknowns; derivatives with respect to these internal unknowns cannot be accessed with ddx().

Unlike the ddt() operator, no tolerance is required because the partial derivative is computed symbolically
and evaluated at the current operating point.

This first example uses ddx() to obtain the conductance of the diode. The variable gdio is declared as an
output variable (see 3.2.1) so that its value is available for inspection by the designer.

module diode(a,c);
inout a, c;
electrical a, c;
parameter real IS = 1.0e-14;
69 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
real idio;
(*desc="small-signal conductance"*)
real gdio;
analog begin

idio = IS * (limexp(V(a,c)/$vt) - 1);
gdio = ddx(idio, V(a));
I(a,c) <+ idio;

end
endmodule

The next example adds a series resistance to the diode using an implicit equation. Note that gdio does not
represent the total conductance because the flow access I(a,c) requires introduction of another unknown in
the system of equations. The conductance of the diode is properly reported as geff, which includes the
effects of RS and the nonlinear equation.

module diode(a,c);
inout a, c;
electrical a, c;
parameter real IS = 1.0e-14;
parameter real RS = 0.0;
real idio, gdio;
(*desc="effective conductance"*)
real geff;
analog begin

idio = IS * (limexp((V(a,c)-RS*I(a,c))/$vt) - 1);
gdio = ddx(idio, V(a));
geff = gdio / (RS * gdio + 1.0);
I(a,c) <+ idio;

end
endmodule

The final example implements a voltage-controlled dependent current source and is used to illustrate the
computations of partial derivatives.

module vccs(pout,nout,pin,nin);
inout pout, nout, pin, nin;
electrical pout, nout, pin, nin;
parameter real k = 1.0;
real vin, one, minusone, zero;
analog begin

vin = V(pin,nin);
one = ddx(vin, V(pin));
minusone = ddx(vin, V(nin));
zero = ddx(vin, V(pout));
I(pout,nout) <+ k * vin;

end
endmodule

The names of the variables indicate the values of the partial derivatives: +1, -1, or 0. A SPICE-like simulator
would use these values (scaled by the parameter k) in the Newton-Raphson solution method.

4.5.7 Absolute delay operator

absdelay() implements the absolute transport delay for continuous waveforms (use the transi-
tion() operator to delay discrete-valued waveforms). The general form is

absdelay (input , td [, maxdelay])
Copyright © 2014 Accellera Systems Initiative. 70

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
input is delayed by the amount td. In all cases td shall be a positive number. If the optional maxdelay is spec-
ified, then td can vary. If td becomes greater than maxdelay, maxdelay will be used as a substitute for td. If
maxdelay is not specified, the value of td when the absdelay() is first evaluated shall be used and any
future changes to td shall be ignored.

In DC and operating point analyses, absdelay() returns the value of its input. In AC and other small-sig-
nal analyses, the absdelay() operator phase-shifts the input expression to the output of the delay opera-
tor based on the following formula.

td is evaluated as a constant at a particular time for any small signal analysis. In time-domain analyses,
absdelay() introduces a transport delay equal to the instantaneous value of td based on the following for-
mula.

The transport delay td can be either constant (typical case) or vary as a function of time (when maxdelay is
defined). A time-dependent transport delay is shown in Figure 4-4, with a ramp input to the absdelay
operator for both positive and negative changes in the transport delay td and a maxdelay of 5.

Figure 4-4: Transport delay example

From time 0 until 2s, the output remains at input(0). With a delay of 2s, the output then starts tracking
input(t - 2). At 3s, the transport delay changes from 2s to 4s, switching the output back to input(0),
since input(max(t-td,0)) returns 0. The output remains at this level until 4s when it once again starts
tracking the input from t = 0. At 5s the transport delay goes to 1s and the output correspondingly jumps
from its current value to the value defined by input(t - 1).

4.5.8 Transition filter

transition() smooths out piecewise constant waveforms. The transition filter is used to imitate transi-
tions and delays on digital signals (for non-piecewise constant signals, see 4.5.9). This function provides
controlled transitions between discrete signal levels by setting the rise time and fall time of signal transi-
tions, as shown in Figure 4-5.

Output ω() Input ω() e jωtd–⋅=

Output t() Input max t td, 0–()()=

Input

Output

td (s)

4

3

2

1

2 4 6
71 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

Figure 4-5: Transition filter example

transition() stretches instantaneous changes in signals over a finite amount of time and can delay the
transitions, as shown in Figure 4-6.

Figure 4-6: Shifting the transition filter

The general form of the transition() filter is

transition (expr [, td [, rise_time [, fall_time [, time_tol]]]])

The input expression is expected to evaluate over time to a piecewise constant waveform. When applied,
transition() forces all positive transitions of expr to occur over rise_time and all negative transitions
to occur in fall_time (after an initial delay of td). Thus, td models transport delay and rise_time and fall_time
model inertial delay.

transition() returns a real number which describes a piecewise linear function over time. The transi-
tion function causes the simulator to place time-points at both corners of a transition. If time_tol is not spec-
ified, the transition function causes the simulator to assure each transition is adequately resolved.

td, rise_time, fall_time, and time_tol are optional, but if specified shall be non-negative. If td is not speci-
fied, it is taken to be zero (0.0). If only a positive rise_time value is specified, the simulator uses it for both
rise and fall times. If neither rise_time nor fall_time are specified or are equal to zero (0.0), the rise and fall
time default to the value defined by ‘default_transition.

If ‘default_transition is not specified the default behavior approximates the ideal behavior of a
zero-duration transition. Forcing a zero-duration transition is undesirable because it could cause conver-
gence problems. Instead, a negligible, but non-zero, transition time is used. The small non-zero transition
time allows the simulator to shrink the timestep small enough so a smooth transition occurs and any conver-
gence problems are avoided. The simulator does not force a time point at the trailing corner of a transition to
avoid causing the simulator to take very small time steps, which would result in poor performance.

tr tft0 t0

d

output_expression(t)input_expression(t)

Input to transition filter

Response of transition filter
with transition times specified
Copyright © 2014 Accellera Systems Initiative. 72

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
In DC analysis, transition() passes the value of the expr directly to its output. The transition fil-
ter is designed to smooth out piecewise constant waveforms. When applied to waveforms which vary
smoothly, the simulation results are generally unsatisfactory. In addition, applying the transition function to
a continuously varying waveform can cause the simulator to run slowly. Use transition() for discrete
signals and slew() (see 4.5.9) for continuous signals.

If interrupted on a rising transition, transition() tries to complete the transition in the specified time.
— If the new final value level is below the value level at the point of the interruption (the current

value), transition() uses the old destination as the origin.
— If the new destination is above the current level, the first origin is retained.

Figure 4-7: Completing the transition

Figure 4-7 shows a rising transition is interrupted near its midpoint and the new destination level of the
value below the current value. For the new origin and destination, transition() computes the slope
which completes the transition from the origin (not the current value) in the specified transition time. It then
uses the computed slope to transition from the current value to the new destination.

With different delays, it is possible for a new transition to be specified before a previously specified transi-
tion starts. The transition function handles this by deleting any transitions which would follow a newly
scheduled transition. A transition function can have an arbitrary number of transitions pending. A transition
function can be used in this way to implement transport delay for discrete-valued signals.

Because the transition function can not be linearized in general, it is not possible to accurately represent a
transition function in AC analysis. The AC transfer function is approximately modeled as having unity
transmission for all frequencies in all situations. Because the transition function is intended to handle dis-
crete-valued signals, the small signals present in AC analysis rarely reach transition functions. As a result,
the approximation used is generally sufficient.

Example 1 — QAM modulator

In this example, the transition function is used to control the rate of change of the modulation signal in a
QAM modulator.

module qam16(in, out);
 input [0:3] in;
 output out;
 voltage [0:3] in;
 voltage out;

tr

tf

Original destination

New destination

Interruption

output_expression(t)

New origin
73 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
 parameter real freq = 1.0 from (0:inf);
 parameter real ampl = 1.0;
 parameter real thresh = 2.5;
 parameter real tdelay = 0 from [0:inf);
 localparam real ttransit = 1/freq;

 real x, y, phi;
 integer row, col;

 analog begin
 row = 2 * (V(in[3]) > thresh) + (V(in[2]) > thresh);
 col = 2 * (V(in[1]) > thresh) + (V(in[0]) > thresh);

 x = transition(row - 1.5, tdelay, ttransit);
 y = transition(col - 1.5, tdelay, ttransit);

 phi = `M_TWO_PI * freq * $abstime;
 V(out) <+ ampl * (x * cos(phi) + y * sin(phi));
 end
endmodule

Example 2 — A/D converter

In this example, an analog behavioral N-bit analog to digital converter, demonstrates the ability of the transi-
tion function to handle vectors.

module adc(in, clk, out);
parameter bits = 8, fullscale = 1.0, dly = 0, ttime = 10n;
input in, clk;
output [0:bits-1] out;
electrical in, clk;
electrical [0:bits-1] out;
real sample, thresh;
integer result[0:bits-1];
genvar i;

analog begin
@(cross(V(clk)-2.5, +1)) begin

sample = V(in);
thresh = fullscale/2.0;
for (i = bits - 1; i >= 0; i = i - 1) begin

if (sample > thresh) begin
result[i] = 1.0;
sample = sample - thresh;

end
else begin

result[i] = 0.0;
end
sample = 2.0*sample;

end
end
for (i = 0; i < bits; i = i + 1) begin

V(out[i]) <+ transition(result[i], dly, ttime);
end

end
endmodule
Copyright © 2014 Accellera Systems Initiative. 74

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
4.5.9 Slew filter

The slew analog operator bounds the rate of change (slope) of the waveform. A typical use for slew() is
generating continuous signals from piecewise continuous signals. (For discrete-valued signals, see 4.5.8.)
The general form is

slew (expr [, max_pos_slew_rate [, max_neg_slew_rate]])

When applied, slew() forces all transitions of expr faster than max_pos_slew_rate to change at
max_pos_slew_rate rate for positive transitions and limits negative transitions to max_neg_slew_rate rate as
shown in Figure 4-8.

Figure 4-8: Slew filter transition

The two rate values are optional. max_pos_slew_rate shall be greater than zero(0)and max_neg_slew_rate
shall be less than zero (0). If the max_neg_slew_rate is not specified, it defaults to the opposite of the
max_pos_slew_rate. If no rates are specified, slew() passes the signal through unchanged. If the rate of
change of expr is less than the specified maximum slew rates, slew() returns the value of expr.

In DC analysis, slew() simply passes the value of the destination to its output. In small-signal analyses,
the slew() function has a transfer function from the first argument to the output of 1.0 when not slewing
(e.g. for a small-signal analysis following a dc operating point) and 0.0 when slewing.

4.5.10 last_crossing function

Related to the cross() function, the last_crossing() function returns a real value representing the
simulation time when a signal expression last crossed zero (0). The general form is

last_crossing (expr [, direction])

The optional direction indicator shall evaluate to an integer expression +1, -1, or 0. If it is set to 0, the
last_crossing() will return the most recent time the input expression had either a rise of falling edge
transition. If direction is +1 (-1), the last_crossing() will return the last time the input expression had
a rising (falling) edge transition.

The last_crossing() function does not control the timestep to get accurate results; it uses linear inter-
polation to estimate the time of the last crossing. However, it can be used with the cross function for
improved accuracy.

The following example measures the period of its input signal using the cross() and
last_crossing() functions.

module period(in);
input in;
voltage in;

Δy
Δt
------ ratepmax≤Δy

Δt

output_expression(t)
75 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
integer crossings;
real latest, previous;

analog begin
@(initial_step) begin

crossings = 0;
previous = 0;

end

@(cross(V(in), +1)) begin
crossings = crossings + 1;
previous = latest;

end
latest = last_crossing(V(in), +1);

@(final_step) begin
if (crossings < 2)

$strobe("Could not measure period.");
else

$strobe("period = %g, crossings = %d",
latest-previous, crossings);

end
end

endmodule

Before the expression crosses zero (0) for the first time, the last_crossing() function returns a nega-
tive value.

4.5.11 Laplace transform filters

The Laplace transform filters implement lumped linear continuous-time filters. Each filter takes an optional
parameter ε, which is a real number or a nature used for deriving an absolute tolerance (if needed). Whether
an absolute tolerance is needed depends on the context where the filter is used. The zeros argument may be
represented as a null argument. The null argument is characterized by two adjacent commas (,,) in the argu-
ment list.

4.5.11.1 laplace_zp

laplace_zp() implements the zero-pole form of the Laplace transform filter. The general form is:

laplace_zp (expr , ζ , ρ [, ε])

where ζ (zeta) is a vector of M pairs of real numbers. Each pair represents a zero, the first number in the pair
is the real part of the zero and the second is the imaginary part. Similarly, ρ (rho) is the vector of N real pairs,
one for each pole. The poles are given in the same manner as the zeros. The transfer function is

H s()

1 s
ζk

r jζk
i+

-------------------–⎝ ⎠
⎛ ⎞

k 0=

M 1–

∏

1 s
ρk

r jρk
i+

-------------------–⎝ ⎠
⎛ ⎞

k 0=

N 1–

∏

--=
Copyright © 2014 Accellera Systems Initiative. 76

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
where and are the real and imaginary parts of the zero (0), while and are the real and imagi-
nary parts of the pole. If a root (a pole or zero) is real, the imaginary part shall be specified as zero (0). If
a root is complex, its conjugate shall also be present. If a root is zero, then the term associated with it is
implemented as s, rather than (where r is the root).

4.5.11.2 laplace_zd

laplace_zd() implements the zero-denominator form of the Laplace transform filter. The general form
is:

laplace_zd (expr , ζ , d [, ε])

where ζ (zeta) is a vector of M pairs of real numbers. Each pair represents a zero, the first number in the pair
is the real part of the zero and the second is the imaginary part. Similarly, d is the vector of N real numbers
containing the coefficients of the denominator. The transfer function is

where and are the real and imaginary parts of the zero, while is the coefficient of the
power of s in the denominator. If a zero is real, the imaginary part shall be specified as zero (0). If a zero is
complex, its conjugate shall also be present. If a zero is zero (0), then the term associated with it is imple-
mented as s, rather than .

4.5.11.3 laplace_np

laplace_np() implements the numerator-pole form of the Laplace transform filter. The general form is

laplace_np (expr , n , ρ [, ε])

where n is a vector of M real numbers containing the coefficients of the numerator. Similarly, ρ (rho) is a
vector of N pairs of real numbers. Each pair represents a pole, the first number in the pair is the real part of
the pole and the second is the imaginary part. The transfer function is

where is the coefficient of the power of s in the numerator, while and are the real and imagi-
nary parts of the pole. If a pole is real, the imaginary part shall be specified as zero (0). If a pole is com-
plex, its conjugate shall also be present. If a pole is zero (0), then the term associated with it is implemented
as s, rather than .

ζk
r ζk

i kth ρk
r ρk

i

kth

1 s r⁄–()

H s()

1 s
ζk

r jζk
i+

-------------------–⎝ ⎠
⎛ ⎞

k 0=

M 1–

∏

dksk

k 0=

N 1–

∑

--=

ζk
r ζk

i kth dk kth

1 s ζ⁄–()

H s()

nksk

k 0=

M 1–

∑

1 s
ρk

r jρk
i+

-------------------–⎝ ⎠
⎛ ⎞

k 0=

N 1–

∏

--=

nk kth ρk
r ρk

i

kth

1 s ρ⁄–()
77 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
4.5.11.4 laplace_nd

laplace_nd() implements the numerator-denominator form of the Laplace transform filter.

The general form is:

laplace_nd (expr , n , d [, ε])

where n is an vector of M real numbers containing the coefficients of the numerator and d is a vector of N
real numbers containing the coefficients of the denominator. The transfer function is:

where is the coefficient of the power of s in the numerator and is the coefficient of the power
of s in the denominator.

4.5.11.5 Examples

V(out) <+ laplace_zp(V(in), '{-1,0}, '{-1,-1,-1,1});

implements

and

V(out) <+ laplace_nd(V(in), '{0,1}, '{-1,0,1});

implements .

This example

V(out) <+ laplace_zp(white_noise(k), , '{1,0,1,0,-1,0,-1,0});

implements a band-limited white noise source as .

H s()

nksk

k 0=

M 1–

∑

dksk

k 0=

N 1–

∑

--------------------=

nk kth dk kth

H s() 1 s+

1 s
1 j+
-----------+⎝ ⎠

⎛ ⎞ 1 s
1 j–
----------+⎝ ⎠

⎛ ⎞
--=

H s() s
s2 1–
-------------=

vout
2 k

s2 1– 2
-------------------=
Copyright © 2014 Accellera Systems Initiative. 78

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
4.5.12 Z-transform filters

The Z-transform filters implement linear discrete-time filters. Each filter supports a parameter T which spec-
ifies the sampling period of the filter. A filter with unity transfer function acts like a simple sample-and-hold
which samples every T seconds and exhibits no delay. The zeros argument may be represented as a null
argument. The null argument is characterized by two adjacent commas (,,) in the argument list.

All Z-transform filters share three common arguments: T, τ, and t0. T specifies the period of the filter, is
mandatory, and shall be positive. τ specifies the transition time, is optional, and shall be nonnegative.

If the transition time is specified and is non-zero, the timestep is controlled to accurately resolve both the
leading and trailing corner of the transition. If it is not specified, the transition time is taken to be one (1) unit
of time (as defined by the `default_transition compiler directive) and the timestep is not controlled
to resolve the trailing corner of the transition. If the transition time is specified as zero (0), then the output is
abruptly discontinuous. A Z-filter with zero (0) transition time shall not be directly assigned to a branch.

Finally t0 specifies the time of the first transition, and is also optional. If not given, the first transition occurs
at t=0.

4.5.12.1 zi_zp

zi_zp() implements the zero-pole form of the Z-transform filter. The general form is:

zi_zp (expr , ζ , ρ , T [, τ [, t0]])

where ζ (zeta) is a vector of M pairs of real numbers. Each pair represents a zero, the first number in the pair
is the real part of the zero (0) and the second is the imaginary part. Similarly, ρ (rho) is the vector of N real
pairs, one for each pole. The poles are given in the same manner as the zeros. The transfer function is

where and are the real and imaginary parts of the zero, while and are the real and imagi-
nary parts of the pole. If a root (a pole or zero) is real, the imaginary part shall be specified as zero. If a
root is complex, its conjugate shall also be present. If a root is zero (0), then the term associated with it is
implemented as z, rather than (where r is the root).

4.5.12.2 zi_zd

zi_zd() implements the zero-denominator form of the Z-transform filter. The form is:

zi_zd (expr , ζ , d , T [, τ [, t0]])

where ζ (zeta) is a vector of M pairs of real numbers. Each pair represents a zero, the first number in the pair
is the real part of the zero and the second is the imaginary part. Similarly, d is the vector of N real numbers
containing the coefficients of the denominator. The transfer function is

H z()

1 z 1– ζk
r jζk

i+()–
k 0=

M 1–

∏

1 z 1– ρk
r jρk

i+()–
k 0=

N 1–

∏

--=

ζk
r ζk

i kth ρk
r ρk

i

kth

1 z r⁄–()
79 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
where and are the real and imaginary parts of the zero, while is the coefficient of the
power of s in the denominator. If a zero is real, the imaginary part shall be specified as zero (0). If a zero is
complex, its conjugate shall also be present. If a zero is zero (0), then the term associated with it is imple-
mented as z, rather than .

4.5.12.3 zi_np

zi_np() implements the numerator-pole form of the Z-transform filter. The general form is:

zi_np (expr , n , ρ , T [, τ [, t0]])

where n is a vector of M real numbers containing the coefficients of the numerator. Similarly, ρ (rho) is a
vector of N pairs of real numbers. Each pair represents a pole, the first number in the pair is the real part of
the pole and the second is the imaginary part. The transfer function is

where is the coefficient of the power of s in the numerator, while and are the real and imagi-
nary parts of the pole. If a pole is real, the imaginary part shall be specified as zero (0). If a pole is com-
plex, its conjugate shall also be present. If a pole is zero (0), then the term associated with it is implemented
as z, rather than .

4.5.12.4 zi_nd

zi_nd() implements the numerator-denominator form of the Z-transform filter. The general form is:

zi_nd (expr , n , d , T [, τ [, t0]])

where n is an vector of M real numbers containing the coefficients of the numerator and d is a vector of N
real numbers containing the coefficients of the denominator. The transfer function is

H z()

1 z 1– ζk
r jζk

i+()–
k 0=

M 1–

∏

dkz k–

k 0=

N 1–

∑

--=

ζk
r ζk

i kth dk kth

1 z ζ⁄–()

H z()

nkz k–

k 0=

M 1–

∑

1 z 1– ρk
r jρk

i+()–
k 0=

N 1–

∏

--=

nk kth ρk
r ρk

i

kth

1 z ρ⁄–()

H z()

nkz k–

k 0=

M 1–

∑

dkz k–

k 0=

N 1–

∑

----------------------=
Copyright © 2014 Accellera Systems Initiative. 80

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
where is the coefficient of the power of s in the numerator and is the coefficient of the power
of s in the denominator.

4.5.13 Limited exponential

The limexp() function is an operator whose internal state contains information about the argument on
previous iterations. It returns a real value which is the exponential of its single real argument, however, it
internally limits the change of its output from iteration to iteration in order to improve convergence. On any
iteration where the change in the output of the limexp() function is bounded, the simulator is prevented
from terminating the iteration. Thus, the simulator can only converge when the output of limexp() equals
the exponential of the input. The general form is:

limexp (expr)

The apparent behavior of limexp() is not distinguishable from exp(), except using limexp() to
model semiconductor junctions generally results in dramatically improved convergence. There are different
ways of implementing limiting algorithms for the exponential1 2.

Other nonlinearities besides the exponential may be in behavioral models. The $limit() system function
described in 9.17.3 provides a method to indicate these nonlinearities to the simulator to improve conver-
gence.

4.5.14 Constant versus dynamic arguments

Some of the arguments to the analog operators described in this section, the events described in Clause 5,
and the $limit() function in 9.17.3 expect dynamic expressions and others expect constant expressions.
The dynamic expressions can be functions of circuit quantities and can change during an analysis. The con-
stant expressions remain static throughout an analysis.

Table 4-20 summarizes the arguments of the analog operators defined in this section.

1Laurence W. Nagel, "SPICE2: A computer program to simulate semiconductor circuits," Memorandum No. ERL-M520, University of
California, Berkeley, California, May 1975.
2W. J. McCalla, Fundamentals of Computer-Aided Circuit Simulation. Kluwer Academic Publishers, 1988.

Table 4-20—Analog operator arguments

Operator Constant expression arguments Dynamic expression arguments

absdelay maxdelay expr, td

ddt abstol expr

ddx wrt_what expr

idt abstol expr, ic, assert

idtmod abstol expr, ic,modulus, offset

laplace_zp zeros, poles, abstol expr

laplace_zd zeros, denominator, abstol expr

laplace_np numerator, poles, abstol expr

laplace_nd numerator, denominator,
abstol

expr

last_crossing expr, dir

nk kth dk kth
81 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
If a dynamic expression is passed as an argument which expects a constant expression, the value of the
dynamic expression at the start of the analysis defaults to the constant value of the argument. Any further
change in value of that expression is ignored during the iterative analysis.

4.5.15 Restrictions on analog operators

Analog operators are subject to several important restrictions because they maintain their internal state. It is
important to ensure that all analog operators are evaluated every iteration of a simulation to ensure that the
internal state is maintained. The analog operator ddx() is the only exception to this rule as it does not
require an internal state to be maintained. All analog operators are considered to have no state history prior
to time t == 0.

— Analog operators shall not be used inside conditional (if, case, or ?:) statements unless the con-
ditional expression controlling the statement consists of terms which can not change their value dur-
ing the course of a simulation.

— Analog operators shall not be used inside event triggered statements.
— Analog operators are not allowed in the repeat, while and non-genvar for looping statements.
— Analog operators can only be used inside an analog block; they can not be used inside an ini-

tial or always block, or inside a user defined function.
— It is illegal to specify a null argument in the argument list of an analog operator, except as specified

elsewhere in this document.

These restrictions help prevent usage which could cause the internal state to be corrupted or become out-of-
date, which results in anomalous behavior.

4.6 Analysis dependent functions

This section describes the analysis() function, which is used to determine what type of analysis is being
performed, and the small-signal source functions. The small-signal source functions only affect the behavior
of a module during small-signal analyses. The small-signal analyses provided by SPICE include the AC and
noise analyses, but others are possible. When not active, the small-signal source functions return zero (0).

limexp expr

slew expr, max_pos_slew_rate,
max_neg_slew_rate

transition time_tol expr, td, rise_time,
fall_time

zi_zp zeros, poles, T, t0 expr, t

zi_zd zeros, denominator, T, t0 expr, t

zi_np numerator, poles, T, t0 expr, t

zi_nd numerator, denominator, T,
t0

expr, t

Table 4-20—Analog operator arguments (continued)

Operator Constant expression arguments Dynamic expression arguments
Copyright © 2014 Accellera Systems Initiative. 82

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
4.6.1 Analysis

The analysis() function takes one or more string arguments and returns one (1) if any argument
matches the current analysis type. Otherwise it returns zero (0). The general form is:

analysis (analysis_list)

There is no fixed set of analysis types. Each simulator can support its own set. However, simulators shall use
the names listed in Table 4-21 to represent analyses which are similar to those provided by SPICE..

Any unsupported type names are assumed to not be a match.

Table 4-22 describes the implementation of the analysis function. Each column shows the return value of the
function. A status of one (1) represents True and zero (0) represents False.

Table 4-21—Analysis types

Name Analysis description

"ac" .AC analysis

"dc" .OP or .DC analysis (single point or dc sweep analysis)

"noise" .NOISE analysis

"tran" .TRAN analysis

"ic" The initial-condition analysis which precedes a transient analysis.

"static" Any equilibrium point calculation, including a DC analysis as well as those that precede
another analysis, such as the DC analysis which precedes an AC or noise analysis, or the
IC analysis which precedes a transient analysis.

"nodeset" The phase during an equilibrium point calculation where nodesets are forced.

Table 4-22—Analysis function implementation

Analysis Argument DC Sweepa

d1 d2 dN

aSweep refers to a dc analysis in which a parameter is swept through multiple values. d1, d2 and dN above
refer to dc points within the same sweep analysis.

TRAN
op Tran

AC
op
AC

NOISE
op AC

First part of "static"
when nodesets are enforced

"nodeset" 1 1 0 0 1 0 1 0 1 0

Initial DC state "static" 1 1 1 1 1 0 1 0 1 0

Initial condition "ic" 0 0 0 0 1 0 0 0 0 0

DC "dc" 1 1 1 1 0 0 0 0 0 0

Transient "tran" 0 0 0 0 1 1 0 0 0 0

Small-signal "ac" 0 0 0 0 0 0 1 1 0 0

Noise "noise" 0 0 0 0 0 0 0 0 1 1
83 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Using the analysis() function, it is possible to have a module behave differently depending on which
analysis is being run.

For example, to implement nodesets or initial conditions using the analysis function and switch branches,
use the following.

if (analysis("ic"))
V(cap) <+ initial_value;

else
I(cap) <+ ddt(C*V(cap));

4.6.2 DC analysis

Verilog-AMS supports a single-point dc analysis and also a multipoint dc sweep analysis in which multiple
dc points are computed over a sweep of parameter values. An operating point analysis is done for each dc
point in the sweep. A single-point dc analysis is the same as an operating point analysis. The
analysis("dc") and analysis("static") function calls shall return true for a single-point dc analysis
and also for every dc point in a sweep analysis. The analysis("nodeset") function call shall return true
only during the phase of an operating point analysis in which nodeset values are enforced; that phase may
occur in a single-point dc analysis or the first point of a multipoint dc sweep analysis, but does not occur for
subsequent points of a dc sweep.

During a dc sweep analysis, the values of variables at the conclusion of the operating point analysis for one
dc point shall be used as the starting values for those variables for the next dc point. However, variable val-
ues shall not be carried over between two independent dc sweep analyses (from the last dc point of one anal-
ysis to the first dc point of the next analysis). Variables shall be re-initialized to zero (or x, for integers
whose values are assigned in a digital context) at the start of each new analysis.

4.6.3 AC stimulus

A small-signal analysis computes the steady-state response of a system which has been linearized about its
operating point and is driven by a small sinusoid. The sinusoidal stimulus is provided using the
ac_stim() function. The general form is:

ac_stim ([analysis_name [, mag [, phase]]])

The AC stimulus function returns zero (0) during large-signal analyses (such as DC and transient) as well as
on all small-signal analyses using names which do not match analysis_name. The name of a small-signal
analysis is implementation dependent, although the expected name (of the equivalent of a SPICE AC analy-
sis) is “ac”, which is the default value of analysis_name. When the name of the small-signal analysis
matches analysis_name, the source becomes active and models a source with magnitude mag and phase
phase. The default magnitude is one (1) and the default phase is zero (0). phase is given in radians.

4.6.4 Noise

Several functions are provided to support noise modeling during small-signal analyses. To model large-sig-
nal noise during transient analyses, use the $random() or $arandom() system tasks. The noise func-
tions are often referred to as noise sources. There are three noise functions, one models white noise
processes, another models 1/f or flicker noise processes, and the last interpolates a vector to model a process
where the spectral density of the noise varies as a piecewise linear function of frequency. The noise func-
tions are only active in small-signal noise analyses and return zero (0) otherwise.

The syntax for noise functions is shown in Syntax 4-4.
Copyright © 2014 Accellera Systems Initiative. 84

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

analog_small_signal_function_call ::= // from A.8.2
...
| white_noise (analog_expression [, string])
| flicker_noise (analog_expression , analog_expression [, string])
| noise_table (noise_table_input_arg [, string])
| noise_table_log (noise_table_input_arg [, string])

Syntax 4-4—Syntax for the noise functions

4.6.4.1 white_noise

White noise processes are those whose current value is completely uncorrelated with any previous or future
values. This implies their spectral density does not depend on frequency. They are modeled using:

white_noise (pwr [, name])

which generates white noise with a power of pwr.

For example, the thermal noise of a resistor could be modeled using:

I(a,b) <+ V(a,b)/R +
white_noise(4 * ‘P_K * $temperature/R, "thermal");

The optional name argument acts as a label for the noise source used when the simulator outputs the individ-
ual contribution of each noise source to the total output noise. The contributions of noise sources with the
same name from the same instance of a module are combined in the noise contribution summary.

4.6.4.2 flicker_noise

The flicker_noise() function models flicker noise. The general form is:

flicker_noise (pwr , exp [, name])

which generates pink noise with a power of pwr at 1Hz which varies in proportion to 1/f exp.

The optional name argument acts as a label for the noise source used when the simulator outputs the individ-
ual contribution of each noise source to the total output noise. The contributions of noise sources with the
same name from the same instance of a module are combined in the noise contribution summary.

4.6.4.3 noise_table

The noise_table() function interpolates a set of values to model a process where the spectral density of
the noise varies as a piecewise linear function of frequency. The general form is:

noise_table (input [, name])

The argument input can either be a vector or a string indicating a filename.

When the input is a vector it contains pairs of real numbers: the first number in each pair is the frequency in
Hertz and the second is the power. The vector can either be specified as an array parameter or an array
assignment pattern.
85 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
When the input is a file name, the indicated file will contain the frequency / power pairs. The file name argu-
ment shall be constant and will be either a string literal or a string parameter. Each frequency / power pair
shall be separated by a newline and the numbers in the pair shall be separated by one or more spaces or tabs.
To increase the readability of the data file, comments may be inserted before or after any frequency / power
pair. Comments begin with ‘#’ and end with a newline. The input file shall be in text format only and the
numbers shall be real or integer.

The following shows an example of the input file:

noise_table_input.tbl
Example of input file format for noise_table
#
freq pwr

1.0e0 1.657580e-23
1.0e1 3.315160e-23
1.0e2 6.636320e-23
1.0e3 1.326064e-22
1.0e4 2.652128e-22
1.0e5 5.304256e-22
1.0e6 1.060851e-21

End of example input file.

Although the user is encouraged to specify each noise pair in order of ascending frequency, the simulator
shall internally sort the pairs into ascending frequency if required. Each frequency value must be unique.
noise_table() performs piecewise linear interpolation to compute the power spectral density generated
by the function at each frequency between the lowest and highest frequency in the set of values. For frequen-
cies lower than the lowest frequency in the value set, noise_table() returns the power specified for the
lowest frequency, and for frequencies higher than the highest frequency, noise_table() returns the
power specified for the highest frequency.

The optional name argument acts as a label for the noise source used when the simulator outputs the individ-
ual contribution of each noise source to the total output noise. The contributions of noise sources with the
same name from the same instance of a module are combined in the noise contribution summary.

4.6.4.4 noise_table_log

The noise_table_log() function interpolates a set of values to model a process where the spectral
density of the noise varies as a piecewise linear function of the base-10 logarithm of frequency. The general
form is:

noise_table_log (input [, name])

The argument input can either be a vector or a string indicating a filename; in either case, the meaning and
restrictions on the input are the same as for noise_table(). The difference is that
noise_table_log() interpolates logarithmically. For a frequency f not specified in the input data, the
noise power shall be computed using the two pairs (f1,p1) and (f2,p2) in the input (whether an array or file),
where f1 is the largest frequency value in the input data less than f and f2 is the smallest frequency larger
than f (that is, f1 < f < f2); the noise power P is computed as:

P = pow(10, log(p1) + (log(p2)-log(p1)) * (log(f)-log(f1)) / (log(f2)-
log(f1)))
Copyright © 2014 Accellera Systems Initiative. 86

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
As with noise_table(), for frequencies lower than the lowest frequency in the value set,
noise_table_log() returns the power specified for the lowest frequency, and for frequencies higher
than the highest frequency, noise_table_log() returns the power specified for the highest frequency.

The optional name argument acts as a label for the noise source used when the simulator outputs the individ-
ual contribution of each noise source to the total output noise. The contributions of noise sources with the
same name from the same instance of a module are combined in the noise contribution summary.

The difference between noise_table and noise_table_log is illustrated in Figure 4-9.

Figure 4-9: Comparison of noise_table and noise_table_log

The noise_table_log function produces a straight line on a log-log plot from just two points:

V(out) <+ noise_table_log('{1,1, 1e6,1e-6});

whereas the linear interpolation of noise_table produces a series of curves between the interpolating points,
depending on the number of points specified in the function call and the number of points per decade in the
small-signal analysis. Here, one point per decade is specified:

V(out) <+ noise_table('{1,1, 1e1,1e-1, 1e2,1e-2, 1e3,1e-3, 1e4,1e-4,
1e5,1e-5, 1e6,1e-6});

noise_table noise_table_log

1uV^2/Hz

10uV^2/Hz

100uV^2/Hz

1mV^2/Hz

1kHz 10kHz 100kHz 1MHz
frequency
87 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
4.6.4.5 Noise model for diode

The noise of a junction diode could be modeled as shown in the following example.

I(a,c) <+ is*(exp(V(a,c) / (n * $vt)) - 1)
+ white_noise(2*‘P_Q*I(<a>))
+ flicker_noise(kf*pow(abs(I(<a>)), af), ef);

4.6.4.6 Correlated noise

Each noise function generates noise which is uncorrelated with the noise generated by other functions. Per-
fectly correlated noise is generated by using the output of one noise function for more than one noise source.
Partially correlated noise is generated by combining the output of shared and unshared noise functions.

Example 1 — Two noise voltages are perfectly correlated.

n = white_noise(pwr);
V(a,b) <+ c1*n;
V(c,d) <+ c2*n;

Example 2 - Partially correlated noise sources can also be modeled.

n1 = white_noise(1-corr);
n2 = white_noise(1-corr);
n12 = white_noise(corr);
V(a,b) <+ Kv*(n1 + n12);
I(b,c) <+ Ki*(n2 + n12);

4.7 User defined functions

A user defined function can be used to return a value (for an expression). All functions are defined within
modules. Each function can be an analog user defined function or a digital function (as defined in IEEE Std
1364-2005 Verilog HDL).

4.7.1 Defining an analog user defined function

The syntax for defining an analog user defined function is shown in Syntax 4-5.

analog_function_declaration ::= // from A.2.6
analog function [analog_function_type] analog_function_identifier ;

analog_function_item_declaration { analog_function_item_declaration }
analog_function_statement

endfunction

analog_function_type ::= integer | real
analog_function_item_declaration ::=

analog_block_item_declaration
| input_declaration ;
| output_declaration ;
| inout_declaration ;

analog_block_item_declaration ::= // from A.2.8
{ attribute_instance } parameter_declaration ;

| { attribute_instance } integer_declaration
| { attribute_instance } real_declaration
Copyright © 2014 Accellera Systems Initiative. 88

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Syntax 4-5—Syntax for an analog user defined function declaration

An analog user defined function declaration shall begin with the keywords analog function, option-
ally followed by the type of the return value from the function, then the name of the function and a semico-
lon, and ending with the keyword endfunction.

The analog_function_type specifies the return value of the function; its use is optional. type can be a real
or an integer; if unspecified, the default is real.

An analog user defined function:
— can use any statements available for conditional execution (see 5.2);
— shall not use access functions;
— shall not use analog filter functions;
— shall not use contribution statements or event control statements;
— shall have at least one formal argument declared;
— all formal arguments shall have an associated block item declaration specifying the data type of the

argument;
— all formal arguments shall have an associated direction specification that shall be either input,

output, or inout;
— shall not use named blocks;
— shall only reference locally-defined variables, variables passed as arguments, locally-defined param-

eters and module level parameters; and
— If a locally-defined parameter with the specified name does not exist, then the module level parame-

ter of the specified name will be used.

Example 1 — Determine max value:

This example defines an analog user defined function called maxValue, which returns the potential of
whichever signal is larger.

analog function real maxValue;
input n1, n2;
real n1, n2;
begin

// code to compare potential of two signal
maxValue = (n1 > n2) ? n1 : n2;

end
endfunction

Example 2 — Area and perimeter of a rectangle

This example defines an analog user defined function called geomcalc, which returns both the area and
perimeter of a rectangle.

analog function real geomcalc;
input l, w;
output area, perim;
real l, w, area, perim;
begin

area = l * w;
perim = 2 * (l + w);

end
89 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
endfunction

Example 3 — Initialization of a vector variable

The analog user defined function called arrayadd adds the contents of a second array to the first.

analog function real arrayadd;
inout [0:1]a;
input [0:1]b;
real a[0:1], b[0:1];
integer i;
begin

for(i = 0; i < 2; i = i + 1) begin
a[i] = a[i] + b[i];

end
end

endfunction

4.7.2 Returning a value from an analog user defined function

There are three ways to return a value from an analog user defined function: using the implicit analog user
defined function identifier variable, using an output argument, or using an inout argument.

4.7.2.1 Analog user defined function identifier variable

The analog user defined function definition implicitly declares a variable, internal to the analog user defined
function, with the same name as the analog_function_identifier. This variable inherits the same type as the
type specified in the analog user define d function declaration. This internal variable is initialised to zero (0)
and can be used within the body of the analog user defined function. The last value assigned to this variable
will be the return value of the analog user defined function. If this internal variable is not assigned during the
execution of the analog user defined function, then the analog user defined function will return the initialised
value of zero (0). A analog user defined function shall always return a scalar numerical value.

The following line (from the first example in 4.7.1) illustrates this concept:

maxValue = (n1 > n2) ? n1 : n2;

4.7.2.2 Output arguments

An output argument allows the user to return more than one value. The argument passed to an output
argument must be an analog variable reference. If the output argument is defined as an array then the
argument passed into the function must be an analog variable or an array assignment pattern of analog vari-
ables of equivalent size. All output arguments of an analog user defined function are initialised to zero
(0), which in turn means that the argument passed to it is reset to zero (0). During the execution of the func-
tion, these variables can be read and assigned in the flow. At the end of the execution of the analog user
defined function, the last value assigned to the output argument is then assigned to the corresponding ana-
log variable reference that was passed into the function.

The following lines (from the second example in 4.7.1) illustrate this concept:

area = l * w;
perim = 2 * (l + w);
Copyright © 2014 Accellera Systems Initiative. 90

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
4.7.2.3 Inout arguments

inout arguments allow the user to pass in a value to the function and return a different value from it using
the same argument. The argument passed to an inout argument must be an analog variable reference. If the
inout argument is defined as an array then the argument passed into the function must be an analog vari-
able or an array assignment pattern of analog variables of equivalent size. The inout arguments of an ana-
log user defined function do not get initialised to zero (0) like those defined as inout. During the execution
of the function, these variables can be read and assigned in the flow. At the end of the execution of the ana-
log user defined function, the last value assigned to the inout argument is then assigned to the correspond-
ing analog variable reference that was passed into the function. If a value was not assigned to the inout
argument during the execution of the analog user defined function, then the corresponding analog variable
reference is left untouched.

The following lines (from the third example in 4.7.1) illustrate the use of an inout argument.

for(i = 0; i < 2; i = i + 1) begin
a[i] = a[i] + b[i];

end

Note: inout arguments are not “pass by reference”, but more closely related to “copy in” and “copy out”.
Care should be taken to avoid passing the same analog variable reference to different inout and output
arguments of the same analog user defined function as the results are undefined.

4.7.3 Calling an analog user defined function

An analog user defined function call is an operand within an expression. Syntax 4-6 shows the analog user
defined function call.

analog_function_call ::= // from A.8.2
analog_function_identifier { attribute_instance } (analog_expression { , analog_expression })

Syntax 4-6—Syntax for function call

The order of evaluation of the arguments to an analog user defined function call is undefined. The argument
expressions are assigned to the declared inputs, outputs, and inouts in the order of their declaration.

An analog user defined function:
— shall not call itself directly or indirectly, i.e., recursive functions are not permitted; and
— shall only be called within the analog context, either from an analog block or from within another

analog user defined function;

The following example uses the maxValue function defined in 4.7.1.

V(out) <+ maxValue(val1, val2);

The following example uses the geomcalc function defined in 4.7.1.

dummy = geomcalc(l-dl, w-dw, ar, per);

Note that the first two arguments are expressions, and match up with the inputs l and w for the function; the
second two arguments must be real identifiers because they match up with the function outputs.

The following example incorrectly uses the geomcalc function defined in 4.7.1.
91 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
dummy = geomcalc(l-dl, w-dw, ar, V(a));

Here the last two arguments to the user defined function geomcalc are declared as output arguments, but
the fourth argument is passed the potential probe V(a). Only analog variable references can be passed to
output and inout arguments of a analog user defined function so this example will result in a compila-
tion error.

The following example uses the arrayadd example defined in 4.7.1, to add values from one array to
another.

x[0] = 5; x[1] = 10;
y = 3; z = 6;
dummy = arrayadd(x,'{y,z});

Here the first and second arguments are both expecting vectors. A vector variable is passed for the first argu-
ment and an array assignment pattern of two scalar analog variables has been used for the second argument.
Since the first argument is an inout argument, the result of calling the arrayinit function will update the
vector variable x with values x[0] = 8 and x[1] = 16.
Copyright © 2014 Accellera Systems Initiative. 92

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
5. Analog behavior

5.1 Overview

The description of an analog behavior consists of setting up contributions for various signals under certain
procedural or timing control. This section describes an analog procedural block, analog signals, contribution
statements, procedural control statements, and analog timing control functions.

5.2 Analog procedural block

Discrete time behavioral definitions within IEEE Std 1364-2005 Verilog HDL are encapsulated within the
initial and always procedural blocks. Every initial and always block starts a separate concur-
rent activity flow. For continuous time simulation, the behavioral description is encapsulated within the ana-
log procedural block. The syntax for analog block is shown in Syntax 5-1.

analog_construct ::= // from A.6.2
analog analog_statement

| analog initial analog_function_statement
analog_statement ::= // from A.6.4

{ attribute_instance } analog_loop_generate_statement
| { attribute_instance } analog_loop_statement
| { attribute_instance } analog_case_statement
| { attribute_instance } analog_conditional_statement
| { attribute_instance } analog_procedural_assignment
| { attribute_instance } analog_seq_block
| { attribute_instance } analog_system_task_enable
| { attribute_instance } contribution_statement
| { attribute_instance } indirect_contribution_statement
| { attribute_instance } analog_event_control_statement

analog_statement_or_null ::=
analog_statement

| { attribute_instance } ;

Syntax 5-1—Syntax for analog procedural block

The analog procedural block defines the behavior as a procedural sequence of statements. The conditional
and looping constructs are available for defining behaviors within the analog procedural block. Because the
description is a continuous-time behavioral description, no blocking event control statements (such as block-
ing delays, blocking events, or waits) are supported.

All the statements within the analog block shall be executed sequentially at a given point of time, however
the effects on the analog variables, nets, and branches contained in various modules in a design are consid-
ered concurrently. Analog blocks shall be executed at every point in a simulation. Multiple analog blocks
can also be used within a module declaration. Refer 6.2 for more details on multiple analog blocks.

5.2.1 Analog initial block

An analog initial block is a special analog (procedural) block, beginning with the keywords
analog initial, for simulation initialization purposes.
93 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Like a regular analog block, an analog initial block is also comprised of a procedural sequence of statements.
If there are multiple analog initial blocks, they are executed as if concatenated. However, statements in ana-
log initial blocks are restricted for initialization purposes. So analog initial block shall not contain the fol-
lowing statements:

— statements with access functions or analog operators;
— contribution statements;
— event control statements.

This is similar to the restrictions on the statements in analog functions.

This is because an analog initial block is executed before a matrix solution is available so statements in an
analog initial block are restricted to initialization purposes prior to the availability of a solution of both the
digital and the analog modules.

Additionally, digital values cannot be accessed from the analog initial block as they have not yet been
assigned when the analog initial block is executed.

Analog initial block is executed once for each analysis, and can be executed for each sub-task of parameter
sweep analysis (such as dc sweep). The initialization sequence of analog and digital blocks/statements are
described in 8.2 and 8.4.1. If a parameter or variable that is referenced from an analog initial block is
changed during a sub-task of a parameter sweep analysis, then the analog initial block shall be re-executed
so that the new value is taken into account.

5.3 Block statements

The block statements, also referred to as sequential blocks, are a means of grouping procedural statements.
The statements within the block shall be executed in sequence, one after another in the given order and the
control shall pass out of the block after the last statement is executed. The block statements are delimited by
the keywords begin and end.

5.3.1 Sequential blocks

The syntax for sequential blocks is shown in Syntax 5-2.

analog_seq_block ::= // from A.6.3
begin [: analog_block_identifier { analog_block_item_declaration }]

{ analog_statement } end
analog_block_item_declaration ::= // from A.2.8

{ attribute_instance } parameter_declaration ;
| { attribute_instance } integer_declaration
| { attribute_instance } real_declaration

Syntax 5-2—Syntax for the sequential blocks

5.3.2 Block names

A sequential block can be named by adding a :block_identifier after the keyword begin. The naming of a
block allows local variables to be declared for that block. The block names give a means of uniquely identi-
fying all variables at any simulation time.
Copyright © 2014 Accellera Systems Initiative. 94

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
All named block variables are static—that is, an unique location exists for all variables and leaving or enter-
ing the block do not affect the values stored in them. All identifiers declared within a named sequential
block can be accessed outside the scope in which they are declared. Named block variables cannot be
assigned outside the scope of the block in which they are declared.

Parameters declared within a named block have local scope and cannot be assigned outside the scope.
Named and ordered parameter overrides at module instantiation can only affect parameters declared at mod-
ule scope.

module example;
parameter integer p1 = 1;
real moduleVar;

analog begin
begin: myscope

parameter real p2 = p1;
real localVar = 1.5 * p2;

end
moduleVar = myscope.localVar;

end
endmodule

module top;
example #(.p1(4)) inst1(); // allowed
example #(.myscope.p2(4)) inst2(); // error

endmodule

5.4 Analog signals

Analog signals are distinguished from digital signals in that an analog signal has a discipline with a continu-
ous domain. Disciplines, nets, nodes, and branches are described in and ports are described in Clause 6.

This section describes analog branch assignments, signal access mechanisms, and operators in Verilog-AMS
HDL.

5.4.1 Access functions

Flows and potentials on nets, ports, and branches are accessed using access functions. The name of the
access function is taken from the discipline of the net, port, or branch associated with the signal.

Example 1 — Consider a named electrical branch b where electrical is a discipline with V as the access
function for the potential and I as the access function for the flow. The potential (voltage) is accessed via
V(b) and the flow (current) is accessed via I(b).

— There can be any number of named branches between any two signals.
— Unnamed branches are accessed in a similar manner, except the access functions are applied to net

names or port names rather than branch names.

Example 2 — If n1 and n2 are electrical nets or ports, then V(n1, n2) creates an unnamed branch from n1
to n2 (if it does not already exist) and then accesses the branch potential (or the potential difference between
n1 to n2), and V(n1) does the same from n1 to the global reference node (ground).

— In other words, accessing the potential from a net or port to a net or port defines an unnamed branch.
Accessing the potential on a single net or port defines an unnamed branch from that net or port to the
global reference node (ground). There can only be one unnamed branch between any two nets or
between a net and implicit ground (in addition to any number of named branches).
95 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
— An analogous access method is used for flows.

Example 3 — I(n1, n2) creates an unnamed branch from n1 to n2 (if it does not already exist) and then
accesses the branch flow, and I(n1) does the same from n1 to the global reference node (ground).

— Thus, accessing the flow from a net or port to a net or port defines an unnamed branch. Accessing
the potential on a single net or port defines an unnamed branch from that net or port to the global ref-
erence node (ground).

— It is also possible to access the flow passing through a port into a module. The name of the access
function is derived from the flow nature of the discipline of the port. In this case, (<>) is used to
delimit the port name rather than ().

Example 4 — I(<p1>) is used to access the current flow into the module through the electrical port p1.
This capability is discussed further in 5.4.3.

5.4.2 Probes and sources

An analog component can be represented using a network of probes and controlled sources. The Verilog-
AMS HDL uses the concept of probes and sources as a means of unambiguously representing a network.
The mapping between these representations are defined in following subsections.

5.4.2.1 Probes

If no value is specified for either the potential or the flow, the branch is a probe. If the flow of the branch
appears in an expression anywhere in the module, the branch is a flow probe, otherwise the branch is a
potential probe. Using both the potential and the flow of a probe branch is illegal. The models for probe
branches are shown in Figure 5-1.

Figure 5-1: Equivalent circuit models for probe branches

The branch potential of a flow probe is zero (0). The branch flow of a potential probe is zero (0).

5.4.2.2 Sources

A branch, either named or unnamed, is a source branch if either the potential or the flow of that branch is
assigned a value by a contribution statement (see 5.6) anywhere in the module. It is a potential source if the
branch potential is specified and is a flow source if the branch flow is specified. A branch cannot simultane-
ously be both a potential and a flow source, although it can switch between them (a switch branch).

Both the potential and the flow of a source branch are accessible in expressions anywhere in the module.
The models for potential and flow sources are shown in Figure 5-2.

p f
Copyright © 2014 Accellera Systems Initiative. 96

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Figure 5-2: Equivalent circuit models for source branches

5.4.3 Accessing flow through a port

The port access function accesses the flow into a port of a module. The name of the access function is
derived from the flow nature of the discipline of the port. However (<>) is used to delimit the port name,
e.g., I(<a>) accesses the current through module port a.

Example 1 — Consider the junction diode below, where the total diode current is monitored and a message
is issued if it exceeds a given value.

module diode (a, c);
inout a, c;
electrical a, c;
branch (a, c) i_diode, junc_cap;
parameter real is = 1e-14, tf = 0, cjo = 0, imax = 1, phi = 0.7;
analog begin

I(i_diode) <+ is*(limexp(V(i_diode)/$vt) – 1);
I(junc_cap) <+

ddt(tf*I(i_diode) - 2*cjo*sqrt(phi*(phi*V(junc_cap))));
if (I(<a>) > imax)

$strobe("Warning: diode is melting!");
end

endmodule

The expression V(<a>) is invalid for ports and nets, where V is a potential access function. The port access
function shall not be used on the left side of a contribution operator <+.

Example 2 — An ideal relay (a controlled switch) can be implemented as:

module relay (p, n, ps, ns);
inout p, n, ps, ns;
electrical p, n, ps, ns;
parameter vth=0.5;
integer closed;
analog begin

closed = (V(ps,ns) >vth ? 1 : 0);
if (closed)

f is a probe which measures the flow through the branch and p is a probe which
measures the potential across the branch.

f

p

f

p

97 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
V(p,n) <+ 0;
else

I(p,n) <+ 0;
end

endmodule

A discontinuity of order zero (0) is assumed to occur when the branch switches and so it is not necessary to
use the $discontinuity function with switch branches.

5.4.4 Unassigned sources

If a value is not assigned to a branch, and it is not a probe branch, the branch flow is set to zero (0).

Examples:

if (closed)
V(p,n) <+ 0;

is equivalent to

if (closed)
V(p,n) <+ 0;

else
I(p,n) <+ 0;

5.5 Accessing net and branch signals and attributes

The methods for accessing signal and attributes of nets and branches are described in this section.

5.5.1 Accessing net and branch signals

Signals on nets and branches can be accessed only by either the access functions of the discipline associated
with them or by the generic potential or flow access functions. The name of the net or the branch shall be
specified as the argument to the access function. The syntax for analog signal access is shown in Syntax 5-3.

nature_access_function ::= // from A.8.2
nature_attribute_identifier

| potential
| flow

branch_probe_function_call ::=
nature_access_function (branch_reference)

| nature_access_function (analog_net_reference [, analog_net_reference])
port_probe_function_call ::= nature_access_function (< analog_port_reference >)
branch_reference ::= // from A.8.9

hierarchical_branch_identifier
| hierarchical_branch_identifier [constant_expression]
| hierarchical_unnamed_branch_reference

hierarchical_unnamed_branch_reference ::=
hierarchical_inst_identifier.branch (branch_terminal [, branch_terminal])

| hierarchical_inst_identifier.branch (< port_identifier >)
| hierarchical_inst_identifier.branch (< hierarchical_port_identifier >)

analog_net_reference ::=
Copyright © 2014 Accellera Systems Initiative. 98

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
port_identifier
| port_identifier [constant_expression]
| net_identifier
| net_identifier [constant_expression]
| hierarchical_port_identifier
| hierarchical_port_identifier [constant_expression]
| hierarchical_net_identifier
| hierarchical_net_identifier [constant_expression]

analog_port_reference ::=
port_identifier

| port_identifier [constant_expression]
| hierarchical_port_identifier
| hierarchical_port_identifier [constant_expression]

Syntax 5-3—Syntax for analog signal access

Branch or port probe function calls shall only reference nets and ports that have been declared to belong to a
continuous discipline; references to branches require that the branch terminals belong to a continuous disci-
pline. The nature attribute identifier for a branch probe function call must be the access function name for
the potential or flow nature defined for the discipline associated with the nets or branches. For a port probe
function call, the nature attribute identifier must be the access function name for the flow nature associated
with the port, and the port reference many not use hierarchical specifications, i.e., it must be a declared port
of the module in which the port access function is used.

The examples below use the electrical discipline defined in 3.6.2.1 and its associated natures and their
access functions defined in 3.6.1.

module transamp(out, in);
inout out, in;
electrical out, in;
parameter real gm = 1;
analog

I(out) <+ gm*V(in);
endmodule

module resistor(p, n);
inout p, n;
electrical p, n;
branch (p,n) res;
parameter real R = 50;
analog

V(res) <+ R*I(res);
endmodule

The potential and flow access functions can also be used to access the potential or flow of a named or
unnamed branch. The example below demonstrates the potential access functions being used. Note V cannot
be used as an access function because there is a parameter called V declared in the module.

module measure1(p);
output p;
electrical p;
parameter real V = 1.1;
analog begin

$strobe("%M: voltage ratio is %g", potential(p) / V);
end
99 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
endmodule

When the potential and flow access functions are used on an unnamed branch composed of two nets – the
discipline of both nets must be the same.

5.5.2 Signal access for vector branches

Verilog-AMS HDL allows ports, nets, and branches to be arranged as vectors, however, the access functions
can only be applied to scalars or individual elements of a vector. The scalar element of a vector is selected
with an index, e.g., V(in[1]) accesses the voltage in[1].

The index must be a constant expression, though it may include genvar variables. Genvar variables can only
be assigned to as the iteration index of for loops; they allow signal access within looping constructs.

The following examples illustrate applications of access functions to elements of a an analog signal vector or
bus. In the N-bit DAC example, the analog vector in is accessed within an analog for-loop containing the
genvar variable i. In the following fixed-width DAC8 example, literal values are used to access elements of
the bus directly.

//
// N-bit DAC example.
//

module dac(out, in, clk);
parameter integer width = 8 from [2:24];
parameter real fullscale = 1.0, vth = 2.5, td = 1n, tt = 1n;
output out;
input [0:width-1] in;
input clk;
electrical out;
electrical [0:width-1] in;
electrical clk;

real aout;
genvar i;

analog begin
@(cross(V(clk) - vth, +1)) begin

aout = 0;
for (i = width - 1; i >= 0; i = i - 1) begin

if (V(in[i]) > vth) begin
aout = aout + fullscale/pow(2, width - i);

end
end

end
V(out) <+ transition(aout, td, tt);

end
endmodule

//
// 8-bit fixed-width DAC example.
//

module dac8(out, in, clk);
parameter real fullscale = 1.0, vth = 2.5, td = 1n, tt = 1n;
output out;
input [0:7] in;
Copyright © 2014 Accellera Systems Initiative. 100

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
input clk;
electrical out;
electrical [0:7] in;
electrical clk;

real aout;

analog begin
@(cross(V(clk) - 2.5, +1)) begin

aout = 0;
aout = aout + ((V(in[7]) > vth) ? fullscale/2.0 : 0.0);
aout = aout + ((V(in[6]) > vth) ? fullscale/4.0 : 0.0);
aout = aout + ((V(in[5]) > vth) ? fullscale/8.0 : 0.0);
aout = aout + ((V(in[4]) > vth) ? fullscale/16.0 : 0.0);
aout = aout + ((V(in[3]) > vth) ? fullscale/32.0 : 0.0);
aout = aout + ((V(in[2]) > vth) ? fullscale/64.0 : 0.0);
aout = aout + ((V(in[1]) > vth) ? fullscale/128.0 : 0.0);
aout = aout + ((V(in[0]) > vth) ? fullscale/256.0 : 0.0);

end

V(out) <+ transition(aout, td, tt);
end

endmodule

5.5.3 Accessing attributes

Attributes are attached to the nature of a potential or flow. Therefore, the attributes for a net or a branch can
be accessed by using the hierarchical referencing operator (.) to the potential or flow for the net or branch.

Example:

module twocap(a, b, n1, n2);
inout a, b, n1, n2;
electrical a, b, n1, n2;
branch (n1, n2) cap;
parameter real c= 1p;
analog begin

I(a,b) <+ c*ddt(V(a,b), a.potential.abstol);
I(cap) <+ c*ddt(V(cap), n1.potential.abstol);

end
endmodule

The syntax for referencing access attributes is shown in Syntax 5-4. This syntax shall not be used for the
access, ddt_nature, or idt_nature attributes of a nature, nor any other attribute whose value is not
a constant expression.

nature_attribute_reference ::= // from A.8.9
net_identifier . potential_or_flow . nature_attribute_identifier

potential_or_flow ::= potential | flow // from A.1.7

Syntax 5-4—Syntax for referencing attributes of a net

The abstol attribute of a nature may also be accessed simply by using the nature’s identifier as the appro-
priate argument to the ddt(), idt(), or idtmod() operators described in 4.5.
101 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
5.5.4 Creating unnamed branches using hierarchical net references

An access function in a module can have one or more hierarchical net references to nets in other module
instances. In these cases, a new unnamed branch is created in the module containing the access function call.

Example:

module signal_monitor;
parameter refv = 2.3;
electrical a;
analog begin

V(a) <+ refv;

// Creates an unnamed branch in module signal_monitor between
// nets top.drv.a and implicit ground.
$strobe("voltage at top.drv.a = %g volts", V(top.drv.a));

// Creates an unnamed branch in module signal_monitor between
// nets top.drv.a and top.drv.b
$strobe("voltage diff in top.drv = %g volts", V(top.drv.a, top.drv.b));

// Creates an unnamed branch in module signal_monitor between
// local net a and top.drv.a
$strobe("voltage diff from ref in top.drv = %g volts", V(a,top.drv.a));

// References the unnamed branch created in the first $strobe()
// statement
if(V(top.drv.a) > 10.0) $strobe("voltage limit exceeded at top.drv.a");

end
endmodule

Note that even if the instance top.drv already has an unnamed branch between nodes a and ground and a
and b, the new unnamed branches are created in the module signal_monitor.

5.5.5 Accessing nets and branch signals hierarchically

A module is allowed to access the potential and flow of a branch in another module instance using an access
function providing that value is available in the other instance. If it is not available, then an error shall be
reported. Reasons why it would be unavailable are:

— The branch does not exist in the other instance
— The access function is not the valid access function for that named branch

An example of a hierarchical access of the potential of a named branch is:

module top;
A a1();
B b1();

endmodule

module A;
electrical n,p;
branch (n,p) b;
analog V(b) <+ 1.34;

endmodule
Copyright © 2014 Accellera Systems Initiative. 102

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
module B;
analog $strobe("voltage == %g", V(top.a1.b));

endmodule

To access an existing unnamed branch in another module instance, the
hierarchical_unnamed_branch_reference syntax is used.

Example:

analog begin
// strobes the voltage of the unnamed branch between
// nets a and b in top.drv.
$strobe("Voltage == %g", V(top.drv.branch(a,b)));

// strobes the current flowing through the unnamed port
// branch for the port p in top.drv
$strobe("Current == %g", I(top.drv.branch(<p>)));

end

5.6 Contribution statements

The branch contribution statement is used in the analog block to describe continuous-time behavior between
a module’s analog nets and ports. Contribution statements may be described in direct or indirect form.

5.6.1 Direct branch contribution statements

The direct contribution statement uses the branch contribution operator <+ to describe the mathematical
relationship between one or more analog nets within the module. The mapping is done with contribution
statements using the form shown in Syntax 5-5:

contribution_statement ::= branch_lvalue <+ analog_expression ; // from A.6.10
branch_lvalue ::= branch_probe_function_call // from A.8.5
branch_probe_function_call ::= // from A.8.2

nature_access_function (branch_reference)
| nature_access_function (analog_net_reference [, analog_net_reference])

Syntax 5-5—Syntax for branch contribution

In general, a branch contribution statement consists of two parts, a left-hand side and a right-hand side, sep-
arated by a branch contribution operator. The right-hand side can be analog_expression can be any combi-
nation of linear, nonlinear, or differential expressions of module signals, constants, and parameters which
evaluates to or can be promoted to a real value. The left-hand side specifies the source branch signal where
the right-hand side shall be assigned. It shall consist of a signal access function applied to a branch.

If the branch contribution statement is conditionally executed, the expression shall not include an analog fil-
ter function, as described in 4.5, unless the conditional expression is a constant expression.

Electrical behavior can be described using:

V(n1, n2) <+ expression;

or
103 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
I(n1, n2) <+ expression;

where (n1,n2) represents an unnamed source branch and V(n1,n2) refers to the potential on the branch,
while I(n1,n2) refers to the flow through the branch. The ‘V’ and ‘I’ functions (access attributes of the
nature) are obtained from the discipline’s potential and flow bindings of the electrical net (refer 3.6 for fur-
ther details on disciplines and natures).

Contributions cannot be made to an analog port declared with an input direction, but an output port can be
accessed.

There shall be no contributions to an implicit net; contributions shall be done only on analog nets declared
with a continuous discipline.

For example, the following modules model a resistor and a capacitor.

module resistor(p, n);
inout p, n;
electrical p, n;
branch (p,n) path; // named branch
parameter real r = 0;

analog
V(path) <+ r*I(path);

endmodule

module capacitor(p, n);
inout p, n;
electrical p, n;
parameter real c = 0;

analog
I(p,n) <+ c*ddt(V(p, n)); // unnamed branch p,n

endmodule

The potential and flow access functions can also be used to contribute to the potential or flow of a
named or unnamed branch. The example below demonstrates the potential access functions being used
to contribute to a branch and the flow and potential access functions being used to probe branches.
Note V and I cannot be used as access functions because there are parameters called V and I declared in the
module.

module measure2(p);
output p;
electrical p;
parameter real V = 1.1;
parameter real I = 1u;
parameter real R = 10k;
analog begin

potential(p) <+ flow(p) * R; // create a resistor
$strobe("voltage ratio at port 'p' is %g", potential(p) / V);
$strobe("current ratio through port 'p' is %g", flow(<p>) / I);

end
endmodule
Copyright © 2014 Accellera Systems Initiative. 104

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
5.6.1.1 Relations

Branch contribution statements implicitly define source branch relations. The branch is directed from the
first net of the access function to the second net. If the second net is not specified, the global reference node
(ground) is used as the reference net.

A branch relation is a path of the flow between two nets in a module. Each net has two quantities associated
with it—the potential of the net and the flow out of the net. In electrical circuits, the potential of a net is its
voltage, whereas the flow out of the net is its current. Similarly, each branch has two quantities associated
with it—the potential across the branch and the flow through the branch.

For example, the following module models a simple single-ended amplifier.

module amp(out, in);
input in;
output out;
electrical out, in;
parameter real Gain = 1;

analog
V(out) <+ Gain*V(in);

endmodule

5.6.1.2 Evaluation

A statement is evaluated as follows for source branch contributions:
1) The simulator evaluates the right-hand side.
2) The simulator adds the value of the right-hand side to any previously retained value of the branch for

later assignment to the branch. If there are no previously retained values, the value of the right-hand
side itself is retained.

3) At the end of the simulation cycle, the simulator assigns the retained value to the source branch.

Parasitics are added to the amplifier shown in 5.6.1.1 by simply adding additional contribution statements to
model the input admittance and output impedance.

Examples:

module amp(out, in);
inout out, in;
electrical out, in;
parameter real Gain = 1, Rin = 1, Cin = 1, Rout = 1, Lout = 1;

analog begin
// gain of amplifier
V(out) <+ Gain*V(in);

// model input admittance
I(in) <+ V(in)/Rin;
I(in) <+ Cin*ddt(V(in));

// model output impedance
V(out) <+ Rout*I(out);
V(out) <+ Lout*ddt(I(out));

end
endmodule
105 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
5.6.1.3 Value retention

When solving an analog block during an iteration, multiple contributions to the same potential branch or
same flow branch will be additive. However, contributing a flow to a branch which already has a value
retained for the potential results in the potential being discarded and the branch being converted to a flow
source. Conversely, contributing a potential to a branch which already has a value retained for the flow
results in the flow being discarded and the branch being converted into a potential source.

Unlike variables, the contributed value for a branch is only valid for the current iteration. If a branch is not
contributed to, directly or indirectly, for any particular iteration, and it is not a branch probe, it shall be
treated as a flow source with a value of 0.

Example 1:

if (closed)
V(p,n) <+ 0;

is equivalent to

if (closed)
V(p,n) <+ 0;

else
I(p,n) <+ 0;

Example 2:

The value retention rules specify that the example below will result in an assignment of 7.0 to the potential
source for the unnamed branch between ports p and n.

module value_ret(p, n);
inout p, n;
electrical p, n;
analog begin

V(p,n) <+ 1.0; // no previously-retained value, 1 is retained
I(p,n) <+ 2.0; // potential discarded; flow of 2 retained
V(p,n) <+ 3.0; // flow discarded; potential of 3 retained
V(p,n) <+ 4.0; // 4 added to previously-retained 3

end
endmodule

Example 3:

The following module defines a current-controlled current source. Because the branch flow I(ps,ns) appears
in an expression on the right-hand side, 5.4.2.1 states that this unnamed branch is a probe and its potential is
zero (0).

module cccs (p, n, ps, ns);
inout p, n, ps, ns;
electrical p, n, ps, ns;
parameter real A = 1.0;
analog begin

I(p,n) <+ A * I(ps,ns);
end

endmodule

The value retention rules are used to model switches, as described in 5.6.5.
Copyright © 2014 Accellera Systems Initiative. 106

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
5.6.2 Examples

The following examples demonstrate how to formulate models and the correspondence between the behav-
ioral description and the equivalent probe/source model.

5.6.2.1 The four controlled sources

The following example is used with each of the four behavioral statements listed below. Each statement cre-
ates a unique controlled source when inserted into this example.

module control_source (p, n, ps, ns);
inout p, n, ps, ns;
electrical p, n, ps, ns;
parameter A=1;
branch (ps,ns) in;
branch (p,n) out;

 analog begin
// add behavioral statement here
 end

endmodule

The model for a voltage controlled voltage source is

V(out) <+ A * V(in);

The model for a voltage controlled current source is

I(out) <+ A * V(in);

The model for a current controlled voltage source is

V(out) <+ A * I(in);

The model for a current controlled current source is

I(out) <+ A * I(in);

5.6.3 Resistor and conductor

Figure 5-3 shows the model for a linear conductor.

Figure 5-3: Linear conductor model

v

module my_conductor(p,n);
inout p, n;
electrical p,n;
parameter real G=1;
branch (p,n) cond;

analog begin
I(cond) <+ G * V(cond);

end
endmodule

Gv
G

107 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The assignment to I(cond) makes cond a current source branch and V(cond) simply accesses the poten-
tial probe built into the current source branch.

Figure 5-4 shows the model for a linear resistor.

Figure 5-4: Linear resistor model

The assignment to V(res) makes res a potential source branch and I(res) simply accesses the optional
flow probe built into the potential source branch.

5.6.4 RLC circuits

A series RLC circuit is formulated by summing the voltage across its three components,

which can be defined as

V(p, n) <+ R*I(p, n) + L*ddt(I(p, n)) + idt(I(p, n))/C;

A parallel RLC circuit is formulated by summing the currents through its three components,

which can be defined as

I(p, n) <+ V(p, n)/R + C*ddt(V(p, n)) + idt(V(p, n))/L;

5.6.5 Switch branches

Contribution to a branch may be switched between potential and a flow during a simulation. This type of
branch is useful when modeling ideal switches and mechanical stops. As a result, contribution statements are
allowed within conditional statements but are not allowed within event control statements. Note that the
contribution statements shall not use analog operators when the condition can change during the course of a
simulation.

i

Ri

module my_resistor(p,n);
inout p,n;
electrical p,n;
parameter real R=1;
branch (p,n) res;

analog begin
V(res) <+ R * I(res);

end
endmodule

R

v t() Ri t() L
td

d i t() 1
C
---- i τ() τd

∞–

t

∫+ +=

i t() v t()
R

-------- C
td

d v t() 1
L
--- v τ() τd

∞–

t

∫++=
Copyright © 2014 Accellera Systems Initiative. 108

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Figure 5-5: Circuit model for a switched source branch

For example, an ideal relay (a controlled switch) can be implemented using a switch branch as follows:

module relay (p, n, cp, cn);
inout p, n, cp, cn;
electrical p, n, cp, cn;
branch (p,n) out;
branch (cp,cn) ctrl;
parameter real thresh = 0;

analog begin
@(cross(V(ctrl) - thresh, 0))

; // acts only to resolve threshold crossings

if (V(ctrl) > thresh)
V(out) <+ 0;

else
I(out) <+ 0; // optional due to value retention

end
endmodule

A discontinuity of order zero (0) is assumed to occur when the branch switches and so it is not necessary to
use the $discontinuity function with switch branches. Usage of contribution statements inside event
control statements is disallowed as these statements may not be executed at every timepoint.

5.6.6 Implicit Contributions

An important feature of contribution statements is that the value of the target may be expressed in terms of
itself. This is referred to as an implicit or fixed-point formulation.

Example:

I(diode) <+ is*(limexp((V(diode) - r*I(diode))/$vt) - 1);

Position of the switch depends on whether a potential or flow is assigned to the branch.

f

p

109 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Notice that I(diode) is found on both sides of the contribution operator. The underlying implementation of
the simulator will find the value of I(diode) that equals the sum of the contributions made to it, even if the
contributions are a function of I(diode) itself.

5.6.7 Indirect branch contribution statements

Direct contribution statements are not the only way that values can be assigned to analog signals. Indirect
branch contributions provide an alternative approach that is useful in cases where direct contributions do not
behave as needed. One such case is the ideal opamp (or nullor). In this model, the output is driven to the
voltage that results in the input voltage being zero. The constitutive equation is

vin = 0, (1)

which can be formulated with a contribution statement as

V(out) <+ V(out) + V(in);

This statement defines the output of the opamp to be a controlled voltage source by assigning to V(out) and
defines the input to be high impedance by only probing the input voltage. That the desired behavior is
achieved can be seen by subtracting V(out) from both sides of the contribution operator, resulting in (1).
However, this approach does not result in the right tolerances being applied to the equation if out and in have
different disciplines. In this situation the tolerances for the equations would come from V(out) because it is
the target of the contribution, but the final equation does not contain V(out). It would be better if the toler-
ances for the equation were taken from V(in).

The indirect branch assignment should be used in this situation.

V(out): V(in) == 0;

which reads “drive V(out) so that V(in) == 0”. This indicates out is driven with a voltage source and the
source voltage needs to be adjusted so that the given equation is satisfied. Any branches referenced in the
equation are only probed and not driven. In particular, V(in) acts as a voltage probe.

The left-hand side of the equality operator must either be an access function, or ddt, idt or idtmod
applied to an access function. The tolerance for the equation is taken from the argument on the left side of
the equality operator, in this case V(in) as desired. Syntax 5-6 shows the syntax for an indirect assignment
statement.

indirect_contribution_statement ::= // from A.6.10
branch_lvalue : indirect_expression == analog_expression ;

indirect_expression ::= // from A.8.3
branch_probe_function_call

| port_probe_function_call
| ddt (branch_probe_function_call [, abstol_expression])
| ddt (port_probe_function_call [, abstol_expression])
| idt (branch_probe_function_call [, analog_expression

[, analog_expression [, abstol_expression]]])
| idt (port_probe_function_call [, analog_expression [, analog_expression

[, abstol_expression]]])
| idtmod (branch_probe_function_call [, analog_expression [, analog_expression

[, analog_expression [, abstol_expression]]]])
| idtmod (port_probe_function_call [, analog_expression [, analog_expression

[, analog_expression [, abstol_expression]]]])
Copyright © 2014 Accellera Systems Initiative. 110

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
branch_lvalue ::= branch_probe_function_call // from A.8.5
branch_probe_function_call ::= // from A.8.2

nature_attribute_identifier (branch_reference)
| nature_attribute_identifier (analog_net_reference [, analog_net_reference])

Syntax 5-6—Syntax for indirect branch assignment

Indirect branch contributions shall not be used in conditional or looping statements, unless the conditional
expression is a constant expression. The constant expression shall not include the analysis() function
with an argument that can result in different return values during a single analysis, such as the "ic" or
"nodeset" arguments.

For example, a complete description of an ideal opamp is:

module opamp(out, pin, nin);
inout out, pin, nin;
electrical out, pin, nin;
analog

V(out):V(pin,nin) == 0;
endmodule

5.6.7.1 Multiple indirect contributions

For multiple indirect contribution statements, the targets frequently can be paired with any equation.

For example, the following ordinary differential equation,

can be written as

V(x): ddt(V(x)) == f(V(x), V(y), V(z));
V(y): ddt(V(y)) == g(V(x), V(y), V(z));
V(z): ddt(V(z)) == h(V(x), V(y), V(z));

or

V(y): ddt(V(x)) == f(V(x), V(y), V(z));
V(z): ddt(V(y)) == g(V(x), V(y), V(z));
V(x): ddt(V(z)) == h(V(x), V(y), V(z));

or

V(z): ddt(V(x)) == f(V(x), V(y), V(z));
V(x): ddt(V(y)) == g(V(x), V(y), V(z));
V(y): ddt(V(z)) == h(V(x), V(y), V(z));

without affecting the results.

td
dx f x y z, ,()=

td
dy g x y z, ,()=

td
dz h x y z, ,()=
111 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
5.6.7.2 Indirect and direct contribution

Indirect contribution statements is incompatible with direct contribution statements across the same pair of
analog nets (or any of its parallel branches). Once a value is indirectly assigned to a branch, it cannot be con-
tributed to using the branch contribution operator <+.

5.6.8 Contributing hierarchically

5.6.8.1 Contributions to branches between hierarchical nets

Direct contribution statements can contribute to a branch between combinations of local and hierarchical
nets.

In these cases, a new unnamed branch is created in the module containing the direct contribution statements.

Example:
module source_driver();

electrical m;
parameter real vref = 0.0;
analog begin

V(m) <+ vref;

// creates an unnamed voltage source branch of 1.8
// volts between the net top.drv.x and implicit ground.
V(top.drv.x) <+ 1.8;

// creates an unnamed voltage source branch of 1.2
// volts between nets top.drv.x and top.drv.y
V(top.drv.x, top.drv.y) <+ 1.2;

// creates an unnamed voltage source branch of 0.9
// volts between the local net m and top.drv.y
V(m, top.drv.y) <+ 0.9;

end
endmodule

The simulator shall check if the contribution produces a solvable set of equations, e.g. no voltage source
loops created.

5.6.8.2 Hierarchical direct contributions to branches

Hierarchical direct contributions to named and unnamed branches is allowed provided that the branch is
suitable for such contributions. Reasons that a hierarchical branch contribution would not be allowed are:

— Invalid access function used for the contribution to the particular branch
— The hierarchical contribution changes the branch into a switch branch

The simulator shall check if a hierarchical contribution produces a solvable set of equations, e.g. no voltage
source loops created.

Example:
module source_driver();

analog begin
// contributes 1.8 volts to the named branch br_v in top.drv
V(top.drv.br_v) <+ 1.8;
Copyright © 2014 Accellera Systems Initiative. 112

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
// contributes 1.2 volts to the unnamed branch between
// nets x and y in top.drv
V(top.drv.branch(x,y)) <+ 1.2;

// contributes 1mA to the named branch br_i in top.drv
I(top.drv.br_i) <+ 1m;

end
endmodule

Hierarchical contributions are not allowed to branches that have been indirectly contributed to (see 5.6.7)

5.7 Analog procedural assignments

Analog procedural assignments are used for modifying analog integer, real, and string variables
including array variables. The syntax for procedural assignments shown in Syntax 5-7.

analog_procedural_assignment ::= analog_variable_assignment ; // from A.6.2
analog_variable_assignment ::=

scalar_analog_variable_assignment
| array_analog_variable_assignment

scalar_analog_variable_assignment ::= scalar_analog_variable_lvalue = analog_expression
analog_variable_lvalue ::= // from A.8.5

variable_identifier
| variable_identifier [analog_expression] { [analog_expression] }

array_analog_variable_assignment ::= array_analog_variable_lvalue = array_analog_variable_rvalue ;
array_analog_variable_rvalue ::=

array_variable_identifier
| array_ variable_identifier [analog_expression] { [analog_expression] }
| assignment_pattern

Syntax 5-7—Syntax for procedural assignments

For scalar variable assignments the following requirements hold;
— The left-hand side of a procedural assignment shall be scalar, either an integer, real, or

string identifier or an element of an integer, real or string array.
— The right-hand side expression can be any arbitrary expression constituted from legal operands and

operators as described in Clause 4 that evaluates to a scalar.
— A scalar_analog_variable_assignment is defined as a variable assignment whose right-hand side

expression is an analog_expression involving analog operators.
— The following semantic restrictions are applicable to the analog_expression in the

scalar_analog_variable_assignment syntax:
— Concatenation expressions cannot be used as part of the analog_expression (assigning to list of

values in the analog context is not allowed).
— Analog filter functions cannot be used as part of the analog_expression syntax if the statement

is conditionally executed during simulation.
— Hierarchical assignment of a variable from another scope/module is not allowed
113 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Verilog-AMS supports both packed arrays and unpacked arrays of data. The term packed array is used to
refer to the dimensions declared before the data identifier name. The term unpacked array is used to refer to
the dimensions declared after the data identifier name.

Examples:

wire [7:0] c1; // packed array of scalar wire types
real u [7:0]; // unpacked array of real types

The requirements of unpacked array variable assignments are a subset of the requirements of IEEE Std
1800-2012 SystemVerilog.

— The array on the LHS of the assignment shall be an array variable, a slice of an array variable or an
array parameter (when the default value of the parameter is assigned).

— The arrays on the LHS and the RHS of the assignment must be unpacked.
— Array assignments shall only be done with arrays that are compatible. An array, or a slice of such an

array, shall be assignment compatible with any other such array or slice if all the following condi-
tions are satisfied:
— The element types of source and target shall be equivalent.
— Every dimension of the source array shall have the same number of elements as the target array.

Example:
int A[10:1]; // fixed-size array of 10 elements
int B[0:9]; // fixed-size array of 10 elements
int C[24:1]; // fixed-size array of 24 elements
A = B; // ok. Compatible type and same size
A = C; // type check error: different sizes

5.8 Analog conditional statements

There are two types of conditional statement allowed in analog behavior:
— if-else-if statements
— case statements

5.8.1 if-else-if statement

The if-else statement is used to determine whether a statement is executed or not. The syntax of a analog
conditional statement is shown in Syntax 5-8. If any of the conditionally-executed statements
(analog_statement_or_null) contains an analog operator, the conditional expression (analog_expression)
shall be a analysis_or_constant_expression. (See the discussion in 4.5.15 regarding restrictions on the usage
of analog operators.)

analog_conditional_statement ::= // from A.6.6
if (analog_expression) analog_statement_or_null
{ else if (analog_expression) analog_statement_or_null }
[else analog_statement_or_null]

Syntax 5-8—Syntax of conditional statement

If the expression evaluates to True (that is, has a non-zero value), the analog statements specified as part of
the true conditional shall be executed. If it evaluates to False (has a zero value (0)), the analog statements
Copyright © 2014 Accellera Systems Initiative. 114

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
specified as part of the true conditional shall not be executed. If analog statements are specified as part of
the false condition using else and expression is False, these statements shall be executed.

Since the numeric value of the if expression is tested for being zero (0), certain shortcuts are possible (see
4.2).

5.8.2 Examples

For example, the following two statements express the same logic:

if (expression)
if (expression != 0)

Because the else part of an if-else is optional, there can be confusion when an else is omitted from a
nested if() sequence. This is resolved by always associating the else with the closest previous if()
which lacks an else.

In the example below, the else goes with the inner if(), as shown by indentation.

if (index > 0)
if (i > j)

result = i;
else // else applies to preceding if

result = j;

If that association is not desired, a begin-end shall be used to force the proper association, as shown below.

if (index > 0) begin
if (i > j)

result = i;
end
else result = j;

Nesting of if statements (known as an if-else-if construct) is the most general way of writing a multi-way
decision. The expressions are evaluated in order; if any expression is True, the statement associated with it
shall be executed and this action shall terminate the whole chain. Each statement is either a single statement
or a sequential block of statements.

5.8.3 Case statement

The case statement is a multi-way decision statement which tests if an expression matches one of a number
of other expressions, and if so, branches accordingly. The case statement has the syntax shown in
Syntax 5-9.

analog_case_statement ::= // from A.6.7
case (analog_expression) analog_case_item { analog_case_item } endcase

| casex (analog_expression) analog_case_item { analog_case_item } endcase
| casez (analog_expression) analog_case_item { analog_case_item } endcase

analog_case_item ::=
analog_expression { , analog_expression } : analog_statement_or_null

| default [:] analog_statement_or_null

Syntax 5-9—Syntax for case statement
115 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The default statement is optional. Use of multiple default statements in one case statement is illegal.

The analog_expression and the analog_case_item expression can be computed at runtime; neither expres-
sion is required to be a constant expression.

The analog_case_item expressions are evaluated and compared in the exact order in which they are given.
During this linear search, if one of the analog_case_item expressions matches the analog_expression given
in parentheses, then the statement associated with that analog_case_item is executed. If all comparisons fail,
and the default item is given, then the default item statement is executed; otherwise none of the
analog_case_item statements are executed.

The casex and the casez versions of the case statement are described in 7.3.2 and IEEE Std 1364-2005
Verilog HDL.

5.8.4 Restrictions on conditional statements

Since analog filter functions have to be evaluated at every time point these are restricted to be used inside
conditional statements (if-else-if and case) unless the conditional expression is a constant expression. Also,
for the use of analog filter functions, the conditional statements cannot be conditionally executed (nested
conditional statements). Contributions statements are allowed as part of the conditional analog statements
(refer 5.6.5 for details on switch branches).

Event control statements (e.g.: timer, cross) cannot be used inside conditional statements unless the
conditional expression is a constant expression.

5.9 Looping statements

There are several types of looping statements: repeat, while, and for. These statements provide a
means of controlling the execution of a statement zero (0), one (1), or more times.

The for looping statements can be used to describe analog behaviors using analog operators.

The following restrictions are applied to looping statements (repeat, while and for) except for
analog_for statements, refer 5.9.3

— Analog filter functions are not allowed
— Event control statements are not allowed
— Contribution statements are not allowed

5.9.1 Repeat and while statements

repeat() executes a statement a fixed number of times. Evaluation of the expression decides how many
times a statement is executed.

while() executes a statement until an expression becomes False. If the expression starts out False, the
statement is not executed at all.

The repeat and while expressions shall be evaluated once before the execution of any statement in order to
determine the number of times, if any, the statements are executed. The syntax for repeat() and
while() statements is shown in Syntax 5-10.

analog_loop_statement ::= // from A.6.8
repeat (analog_expression) analog_statement
Copyright © 2014 Accellera Systems Initiative. 116

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
| while (analog_expression) analog_statement
...

Syntax 5-10—Syntax for repeat and while statements

5.9.2 For statements

The for() statement is a looping construct which controls execution of its associated statement(s) using an
index variable. In the case of analog_for statement the control mechanism shall consist of
genvar_initialization and genvar_expressions to adhere to the restrictions associated with the use of analog
operators. Syntax 5-11 shows the syntax for the looping statements that can be used in analog behavior.

analog_loop_statement ::= // from A.6.8
...
| for (analog_variable_assignment ; analog_expression ; analog_variable_assignment)

analog_statement

Syntax 5-11—Syntax for the for statements

The for() statement controls execution of its associated statement(s) by a three-step process:
1) it executes an assignment normally used to initialize an integer which controls the number of loops

executed.
2) it evaluates an expression—if the result is zero (0), the for-loop exits; otherwise, the for-loop exe-

cutes its associated statement(s) and then performs Step 3.
3) it executes an assignment normally used to modify the value of the loop-control variable and repeats

Step 2.

5.9.3 Analog For Statements

The analog_for statements are syntactically equivalent to for() statements except the associated analog
statement can contain analog operators. The analog_loop_generate_statement puts the additional restriction
upon the procedural assignment and conditional expressions of the for-loop to be statically evaluatable. Ver-
ilog-AMS HDL provides genvar-derived expressions for this purpose. Syntax 5-12 shows the syntax for the
analog_for statement.

analog_loop_generate_statement ::= // from A.4.2
for (genvar_initialization ; genvar_expression ; genvar_iteration)

analog_statement

Syntax 5-12—Syntax for the analog_for statements

Examples:

module genvarexp(out, dt);
parameter integer width = 1;
output out;
input [1:width] dt;
electrical out;
electrical [1:width] dt;
genvar k;
real tmp;
117 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
analog begin
tmp = 0.0;
for (k = 1; k <= width; k = k + 1) begin

tmp = tmp + V(dt[k]);
V(out) <+ ddt(V(dt[k]));

end
end

endmodule

See the discussion in 4.5.15 regarding other restrictions on the usage of analog operators.

5.10 Analog event control statements

The analog behavior of a component can be controlled using events. events have the following characteris-
tics:

— events have no time duration
— events can be triggered and detected in different parts of the behavioral model
— events do not block the execution of an analog block
— events can be detected using the @ operator
— events do not hold any data
— there can be both digital and analog events

There are three types of analog events, global events (5.10.2), monitored events (5.10.3), and named events
(5.10.4). Null arguments are not allowed in analog events. Analog event detection consist of an event
expression followed by a procedural statement, as shown in Syntax 5-13.

analog_event_control_statement ::= analog_event_control analog_event_statement // from A.6.5
analog_event_control ::=

@ hierarchical_event_identifier
| @ (analog_event_expression)

analog_event_expression ::=
expression

| posedge expression
| negedge expression
| hierarchical_event_identifier
| initial_step [(" analysis_identifier "{ , " analysis_identifier " })]
| final_step [(" analysis_identifier " { , " analysis_identifier " })]
| analog_event_functions
| analog_event_expression or analog_event_expression
| analog_event_expression , analog_event_expression

analog_event_functions ::=
cross (analog_expression [, analog_expression_or_null

[, constant_expression_or_null [, constant_expression_or_null [, analog_expression]]]])
| above (analog_expression [, constant_expression_or_null

[, constant_expression_or_null [, analog_expression]]])
| timer (analog_expression [, analog_expression_or_null

[, constant_expression_or_null [, analog_expression]]])
| absdelta (analog_expression , analog_expression
Copyright © 2014 Accellera Systems Initiative. 118

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
[, constant_expression_or_null [, constant_expression_or_null [, analog_expression]]])
analog_event_statement ::= // from A.6.4

{ attribute_instance } analog_loop_statement
| { attribute_instance } analog_case_statement
| { attribute_instance } analog_conditional_statement
| { attribute_instance } analog_procedural_assignment
| { attribute_instance } analog_event_seq_block
| { attribute_instance } analog_system_task_enable
| { attribute_instance } disable_statement
| { attribute_instance } event_trigger
| { attribute_instance } ;

Syntax 5-13—Syntax for event detection in analog context

The procedural statements following the event expression is executed whenever the event described by the
expression changes. The analog event detection is non-blocking, meaning the execution of the procedural
statement is skipped unless the analog event has occurred. The event expression consists of one or more sig-
nal names, global events, or monitored events separated by the or operator.

The following restrictions applies to the statements that can be specified within an event control block:
— Analog filter functions cannot be used as part of the event control statement. This statement cannot

maintain its internal state since it is only executed intermittently when the corresponding event is
triggered

— Contribution statements cannot be used inside an event control block because it can generate discon-
tinuity in analog signals

— Nested event control statements are not allowed

The parentheses around the event expression are required.

Analog events can also be detected within digital blocks. Syntax 5-14 shows the usage of analog event con-
trol statements inside digital to monitor analog values in the digital context. The usage of initial_step and
final_step analog events are not allowed in the digital context. Refer 7.3.4 for further details on detecting
continuous events in a discrete context.

event_expression ::= // from A.6.5
expression

| posedge expression
| negedge expression
| hierarchical_event_identifier
| event_expression or event_expression
| event_expression , event_expression
| analog_event_functions
| driver_update expression
| analog_variable_lvalue

Syntax 5-14—Syntax for analog event detection in digital context
119 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
5.10.1 Event OR operator

The “OR-ing” of events indicates the occurrence of any one of the events specified shall trigger the execu-
tion of the procedural statement following the event. The keyword or is used as an event OR operator. A
comma (,) can be used interchangeably with the keyword or to OR event expressions.

Examples:

analog begin
@(initial_step or cross(V(smpl)-2.5,+1)) begin

vout = (V(in) > 2.5);
end
V(out) <+ vout;

end

Here, initial_step is a global event and cross() returns a monitored event. The variable vout is set
to zero (0) or one (1) whenever either event occurs.

5.10.2 Global events

Global events are generated by a simulator at various stages of simulation. The user model cannot generate
these events. These events are detected by using the name of the global event in an event expression with the
@ operator.

Global events are pre-defined in Verilog-AMS HDL. These events cannot be redefined in a model.

The pre-defined global events are shown in Syntax 5-15.

analog_event_expression ::= // from A.6.5
...
| initial_step [(" analysis_identifier "{ , " analysis_identifier " })]
| final_step [(" analysis_identifier " { , " analysis_identifier " })]
...

Syntax 5-15—Global events

initial_step and final_step generate global events on the first and the last point in an analysis
respectively. final_step will also generate a global event upon the termination of the simulation due to a
$finish() simulation control task (see 9.7.1). They are useful when performing actions which should
only occur at the beginning or the end of an analysis. Both global events can take an optional argument, con-
sisting of an analysis list for the active global event.

Examples:

@(initial_step("ac", "dc")) // active for dc and ac only
@(initial_step("tran")) // active for transient only

Table 5-1 describes the return value of initial_step and final_step for standard analysis types.
Each column shows the return-on-event status. One (1) represents Yes and zero (0) represents No. A Ver-
Copyright © 2014 Accellera Systems Initiative. 120

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
ilog-AMS HDL simulator can use any or all of these typical analysis types. Additional analysis names can
also be used as necessary for specific implementations. (See 4.6.1 for further details.)

The following example measures the bit-error rate of a signal and prints the result at the end of the simula-
tion.

module bitErrorRate (in, ref);
input in, ref;
electrical in, ref;
parameter real period=1, thresh=0.5;
integer bits, errors;

analog begin
@(initial_step) begin

bits = 0;
errors = 0;

end

@(timer(0, period)) begin
if ((V(in) > thresh) != (V(ref) > thresh))

errors = errors + 1;
bits = bits + 1;

end

@(final_step)
 $strobe("bit error rate = %f%%", 100.0 * errors / bits);

end
endmodule

Table 5-1—Return value of initial_step and final_step

Analysisa

apX designates frequency/time analysis point X, X = 1 to N; OP designates the Operating Point.

DCOP
OP

Sweepb

d1 d2 dN

bSweep refers to a dc analysis in which a parameter is swept through multiple values and an operating
point analysis is performed for each value. d1 refers to the first point in the sweep; d2 through dN
are subsequent points.

TRAN
OP p1 pN

AC
OP p1 pN

NOISE
OP p1 pN

initial_step 1 1 0 0 1 0 0 1 0 0 1 0 0

initial_step("ac") 0 0 0 0 0 0 0 1 0 0 0 0 0

initial_step("noise") 0 0 0 0 0 0 0 0 0 0 1 0 0

initial_step("tran") 0 0 0 0 1 0 0 0 0 0 0 0 0

initial_step("dc") 1 1 0 0 0 0 0 0 0 0 0 0 0

initial_step(unknown) 0 0 0 0 0 0 0 0 0 0 0 0 0

final_step 1 0 0 1 0 0 1 0 0 1 0 0 1

final_step("ac") 0 0 0 0 0 0 0 0 0 1 0 0 0

final_step("noise") 0 0 0 0 0 0 0 0 0 0 0 0 1

final_step("tran") 0 0 0 1 0 0 1 0 0 0 0 0 0

final_step("dc") 1 0 0 1 0 0 0 0 0 0 0 0 0

final_step(unknown) 0 0 0 0 0 0 0 0 0 0 0 0 0
121 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
initial_step and final_step take a list of quoted strings as optional arguments. The strings are
compared to the name of the analysis being run. If any string matches the name of the current analysis name,
the simulator generates an event on the first point and the last point of that particular analysis, respectively.

If no analysis list is specified, the initial_step global event is active during the solution of the first
point (or initial DC analysis) of every analysis. The final_step global event, without an analysis list, is
only active during the solution of the last point of every analyses.

5.10.3 Monitored events

Monitored events are detected using event functions with the @ operator. The triggering of a monitored event
is implicit due to change in signals, simulation time, or other runtime conditions.

5.10.3.1 cross function

The cross() function is used for generating a monitored analog event to detect threshold crossings in ana-
log signals when the expression crosses zero (0) in the specified direction. In addition, cross() controls
the timestep to accurately resolve the crossing.

analog_event_functions ::= // from A.6.5
cross (analog_expression [, analog_expression_or_null

[, constant_expression_or_null [, constant_expression_or_null [, analog_expression]]]])
...

Syntax 5-16—The cross analog event function

The expressions in this syntax have the following meanings:

cross (expr [, dir [, time_tol [, expr_tol [, enable]]]])

where expr is required, and dir, time_tol, expr_tol, and enable are optional. The expr, dir, and enable argu-
ments are specified as analog_expression.The tolerances (time_tol and expr_tol) are specified as
constant_expression and shall be non-negative. Analog filter functions cannot be used for dir or enable
argument and they should evaluate to integers. If the tolerances are not specified, then the tool (e.g., the sim-
ulator) sets them. If either or both tolerances are defined, then the direction shall also be defined.

The direction indicator evaluates to an integer. If it is set to 0 or is not specified, the event and timestep con-
trol occur on both positive and negative crossings of the signal. If dir is +1, the event and timestep control
only occur on rising edge transitions of the signal. If dir is –1, the event and timestep control only occur on
falling edge transitions of the signal. For any other values of dir, the cross() function does not generate
an event and does not act to control the timestep.

expr_tol and time_tol are absolute tolerances and are defined as shown in Figure 5-6. They represent the
maximum allowable error between the true crossing point and when the event triggers. The event shall occur
Copyright © 2014 Accellera Systems Initiative. 122

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
after the threshold crossing, and while the signal remains in the box defined by actual crossing and expr_tol
and time_tol.

Figure 5-6: Timing of event relative to threshold crossing.

If expr_tol is specified, time_tol shall also be specified and both tolerances shall be satisfied at the crossing.

The following description of a sample-and-hold illustrates how the cross() function can be used.

module sh (in, out, smpl);
parameter real thresh = 0.0;
parameter integer dir = +1 from [-1:+1] exclude 0;
output out;
input in, smpl;
electrical in, out, smpl;
real state;

analog begin
@(cross(V(smpl) - thresh, dir))

state = V(in);
V(out) <+ transition(state, 0, 10n);

end
endmodule

If enable is specified and nonzero, then cross() functions as just described. If enable argument is speci-
fied and it is zero, then cross() is inactive, meaning that it does not generate an event at threshold cross-
ings and does not act to control the timestep. Thus, there are two ways to disable the cross function, either by
specifying enable as 0, or giving a value other than –1, 0, or 1 to dir. In the following example, the first way
is used to allow the sample and hold to be disabled. Notice that in this example, the tolerances are not speci-
fied, and so take their default values.

module sh (in, out, smpl, en);
parameter real thresh = 0.0;
parameter integer dir = +1 from [-1:+1] exclude 0;
output out;
input in, smpl, en;
electrical in, out, smpl;
real state;

analog begin
@(cross(V(smpl) - thresh, dir, , , en === 1'b1))

state = V(in);
V(out) <+ transition(state, 0, 10n);

end
endmodule

expr_tol

time_tol

event
threshold

actual crossing
123 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The cross() function maintains its internal state and has the same restrictions as analog operators. In par-
ticular, it shall not be used inside an if, case, casex, or casez statement unless the conditional expres-
sion is a genvar expression. In addition, cross() is not allowed in the repeat and while iteration
statements. It is allowed in the analog_for statements.

5.10.3.2 above function

The above() function is almost identical to the cross() function, except that it also triggers during ini-
tialization or dc analysis. It generates a monitored analog event to detect threshold crossings in analog sig-
nals when the expression crosses zero (0) from below. As with the cross() function, above() controls
the timestep to accurately resolve the crossing during transient analysis.

analog_event_functions ::= // from A.6.5
...
| above (analog_expression [, constant_expression_or_null

[, constant_expression_or_null [, analog_expression]]])
...

Syntax 5-17—The above analog event function

The expressions in this syntax have the following meanings:

above (expr [, time_tol [, expr_tol [, enable]]])

where expr is required. The tolerances (time_tol and expr_tol) are optional, but if specified shall be non-neg-
ative. All arguments are real expressions. If the tolerances are not specified, then the tool (e.g., the simula-
tor) sets them.

The above() function can generate an event during initialization. If the expression is positive at the con-
clusion of the initial condition analysis that precedes a transient analysis, the above() function shall gener-
ate an event. In contrast, the cross() function can only generate an event after the simulation time has
advanced from zero. The cross() function will not generate events for non-transient analyses, such as ac,
dc, or noise analyses of SPICE (see 4.6.1), but the above() function can. During a dc sweep, the
above() function shall also generate an event when the expression crosses zero from below; however, the
step size of the dc sweep is not controlled to accurately resolve the crossing.

The following example uses the above() function in place of the cross() function in the description of
a simplified version of the sample-and-hold module introduced in the previous section. If the voltage on the
smpl port is above 2.5V initially (at time=0), then use of the above() function ensures that the input is
sampled and passed to the output when solving for the initial state of the circuit. If the voltage on the smpl
port never crosses 2.5V in the positive direction, then the cross() function of the previous example would
never trigger, even if the voltage on the smpl port is always above 2.5V.

module sh (in, out, smpl);
output out;
input in, smpl;
electrical in, out, smpl;
real state;

analog begin
@(above(V(smpl) - 2.5))

state = V(in);
V(out) <+ transition(state, 0, 10n);
Copyright © 2014 Accellera Systems Initiative. 124

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
end
endmodule

If enable is specified and nonzero, then above() functions as just described. If enable argument is speci-
fied and it is zero, then above() is inactive, meaning that it does not generate an event at threshold cross-
ings and does not act to control the timestep.

The above() function maintains its internal state and has the same restrictions on its use as the cross()
function.

5.10.3.3 timer function

The timer() function is used to generate analog events to detect specific points in time.

analog_event_functions ::= // from A.6.5
...
| timer (analog_expression [, analog_expression_or_null

[, constant_expression_or_null [, analog_expression]]])

Syntax 5-18—The timer analog event function

The expressions in this syntax have the following meanings:

timer (start_time [, period [, time_tol [, enable]]])

where start_time is required; period, time_tol and enable are optional arguments. The start_time and period
arguments are analog_expressions. The tolerance (time_tol) is a constant_expression and shall be non-nega-
tive. Analog filter functions cannot be used for the start and period arguments.

The timer() function schedules an event which occurs at an absolute time (start_time). The analog simu-
lator places a time point within time_tol of an event. At that time point, the event evaluates to True.

If time_tol is not specified, the default time point is at, or just beyond, the time of the event. If the period is
specified as greater than zero (0), the timer function schedules subsequent events at multiples of period. If
the period expression evaluates to a value less than or equal to 0.0, the timer shall trigger only once at the
specified start_time (if the start_time is in the future with respect to the current simulation time).

If the start_time or period expressions change value during the evaluation of the analog block, the next event
will be scheduled based on the latest value of the start_time and period.

If enable is specified and nonzero, then timer() functions as just described. If enable argument is speci-
fied and it is zero, then timer() is inactive, meaning that it does not generate events as long as enable is
zero. However, it will start generating events once enable returns to being nonzero as if it had never been
disabled.

A pseudo-random bit stream generator is an example how the timer function can be used.

module bitStream (out);
output out;
electrical out;
parameter period = 1.0;
integer x;
125 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
analog begin
@(timer(0, period))

x = $random + 0.5;
V(out) <+ transition(x, 0.0, period/100.0);

end
endmodule

5.10.3.4 absdelta function

The absdelta event function enables efficient and accurate sampling of analog signals for use in digital
behavioral code. The absdelta event function is particularly useful for the conversion of analog-owned vari-
ables to real-typed digital-owned variables just as the above event function is particularly useful for the con-
version of analog-owned variables to logic-typed digital-owned variables.

According to criteria you set, the simulator can generate an absdelta event when an analog expression
changes more than a specified amount, a capability that is typically used to discretize analog signals. Use the
absdelta function to specify when the simulator generates an absdelta event. This function is only allowed in
an initial or always block of a Verilog-AMS module.

analog_event_functions ::= // from A.6.5
absdelta (analog_expression , analog_expression

[, constant_expression_or_null [, constant_expression_or_null [, analog_expression]]])
...

Syntax 5-19—The absdelta analog event function

The expressions in this syntax have the following meanings:

absdelta (expr , delta [, time_tol [, expr_tol [, enable]]])

where expr and delta are required; time_tol, expr_tol and enable are optional arguments. The mandatory
expr and delta arguments are specified as an analog_expression and delta shall be non-negative. The toler-
ances (time_tol and expr_tol) are specified as a constant_expression and shall be non-negative. The enable
argument is specified as an analog_expression and shall evaluate to an integer. Analog filter functions can-
not be used for the enable argument.

A specified time_tol that is smaller than the time precision is ignored and the time precision is used instead.
The expr_tol argument specifies the largest difference in expr that you consider negligible. If the tolerances
are not specified, then the tool (e.g., the simulator) sets them.

The absdelta() function does not force timesteps in the analog solver - it just observes the expr argu-
ment and generates events at the appropriate times to meet the requirements above. To avoid forcing analog
timesteps just to determine an event time, absdelta() may interpolate the time at which an event
occurred if necessary.

The absdelta() function generates events for the following times and conditions.
— During initialization or dc sweep analysis.
— When the enable argument changes from zero to non-zero.
— When the expr value changes in absolute value by more than delta, relative to the previous

absdelta() event (but not when the current time is within time_tol of the previous
absdelta() event). The simulator is allowed to schedule this event at any time between the time
Copyright © 2014 Accellera Systems Initiative. 126

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
corresponding to the interpolated absolute change of (delta - expr_tol) and the time corresponding to
the interpolated absolute change of (delta + expr_tol) for performance or other reasons.

— When expr changes direction (but not when the amount of the change is less than expr_tol).

If delta is set to zero, an event is generated every timestep the expression value changes with zero tolerances.
expr_tol and time_tol, if specified, will have no effect and be ignored. No events are generated at times cal-
culated by interpolation. Generating events on every value change may severely impact simulation perfor-
mance and so setting delta to zero should only be done with great care.

If enable is specified and nonzero, then absdelta() functions as just described. If enable argument is
specified and it is zero, then the absdelta() function is inactive, meaning that it does not generate
events.

The following example describes an event-driven electrical to wreal conversion module where the abs-
delta() function is used to determine when the electrical input signal is converted to a wreal output sig-
nal.

`include "disciplines.vams"
`timescale 1ns / 100ps
module electrical_sampler (e_in, r_out);

input e_in;
output r_out;
electrical e_in;
wreal r_out;
parameter real vdelta=0.1 from (0:inf); // voltage delta
parameter real ttol=1n from (0:1m]; // time tolerance
parameter real vtol=0.01 from (0:inf); // voltage tolerance
real sampled;

assign r_out = sampled;
always @(absdelta(V(e_in), vdelta, ttol, vtol))

sampled = V(e_in);

endmodule

5.10.4 Named events

An identifier declared as an event data type is called a named event. A named event is triggered explicitly
and is used in an event expression to control the execution of procedural statements in the same manner as
event control described in 5.10. Named events can be triggered from always and initial blocks, or from an
analog event statement. This allows control over the enabling of multiple actions in other procedures.

An event name shall be declared explicitly before it is used. Syntax 5-20 gives the syntax for declaring
events.

event_declaration ::= event list_of_event_identifiers ;// from A.2.1.3
list_of_event_identifiers ::= event_identifier { dimension } { , event_identifier { dimension }// from A.2.3
dimension ::= [dimension_constant_expression : dimension_constant_expression] // from A.2.5

Syntax 5-20—Syntax for event declaration
127 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
A declared event is made to occur by the activation of an event triggering statement with the syntax given in
Syntax 5-21. An event is not made to occur by changing the index of an event array in an event control
expression.

event_trigger ::=// from A.6.5
-> hierarchical_event_identifier { [expression] } ;

Syntax 5-21—Syntax for event trigger

An event-controlled statement (for example, @trig rega = regb;) shall cause simulation of its con-
taining procedure to wait until some other procedure executes the appropriate event-triggering statement (for
example, -> trig).

Named events and event control give a powerful and efficient means of describing the communication
between, and synchronization of, two or more concurrently active processes. A basic example of this is a
small waveform clock generator that synchronizes control of a synchronous circuit by signaling the occur-
rence of an explicit event periodically while the circuit waits for the event to occur.

5.10.5 Digital events in analog behavior

To model mixed signal functionality, analog behavior can be made sensitive to digital events, including
posedge events, negedge events, state change events, and named events.
Copyright © 2014 Accellera Systems Initiative. 128

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
6. Hierarchical structures

6.1 Overview

Verilog-AMS HDL supports a hierarchical hardware description by allowing modules to be embedded
within other modules. Higher-level modules create instances of lower-level modules and communicate with
them through input, output, and bidirectional ports. These module input/output (I/O) ports can be scalar or
vector.

Verilog-AMS HDL provides a mechanism to customize the behavior of embedded modules using parame-
ters. The embedded module parameter default value can be modified through a higher-level module’s
parameter override or a hierarchy independent defparam statement.

To describe a hierarchy of modules, the user provides textual definitions of various modules. Each module
definition stands alone; the definitions are not nested. Statements within the module definitions create
instances of other modules, thus describing the hierarchy.

6.2 Modules

A module definition shall be enclosed between the keywords module and endmodule, as shown in
Syntax 6-1. The identifier following the keyword module shall be the name of the module being defined.
The optional list of parameter definitions shall specify an ordered list of the parameters for the module. The
optional list of ports or port declarations shall specify an ordered list of the ports of the module. The order
used in defining the list of parameters in the module_parameter_port_list and in the list of ports can be sig-
nificant when instantiating the module (see 6.2.2). The identifiers in this list shall be declared in input, out-
put, or inout declaration statements within the module definition. Ports declared in the list of port
declarations shall not be redeclared within the body of the module. The module items define what consti-
tutes a module, and they include many different types of declarations and definitions, many of which have
already been introduced.

A module definition may have multiple analog blocks. The behavior of multiple analog blocks shall be
defined by assuming that the multiple analog blocks internally combine into a single analog block in the
order that the analog blocks appear in the module description. In other words, they are concatenated in the
order they appear in the module. Concurrent evaluation of the multiple analog blocks is implementation
dependent as long as the behavior in that case is similar to what would happen if they had been concate-
nated.

A module can have a description attribute, which shall be used by the simulator when generating help mes-
sages for the module.

The keyword macromodule can be used interchangeably with the keyword module to define a module.
An implementation may choose to treat module definitions beginning with the macromodule keyword
differently.

module_declaration ::= // from A.1.2
{ attribute_instance } module_keyword module_identifier [module_parameter_port_list]

list_of_ports ; { module_item }
endmodule

| { attribute_instance } module_keyword module_identifier [module_parameter_port_list]
[list_of_port_declarations] ; { non_port_module_item }

endmodule
129 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
module_keyword ::= module | macromodule | connectmodule
module_parameter_port_list ::= # (parameter_declaration { , parameter_declaration }) // from A.1.3
list_of_ports ::= (port { , port })
list_of_port_declarations ::=

(port_declaration { , port_declaration })
| ()

port ::=
[port_expression]

| . port_identifier ([port_expression])
port_expression ::=

port_reference
| { port_reference { , port_reference } }

port_reference ::=
port_identifier [[constant_range_expression]]

port_declaration ::=
{attribute_instance} inout_declaration

| {attribute_instance} input_declaration
| {attribute_instance} output_declaration

module_item ::= // from A.1.4
port_declaration ;

| non_port_module_item
module_or_generate_item ::=

{ attribute_instance } module_or_generate_item_declaration
| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } loop_generate_construct
| { attribute_instance } conditional_generate_construct
| { attribute_instance } analog_construct

module_or_generate_item_declaration ::=
net_declaration

| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration
| branch_declaration
| analog_function_declaration

non_port_module_item ::=
module_or_generate_item

| generate_region
| specify_block
Copyright © 2014 Accellera Systems Initiative. 130

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specparam_declaration
| aliasparam_declaration

parameter_override ::= defparam list_of_defparam_assignments ;

Syntax 6-1—Syntax for module

6.2.1 Top-level modules and $root

Top-level modules are modules that are included in the source text, but do not appear in any module instanti-
ation statement, as described in 6.2.2. This applies even if the module instantiation appears in a generate
block that is not itself instantiated (see Syntax 6.6).

Verilog-AMS incorporates hierarchical identifier prefix $root from IEEE Std 1800-2012 SystemVerilog.
The name $root is used to unambiguously refer to a top-level instance or to an instance path starting from
the root of the instantiation tree. $root is the root of the instantiation tree.

For example:

$root.A.B // item B within top instance A
$root.A.B.C // item C within instance B within top instance A

$root allows explicit access to the top of the instantiation tree. This is useful to disambiguate a local path
(which takes precedence) from the rooted path. If $root is not specified, a hierarchical path is ambiguous.

For example, A.B.C can mean the local A.B.C or the top-level A.B.C (assuming there is an instance A that
contains an instance B at both the top level and in the current module). The ambiguity is resolved by giving
priority to the local scope and thereby preventing access to the top-level path. $root allows explicit access
to the top level in those cases in which the name of the top-level module is insufficient to uniquely identify
the path.

6.2.2 Module instantiation

Instantiation allows one module to incorporate a copy of another module into itself. Module definitions do
not nest. That is, one module definition does not contain the text of another module definition within its
module...endmodule keyword pair. A module definition nests another module by instantiating it. The
module instantiation statement creates one or more named instances of a defined module.

Syntax 6-2 gives the syntax for specifying instantiations of modules.

module_instantiation ::= // from A.4.1
module_or_paramset_identifier [parameter_value_assignment]

module_instance { , module_instance } ;
parameter_value_assignment ::= # (list_of_parameter_assignments)
list_of_parameter_assignments ::=

ordered_parameter_assignment { , ordered_parameter_assignment }
| named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::= expression
named_parameter_assignment ::=

. parameter_identifier ([mintypmax_expression])
| . system_parameter_identifier ([constant_expression])
131 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
module_instance ::= name_of_module_instance ([list_of_port_connections])
name_of_module_instance ::= module_instance_identifier [range]
list_of_port_connections ::=

ordered_port_connection { , ordered_port_connection }
| named_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance } [expression]
named_port_connection ::= { attribute_instance } . port_identifier ([expression])

Syntax 6-2—Syntax for module instantiation

The instantiations of modules can contain a range specification. This allows an array of instances to be cre-
ated.

One or more module instances (identical copies of a module definition) can be specified in a single module
instantiation statement.

The list of module connections shall be provided only for modules defined with ports. The parentheses,
however, are always required. When a list of port connections is given using the ordered port connection
method, the first element in the list shall connect to the first port declared in the module, the second to the
second port, and so on. See 6.5 for a more detailed discussion of ports and port connection rules.

A connection can be a simple reference to a variable or a net identifier, an expression or a blank. An expres-
sion can be used for supplying a value to a module input port if it is a digital port. A blank port connection
shall represent the situation where the port is not to be connected.

When connecting ports by name, an unconnected port can be indicated either by omitting it in the port list or
by providing no expression in the parentheses [i.e., .port_name ()]

The example below illustrates a comparator and an integrator (lower-level modules) which are instantiated
in sigma-delta A/D converter module (the higher-level module).

module comparator(cout, inp, inm);
output cout;
input inp, inm;
electrical cout, inp, inm;
parameter real td = 1n, tr = 1n, tf = 1n;
real vcout;
analog begin

@(cross(V(inp) - V(inm), 0))
vcout = ((V(inp) > V(inm)) ? 1 : 0);

V(cout) <+ transition(vcout, td, tr, tf);
end

endmodule

module integrator(out, in);
output out;
input in;
electrical in, out;
parameter real gain = 1.0;
parameter real ic = 0.0;
analog begin

V(out) <+ gain*idt(V(in), ic);
end

endmodule
Copyright © 2014 Accellera Systems Initiative. 132

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
module sigmadelta(out, aref, in);
output out;
input aref, in;
electrical out, aref, in;
electrical gnd; ground gnd;

comparator C1(.cout(aa0), .inp(in), .inm(aa2));
integrator #(1.0) I1(.out(aa1), .in(aa0));
comparator C2(out, aa1, gnd);
d2a #(.width(1)) D1(aa2, aref, out); // a D/A converter

endmodule

The comparator instance C1 and the integrator instance I1 in Figure 6-1 use named port connections,
whereas the comparator instance C2 and the d2a (not described here) instance D1 use ordered port connec-
tions. Note the integrator instance I1 overrides gain parameter positionally, whereas the d2a instance D1
overrides width parameter by named association.

Figure 6-1: Comparator and integrator modules

6.3 Overriding module parameter values

When one module instantiates another module, it can alter the values of any parameters declared within the
instantiated module, as well as the values of various system parameters that are implicitly declared for all
modules. There are three ways to alter parameter values: the defparam statement, which allows assignment
to parameters using their hierarchical names, the module instance parameter value assignment, which
allows values to be assigned inline during module instantiation, and the paramset, which is described in 6.4.
If a defparam assignment conflicts with a module instance parameter, the parameter in the module shall take
the value specified by the defparam. If a defparam assignment conflicts with a paramset instance parameter,
the paramset selection will occur with the parameter value specified by the defparam.

The module instance parameter value assignment comes in two forms, by ordered list or by name. The first
form is module instance parameter value assignment by order, which allows values to be assigned in-line
during module instantiation in the order of their declaration. The second form is module instance parameter
value assignment by name, which allows values to be assigned in-line during module instantiation by explic-
itly associating parameter names with the overriding values.

6.3.1 Defparam statement

Using the defparam statement, parameter values can be changed in any module instance throughout the
design using the hierarchical name of the parameter. See 6.7 for details about hierarchical names.

However, a defparam statement in a hierarchy in or under a generate block instance (see 6.6) or an array of
instances (see 6.2.2) shall not change a parameter value outside that hierarchy. Additionally, a defparam
statement is not allowed in a hierarchy in or under a paramset instance (see 6.4).

in out
C1 C2I1

D1

aa1aa0

groundaa2

aref
133 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Each instantiation of a generate block is considered to be a separate hierarchy scope. Therefore, this rule
implies that a defparam statement in a generate block may not target a parameter in another instantiation of
the same generate block, even when the other instantiation is created by the same loop generate construct.

For example, the following code is not allowed:

genvar i;

generate
for (i = 0; i < 8; i = i + 1) begin : somename

flop my_flop(in[i], in1[i], out1[i]);
defparam somename[i+1].my_flop.xyz = i ;

end
endgenerate

Similarly, a defparam statement in one instance of an array of instances may not target a parameter in
another instance of the array.

The expression on the right-hand side of a defparam assignments shall be a constant expression involving
only constant numbers and references to parameters. The referenced parameters (on the right-hand side of a
defparam) shall be declared in the same module as the defparam statement.

The defparam statement is particularly useful for grouping all of the parameter value override assignments
together in one module. Its syntax is shown in Syntax 6-3.

parameter_override ::= defparam list_of_defparam_assignments ; // from A.1.4
list_of_defparam_assignments ::= defparam_assignment { , defparam_assignment } // from A.2.3
defparam_assignment ::= hierarchical_parameter_identifier = constant_mintypmax_expression // from A.2.4

Syntax 6-3—Syntax for defparam

Examples:

module tgate ();
electrical io1,io2,control,control_bar;
mosn m1 (io1, io2, control);
mosp m2 (io1, io2, control_bar);

endmodule

module mosp (drain,gate,source);
inout drain, gate, source;
electrical drain, gate, source;
parameter gate_length = 0.3e-6,

gate_width = 4.0e-6;

spice_pmos #(.l(gate_length),.w(gate_width)) p (drain, gate, source);
endmodule

module mosn (drain,gate,source);
inout drain, gate, source;
electrical drain, gate, source;
parameter gate_length = 0.3e-6,

gate_width = 4.0e-6;
spice_nmos #(.l(gate_length),.w(gate_width)) n (drain, gate, source);

endmodule
Copyright © 2014 Accellera Systems Initiative. 134

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
module annotate ();
defparam

tgate.m1.gate_width = 5e-6,
tgate.m2.gate_width = 10e-6;

endmodule

6.3.2 Module instance parameter value assignment by order

The order of the assignments in module instance parameter value assignment shall follow the order of decla-
ration of the parameters within the module. Local parameter declarations are not considered when assigning
by order; parameter alias declarations are also skipped. It is not necessary to assign values to all of the
parameters within a module when using this method. However, the left-most parameter assignment(s) can
not be skipped. Therefore, to assign values to a subset of the parameters declared within a module, the decla-
rations of the parameters which make up this subset shall precede the declarations of the remaining
(optional) parameters. An alternative is to assign values to all of the parameters, but use the default value
(the same value assigned in the declaration of the parameter within the module definition) for those parame-
ters which do not need new values.

Consider the following example, where the parameters within module instance weakp are changed during
instantiation.

module m ();
electrical clk;
electrical out_a, in_a;
electrical out_b, in_b;

// create an instance and set parameters
mosp #(2e-6,1e-6) weakp (out_a, in_a, clk);

// create an instance leaving default values
mosp plainp (out_b, in_b, clk);

endmodule

6.3.3 Module instance parameter value assignment by name

Parameter assignment by name consists of explicitly linking the parameter name and its value. The name of
the parameter shall be the name specified in the instantiated module. It is not necessary to assign values to
all the parameters within a module when using this method. Only those parameters which are assigned new
values need to be specified.

The parameter expression is optional so the instantiating module can document the existence of a parameter
without assigning anything to it. The parentheses are required and in this case the parameter retains its
default value. Once a parameter is assigned a value, there shall not be another assignment to this parameter
name.

In the following example of instantiating a voltage-controlled oscillator, the parameters are specified on a
named-association basis much as they are for ports.

module n (lo_out, rf_in);
output lo_out;
input rf_in;
electrical lo_out, rf_in;

//create an instance and set parameters
vco #(.centerFreq(5000), .convGain(1000)) vco1(lo_out, rf_in);
135 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
endmodule

Here, the name of the instantiated vco module is vco1. The centerFreq parameter is passed a value of
5000 and the convGain parameter is passed a value of 1000. The positional assignment mechanism for
ports assigns lo_out as the first port and rf_in as the second port of vco1.

6.3.4 Parameter dependence

A parameter (for example, gate_cap) can be defined with an expression containing another parameter (for
example, gate_width or gate_length). Since gate_cap depends on the value of gate_width and
gate_length, a modification of gate_width or gate_length changes the value of gate_cap.

In the following parameter declaration, an update of gate_width, whether by a defparam statement or in an
instantiation statement for the module which defined these parameters, automatically updates gate_cap.

parameter
 gate_width = 0.3e-6,
 gate_length = 4.0e-6,
 gate_cap = gate_length * gate_width * ‘COX;

6.3.5 Detecting parameter overrides

In some cases, it is important to be able to determine whether a parameter value was obtained from the
default value in its declaration statement or if that value was overridden. In such a case, the
$param_given() function described in 9.19 can be used.

6.3.6 Hierarchical system parameters

In addition to the parameters explicitly declared in a module’s header, there are six system parameters that
are implicitly declared for every module: $mfactor, $xposition, $yposition, $angle, $hflip,
and $vflip. The values of these parameters may be accessed in a module or paramset using these names,
as described in 9.18. The value of these parameters may be overridden using the defparam statement, mod-
ule instance parameter value assignment by name, or a paramset; in all three methods, the system parameter
identifier is prefixed by a period (.), just as for explicitly-declared parameters.

If an instance of a module has a non-unity value of $mfactor, then the following rules are applied auto-
matically by the simulator:

— All contributions to a branch flow quantity in the analog block shall be multiplied by $mfactor
— The value returned by any branch flow probe in the analog block, including those used in indirect

assignments, shall be divided by $mfactor
— Contributions to a branch flow quantity using the noise functions of 4.6.4 (white_noise,

flicker_noise, and noise_table) shall have the noise power multiplied by $mfactor
— Contributions to a branch potential quantity using the noise functions of 4.6.4 shall have the noise

power divided by $mfactor
— The module’s value of $mfactor is also propagated to any module instantiated by the original

module, according to the rules found in 9.18.

Application of these rules guarantees that the behavior of the module in the design is identical to the behav-
ior of a quantity $mfactor of identical modules with the same connections; however, the simulator only
has to evaluate the module once.

Verilog-AMS does not provide a method to disable the automatic $mfactor scaling. The simulator shall
issue a warning if it detects a misuse of the $mfactor in a manner that would result in double-scaling.
Copyright © 2014 Accellera Systems Initiative. 136

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The two resistor modules below show ways that the $mfactor might be used in a module. The first exam-
ple, badres, misuses the $mfactor such that the contributed current would be multiplied by $mfactor
twice, once by the explicit multiplication and once by the automatic scaling rule. The simulator will generate
an error for this module.

module badres(a, b);
inout a, b;
electrical a, b;
parameter real r = 1.0 from (0:inf);
analog begin

I(a,b) <+ V(a,b) / r * $mfactor; // ERROR
end

endmodule

In this second example, parares, $mfactor is used only in the conditional expression and does not scale
the output. No error will be generated for this module. In cases where the effective resistance r/$mfactor
would be too small, the resistance is simply shorted out, and the simulator may collapse the node to reduce
the size of the system of equations.

module parares(a, b);
inout a, b;
electrical a, b;
parameter real r = 1.0 from (0:inf);
analog begin

if (r / $mfactor < 1.0e-3)
V(a,b) <+ 0.0;

else
I(a,b) <+ V(a,b) / r;

end
endmodule

The values of the five geometrical system parameters, $xposition, $yposition, $angle, $hflip,
and $vflip, do not have any automatic effect on the simulation. The paramset or module may use these
values to compute geometric layout-dependent effects, as shown in the following example.

In the next example, it is assumed that a top-level module named processinfo contains values for the
properties of polysilicon resistors in the manufacturing process, including the nominal value process-
info.rho and the gradients processinfo.drho_dx and processinfo.drho_dy, in the x and y direc-
tion respectively.

module polyres(a, b);
inout a, b;
electrical a, b;
parameter real length = 1u from (0:inf);
parameter real width = 1u from (0:inf);
real rho, reff;
analog begin

rho = processinfo.rho
+ $xposition * processinfo.drho_dx
+ $yposition * processinfo.drho_dy;

reff = rho * length / width;
I(a,b) <+ V(a,b) / reff;

end
endmodule

The resistor just defined could be instantiated in the following manner so as to cancel out the process gradi-
ents:
137 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
module matchedres(a, b);
inout a, b;
electrical a, b;
parameter real length = 1u from (0:inf);
parameter real width = 1u from (0:inf);
polyres #(.width(width/4.0), .length(length),

.$xposition(-1u), .$yposition(-1u)) R1 (a, b);
polyres #(.width(width/4.0), .length(length),

.$xposition(+1u), .$yposition(-1u)) R2 (a, b);
polyres #(.width(width/4.0), .length(length),

.$xposition(-1u), .$yposition(+1u)) R3 (a, b);
polyres #(.width(width/4.0), .length(length),

.$xposition(+1u), .$yposition(+1u)) R4 (a, b);
endmodule

Unfortunately, if the module matchedres is itself instantiated off-center, then the process gradients will not
be canceled.

6.4 Paramsets

A paramset definition is enclosed between the keywords paramset and endparamset, as shown in
Syntax 6-4. The first identifier following the keyword paramset is the name of the paramset being
defined. The second identifier will usually be the name of a module with which the paramset is associated.
The second identifier may instead be the name of a second paramset. A chain of paramsets may be defined
in this way, but the last paramset in the chain shall reference a module.

paramset_declaration ::= // from A.1.9
{ attribute_instance } paramset paramset_identifier module_or_paramset_identifier ;

paramset_item_declaration { paramset_item_declaration }
paramset_statement { paramset_statement }

endparamset

paramset_item_declaration ::=
{ attribute_instance } parameter_declaration ;

| { attribute_instance } local_parameter_declaration ;
| aliasparam_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } real_declaration

paramset_statement ::=
.module_parameter_identifier = paramset_constant_expression ;

| .module_output_variable_identifier = paramset_constant_expression ;
| .system_parameter_identifier = paramset_constant_expression ;
| analog_function_statement

paramset_constant_expression ::=
constant_primary

| hierarchical_parameter_identifier
| unary_operator { attribute_instance } constant_primary
| paramset_constant_expression binary_operator { attribute_instance } paramset_constant_expression
| paramset_constant_expression ? { attribute_instance } paramset_constant_expression :
paramset_constant_expression

Syntax 6-4—Syntax for paramset
Copyright © 2014 Accellera Systems Initiative. 138

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The paramset itself contains no behavioral code; all of the behavior is determined by the associated module.
The restrictions on statements in the paramset are described in 6.4.1.

The paramset provides a convenient way to collect parameter values for a particular module, such that an
instance need only provide overrides for a smaller number of parameters. A simulator can use this informa-
tion to optimize data storage for the instances: multiple instances may share a paramset, and the simulator
can share storage of parameters of the underlying module. The shared storage of paramsets makes them sim-
ilar to the SPICE model card. Also like the SPICE model card, paramsets may be overloaded, as described in
6.4.2.

The only restriction on the associated module for a paramset is that it does not contain a defparam statement
in or under its hierarchy, see 6.3.1.

A paramset can have a description attribute, which shall be used by the simulator when generating help mes-
sages for the paramset.

The following example shows how one might convert a SPICE model card into a Verilog-AMS paramset.
Suppose one has the following lines in a SPICE netlist:

m1 d1 g 0 0 nch l=1u w=10u
m2 d2 g 0 0 nch l=1u w=5u
.model nch nmos (level=3 kp=5e-5 tox=3e-8 u0=650 nsub=1.3e17

+ vmax=0 tpg=1 nfs=0.8e12)

These lines could be written in Verilog-AMS as follows, assuming that nmos3 is a behavioral module that
contains the same equations as the SPICE primitive.

nch #(.l(1u), .w(10u)) m1 (.d(d1), .g(g), .s(0), .b(0));
nch #(.l(1u), .w(5u)) m2 (.d(d2), .g(g), .s(0), .b(0));

paramset nch nmos3; // default paramset
parameter real l=1u from [0.25u:inf);
parameter real w=1u from [0.2u:inf);
.l=l; .w=w; .ad=w*0.5u; .as=w*0.5u;
.kp=5e-5; .tox=3e-8; .u0=650; .nsub=1.3e17;
.vmax=0; .tpg=1; .nfs=0.8e12;

endparamset

Note that the paramset has only two parameters, l and w; an instance of the paramset that attempts to over-
ride any of the other parameters of the underlying module nmos3 would generate an error. Analog simula-
tors are expected to optimize the storage of paramset values in a manner similar to the way SPICE optimizes
model parameter storage.

6.4.1 Paramset statements

The restrictions on statements or assignments allowed in a paramset are similar to the restrictions for analog
functions. Specifically, a paramset:

— can use any statements available for conditional execution (see 5.2);
— shall not use access functions;
— shall not use contribution statements or event control statements; and
— shall not use named blocks.

The special syntax
139 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
.module_parameter_identifier = paramset_constant_expression ;

is used to assign values to the parameters of the associated module. The expression on the right-hand side
can be composed of numbers, parameters and hierarchical out-of-module references to local parameters of a
different module. Hierarchical out-of-module references to non-local parameters of a different module is
disallowed. The expression may also use the $arandom function from 9.13.1 and the $rdist_ functions
from 9.13.2, so long as the arguments to these functions are constant.

Paramset statements may assign values to variables declared in the paramset; the values need not be constant
expressions. However, these variables shall not be used to assign values to the module’s parameters. Param-
set variables may be used to provide output variables for instances that use the paramset; see 6.4.3.

The following example shows how to use the $rdist_normal function of 9.13.2 to model two kinds of
statistical variation.

module semicoCMOS ();
localparam real tox = 3e-8;
localparam real dtox_g = $rdist_normal(1,0,1n,"global");
localparam real dtox_mm = $rdist_normal(2,0,5n,"instance");

endmodule

paramset nch nmos3; // mismatch paramset
parameter real l=1u from [0.25u:inf);
parameter real w=1u from [0.2u:inf);
parameter integer mm=0 from (0:1];
.l=l; .w=w; .ad=w*0.5u; .as=w*0.5u;
.kp=5e-5; .u0=650; .nsub=1.3e17;
.vmax=0; .tpg=1; .nfs=0.8e12;
.tox = semicoCMOS.tox + semicoCMOS.dtox_g + semicoCMOS.dtox_mm;

endparamset

module top ();
electrical d1, d2, g, vdd, gnd;
ground gnd;
nch #(.l(1u), .w(5u), .mm(1)) m1(.d(d1), .g(g), .s(gnd), .b(gnd));
nch #(.l(1u), .w(5u), .mm(1)) m2(.d(d2), .g(g), .s(gnd), .b(gnd));
resistor #(.r(1k)) R1 (vdd, d1);
resistor #(.r(1k)) R2 (vdd, d2);
vsine #(.dc(2.5)) Vdd (vdd, gnd);
vsine #(.dc(0), .ampl(1.0), .offset(1.5), .freq(1k)) Vg (g, gnd);

endmodule

Because the local parameter dtox_mm is obtained from $rdist_normal with the string "instance", the
instances m1 and m2 will get different values of tox. Though the local variation has a smaller standard devi-
ation than the global variation, only the local variation will affect the differential voltage between nodes d1
and d2.

6.4.2 Paramset overloading

Paramset identifiers need not be unique: multiple paramsets can be declared using the same
paramset_identifier, and they may refer to different modules. During elaboration, the simulator shall choose
an appropriate paramset from the set that shares a given name for every instance that references that name.

When choosing an appropriate paramset, the following rules shall be enforced:
— All parameters overridden on the instance shall be parameters of the paramset
Copyright © 2014 Accellera Systems Initiative. 140

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
— The parameters of the paramset, with overrides and defaults, shall be all within the allowed ranges
specified in the paramset parameter declaration.

— The local parameters of the paramset, computed from parameters, shall be within the allowed ranges
specified in the paramset.

— The underlying module shall have a port declared for each port connected in the instance line.

The rules above may not be sufficient for the simulator to pick a unique paramset, in which case the follow-
ing rules shall be applied in order until a unique paramset has been selected:

— The paramset with the fewest number of un-overridden parameters shall be selected.
— The paramset with the greatest number of local parameters with specified ranges shall be selected.
— The paramset with the fewest ports not connected in the instance line shall be selected.

It shall be an error if there are still more than one applicable paramset for an instance after application of
these rules.

If a paramset assigns a value to a module parameter and this value is outside the range specified for that
module parameter, it shall be an error. The simulator shall consider only the ranges of the paramset’s own
parameters when choosing a paramset.

The following example illustrates some of the rules for paramset selection. Consider a design that includes
the two paramsets defined previously (in the examples of 6.4 and 6.4.1) as well as the following paramsets:

paramset nch nmos3; // short-channel paramset
parameter real l=0.25u from [0.25u:1u);
parameter real w=1u from [0.2u:inf);
parameter real ad=0.5*w from (0:inf);
parameter real as=0.5*w from (0:inf);
.l=l; .w=w; .ad=ad; .as=as;
.kp=5e-5; .tox=3e-8; .u0=650; .nsub=1.3e17;
.vmax=0; .tpg=1; .nfs=0.8e12;

endparamset

paramset nch nmos3; // long-channel paramset
parameter real l=1u from [1u:inf);
parameter real w=1u from [0.2u:inf);
parameter real ad=0.4*w from (0:inf);
parameter real as=0.4*w from (0:inf);
.l=l; .w=w; .ad=ad; .as=as;
.kp=5e-5; .tox=3e-8; .u0=640; .nsub=1.3e17;
.vmax=0; .tpg=1; .nfs=0.7e12;

endparamset

The following instances might exist in the design:

nch #(.l(1u), .w(5u), .mm(1)) m1(.d(d1), .g(g), .s(0), .b(0));
nch #(.l(1u), .w(5u), .mm(1)) m2(.d(d2), .g(g), .s(0), .b(0));
nch #(.l(1u), .w(10u)) m3 (.d(g), .g(g), .s(0), .b(0));
nch #(.l(3u), .w(5u), .ad(1.2p), .as(1.3p))

m4 (.d(d1), .g(g2), .s(d2), .b(0));

The instances m1 and m2 will use the mismatch paramset from 6.4.1, because it is the only one for which mm
is a parameter. The instance m4 will use the long-channel paramset defined in this example, because while
the short-channel paramset also has ad and as as parameters, the length of m4 is only allowed by the range
for l in the long-channel paramset. The instance m3 will use the default paramset defined in 6.4; it cannot
use the mismatch paramset because the default value of mm for that paramset is not allowed by the range, and
141 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
it discriminates against the long-channel paramset because that paramset would have two un-overridden
parameters.

6.4.3 Paramset output variables

As with modules, integer or real variables in the paramset that are declared with descriptions are considered
output variables; see 3.2.1. A few special rules apply to paramset output variables and output variables of
modules referenced by a paramset:

— If a paramset output variable has the same name as an output variable of the module, the value of the
paramset output variable is the value reported for any instance that uses the paramset.

— If a paramset variable without a description has the same name as an output variable of the module,
the module output variable of that name shall not be available for instances that use the paramset.

— A paramset output variable’s value may be computed from values of any output parameters of the
module by using the special syntax

.module_output_variable_identifier

The following example declares an output variable ft for instances of the paramset smnpn.The module is
assumed to have output variables named gm, cpi, and cmu. If the module npn had an output variable named
ft, the paramset’s output variable would replace it.

paramset smnpn npn; // small npn paramset
(*desc="cut-off frequency"*) real ft;
.is=2.0e-17; .bf=120.0; .br=10; rb=145; .rc=75; .re=12;
.cje=2.0e-14; .vje=0.9; .mje=0.4;
.cjc=3.0e-14; .vjc=0.6; .mjc=0.3; .xcjc=0.2;
ft = .gm/(‘M_TWO_PI*(.cpi + .cmu));

endparamset

6.5 Ports

Ports provide a means of interconnecting instances of modules. For example, if a module A instantiates mod-
ule B, the ports of module B are associated with either the ports or the internal nets of module A.

6.5.1 Port definition

The syntax for a port association is shown in Syntax 6-5.

port ::= // from A.1.3
[port_expression]

| . port_identifier ([port_expression])
port_expression ::=

port_reference
| { port_reference { , port_reference } }

Syntax 6-5—Syntax for port

The port expression in the port definition can be one of the following:
— a simple net identifier
— a scalar member of a vector net or port declared within the module
Copyright © 2014 Accellera Systems Initiative. 142

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
— a sub-range of a vector net or port declared within the module
— a vector net formed as a result of the concatenation operator

The port expression is optional because ports can be defined which do not connect to anything internal to the
module.

6.5.2 Port declarations

The type and direction of each port listed in the module definition’s list of ports are declared in the body of
the module.

6.5.2.1 Port type

The type of a port is declared by giving its discipline, as shown in Syntax 6-6. If the type of a port is not
declared, the port can only be used in a structural description. (It can be passed to instances of modules, but
cannot be accessed in a behavioral description.)

net_declaration ::= // from A.2.1.3
...

| discipline_identifier [range] list_of_net_identifiers ;
| discipline_identifier [range] list_of_net_decl_assignments ;

...
range ::= [msb_constant_expression : lsb_constant_expression] // from A.2.5
list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment } // from A.2.3
list_of_net_identifiers ::= ams_net_identifier { , ams_net_identifier }
net_decl_assignment ::= ams_net_identifier = expression // from A.2.4

Syntax 6-6—Syntax for port type declarations

6.5.2.2 Port direction

Each port listed in the list of ports for the module definition shall be declared in the body of the module as an
input, output, or inout (bidirectional). This is in addition to any other declaration for a particular
port—for example, a net_discipline, reg, or wire. The syntax for port declarations is shown in Syntax 6-7.

inout_declaration ::= // from A.2.1.2

inout [discipline_identifier] [net_type | wreal] [signed] [range] list_of_port_identifiers
input_declaration ::=

input [discipline_identifier] [net_type | wreal] [signed] [range] list_of_port_identifiers
output_declaration ::=

output [discipline_identifier] [net_type | wreal] [signed] [range] list_of_port_identifiers
| output [discipline_identifier] reg [signed] [range] list_of_variable_port_identifiers
| output output_variable_type list_of_variable_port_identifiers

Syntax 6-7—Syntax for port direction declarations
143 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
A port can be declared in both a port type declaration and a port direction declaration. If a port is declared as
a vector, the range specification between the two declarations of a port shall be identical. For example:

input [0:3] in;
electrical [0:3] in; // valid, MSB and LSB in both the port type and port

// direction declaration evaluate to the same value

input [0:3] in;
electrical [0:4-1] in; // valid, MSB and LSB in both the port type and port

// direction declaration evaluate to the same value

input [3:0] in;
electrical [0:3] in; // error, MSB and LSB in the port type declaration does

// not evaluate to the same value as the port direction
// declaration.

Implementations can limit the maximum number of ports in a module definition, but this shall be a mini-
mum of 256 ports per implementation.

6.5.3 Real valued ports

Verilog-AMS HDL supports ports which are declared to be real-valued and have a discrete-time discipline.
This is done using the net type wreal (defined in 3.7). There can be a maximum of one driver of a real-val-
ued net.

Examples:

module top();
wreal stim;
reg clk;
wire [1:8] out;

testbench tb1 (stim, clk);
a2d dut (out, stim, clk);

initial clk = 0;
always #1 clk = ~clk;

endmodule

module testbench(wout, clk);
output wout;
input clk;
real out;
wire clk;
wreal wout;

assign wout = out;

always @(posedge clk) begin
out = out + $abstime;

end
endmodule

module a2d(dout, in, clk);
output [1:8] dout;
Copyright © 2014 Accellera Systems Initiative. 144

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
input in, clk;
wreal in;
wire clk;
reg [1:8] dout;
real residue;
integer i;

always @(negedge clk) begin
residue = in;
for (i = 8; i >= 1; i = i - 1) begin

if (residue > 0.5) begin
dout[i] = 1'b1;
residue = residue - 0.5;

end
else begin

dout[i] = 1'b0;
end
residue = residue*2;

end
end

endmodule

6.5.4 Connecting module ports by ordered list

One way to connect the ports listed in a module instantiation with the ports defined by the instantiated mod-
ule is via an ordered list—that is, the ports listed for the module instance shall be in the same order as the
ports listed in the module definition.

Examples:

module adc4 (out, rem, in);
output [3:0] out; output rem;
input in;
electrical [3:0] out;
electrical in, rem, rem_chain;

adc2 hi2 (out[3:2], rem_chain, in);
adc2 lo2 (out[1:0], rem, rem_chain);

endmodule

module adc2 (out, remainder, in);
output [1:0] out; output remainder;
input in;
electrical [1:0] out;
electrical in, remainder, r;

adc hi1 (out[1], r, in);
adc lo1 (out[0], remainder, r);

endmodule

module adc (out, remainder, in);
output out, remainder;
input in;
electrical out, in, remainder;
integer d;

analog begin
d = (V(in) > 0.5);
145 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
V(out) <+ transition(d);
V(remainder) <+ 2.0 * V(in);
if (d)

V(remainder) <+ -1.0;
end

endmodule

6.5.5 Connecting module ports by name

The second way to connect module ports consists of explicitly linking the two names for each side of the
connection — specify the name used in the module definition, followed by the name used in the instantiating
module. This compound name is then placed in the list of module connections.

The following rules apply:
— The name of port shall be the name specified in the module definition.
— The name of port cannot be a bit select or a part select.
— The port expression shall be the name used by the instantiating module and can be one of the follow-

ing:
— a simple net identifier
— a scalar member of a vector net or port declared within the module
— a sub-range of a vector net or port declared within the module
— a vector net formed as a result of the concatenation operator

— The port expression is optional so the instantiating module can document the existence of the port
without connecting it to anything. The parentheses are required.

— The two types of module port connections can not be mixed; connections to the ports of a particular
module instance shall be all by order or all by name.

Examples:

module adc4 (out, rem, in);
input in;
output [3:0] out; output rem;
electrical [3:0] out;
electrical in, rem, rem_chain;

adc2 hi (.in(in), .out(out[3:2]), .remainder(rem_chain));
adc2 lo (.in(rem_chain), .out(out[1:0]), .remainder(rem));

endmodule

module adc2 (out, in, remainder);
output [1:0] out; output remainder;
input in;
electrical [1:0] out;
electrical in, remainder, r;

// adc is same as defined in 6.5.4
adc hi1 (out[1], r, in);
adc lo1 (out[0], remainder, r);

endmodule

Since these connections were made by port name, the order in which the connections appear is irrelevant.
Copyright © 2014 Accellera Systems Initiative. 146

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
6.5.6 Detecting port connections

When a module is instantiated, all of its ports need not be connected. For example, a clock module may pro-
vide outputs clk and clkbar, but a design may only need clk. In some cases, it may be important to know
whether a particular port is connected. For example, if the transition() filter of 4.5.8 is used on the
outputs, it might speed up the simulation if the filter is only used when the port is connected. The
$port_connected() function described in 9.19 can be used to determine whether a port is connected.

6.5.7 Port connection rules

All digital ports connected to a net shall be of compatible disciplines, as shall all analog ports connected to a
net. Ports of both analog and digital discipline may be connected to a net provided the appropriate connect
statements exist (see 7.7).

6.5.7.1 Matching size rule

A scalar port can be connected to a scalar net and a vector port can be connected to a vector net or concate-
nated net expression of the matching width. In other words, the sizes of the ports and net need to match.

6.5.7.2 Resolving discipline of undeclared interconnect signal

Verilog-AMS HDL supports undeclared interconnects between module instances when describing hierarchi-
cal structures. That is, a signal appearing in the connection list of a module instantiation need not appear in
any port declaration or discipline declaration (see 7.4).

6.5.8 Inheriting port natures

A net of continuous discipline shall have a potential nature and may have a flow nature. Because of hierar-
chical connections, an analog node may be associated with a number of analog nets, and thus, a number of
continuous disciplines. The node shall be treated as having a potential abstol with a value equal to
the smallest abstol of all the potential natures of all the disciplines with which it is associated. The node
shall be treated as having a flow abstol with a value equal to the smallest abstol of all the flow
natures, if any, of all the disciplines with which it is associated.

6.6 Generate constructs

Generate constructs are used to either conditionally or multiply instantiate generate blocks into a model. A
generate block is a collection of one or more module items. A generate block may not contain port declara-
tions, parameter declarations, specify blocks, or specparam declarations. All other module items, including
other generate constructs, are allowed in a generate block. Generate constructs provide the ability for param-
eter values to affect the structure of the model. They also allow for modules with repetitive structure to be
described more concisely, and they make recursive module instantiation possible.

There are two kinds of generate constructs: loops and conditionals. Loop generate constructs allow a single
generate block to be instantiated into a model multiple times. Conditional generate constructs, which include
if-generate and case-generate constructs, instantiate at most one generate block from a set of alternative gen-
erate blocks. The term generate scheme refers to the method for determining which or how many generate
blocks are instantiated. It includes the conditional expressions, case alternatives, and loop control statements
that appear in a generate construct.

Generate schemes are evaluated during elaboration of the model. Elaboration occurs after parsing the HDL
and before simulation; and it involves expanding module instantiations, computing parameter values, resolv-
ing hierarchical names (see 6.7), establishing net connectivity and in general preparing the model for simula-
147 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
tion. Although generate schemes use syntax that is similar to behavioral statements, it is important to
recognize that they do not execute at simulation time. They are evaluated at elaboration time, and the result
is determined before simulation begins. Therefore, all expressions in generate schemes shall be constant
expressions, deterministic at elaboration time. For more details on elaboration, see 6.9.

The elaboration of a generate construct results in zero or more instances of a generate block. An instance of
a generate block is similar in some ways to an instance of a module. It creates a new level of hierarchy. It
brings the objects, behavioral constructs, and module instances within the block into existence. These con-
structs act the same as they would if they were in a module brought into existence with a module instantia-
tion, except that object declarations from the enclosing scope can be referenced directly (see 6.8). Names in
instantiated named generate blocks can be referenced hierarchically as described in 6.7.

The keywords generate and endgenerate may be used in a module to define a generate region. A
generate region is a textual span in the module description where generate constructs may appear. Use of
generate regions is optional. There is no semantic difference in the module when a generate region is used. A
parser may choose to recognize the generate region to produce different error messages for misused generate
construct keywords. Generate regions do not nest, and they may only occur directly within a module. If the
generate keyword is used, it shall be matched by an endgenerate keyword.

The syntax for generate constructs is given in Syntax 6-8.

module_or_generate_item ::= // from A.1.4
{ attribute_instance } module_or_generate_item_declaration

| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } loop_generate_construct
| { attribute_instance } conditional_generate_construct
| { attribute_instance } analog_construct

module_or_generate_item_declaration ::=
net_declaration

| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration
| branch_declaration
| analog_function_declaration

generate_region ::= // from A.4.2
generate { module_or_generate_item } endgenerate

genvar_declaration ::=
genvar list_of_genvar_identifiers ;

list_of_genvar_identifiers ::=
Copyright © 2014 Accellera Systems Initiative. 148

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
genvar_identifier { , genvar_identifier }
analog_loop_generate_statement ::=

for (genvar_initialization ; genvar_expression ; genvar_iteration)
analog_statement

loop_generate_construct ::=
for (genvar_initialization ; genvar_expression ; genvar_iteration)

generate_block
genvar_initialization ::=

genvar_identifier = constant_expression
genvar_expression ::=

genvar_primary
| unary_operator { attribute_instance } genvar_primary
| genvar_expression binary_operator { attribute_instance } genvar_expression
| genvar_expression ? { attribute_instance } genvar_expression : genvar_expression

genvar_iteration ::=
genvar_identifier = genvar_expression

genvar_primary ::=
constant_primary

| genvar_identifier
conditional_generate_construct ::=

if_generate_construct
| case_generate_construct

if_generate_construct ::=
if (constant_expression) generate_block_or_null
[else generate_block_or_null]

case_generate_construct ::=
case (constant_expression) case_generate_item { case_generate_item } endcase

case_generate_item ::=
constant_expression { , constant_expression } : generate_block_or_null

| default [:] generate_block_or_null
generate_block ::=

module_or_generate_item
| begin [: generate_block_identifier] { module_or_generate_item } end

generate_block_or_null ::=
generate_block

| ;

Syntax 6-8—Syntax for generate constructs

6.6.1 Loop generate constructs

A loop generate construct permits a generate block to be instantiated multiple times using syntax that is sim-
ilar to a for loop statement. The loop index variable shall be declared in a genvar declaration prior to its use
in a loop generate scheme.

The genvar is used as an integer during elaboration to evaluate the generate loop and create instances of the
generate block, but it does not exist at simulation time. A genvar shall not be referenced anywhere other than
in a loop generate scheme.
149 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Both the initialization and iteration assignments in the loop generate scheme shall assign to the same genvar.
The initialization assignment shall not reference the loop index variable on the right-hand side.

Within the generate block of a loop generate construct, there is an implicit localparam declaration. This is an
integer parameter that has the same name and type as the loop index variable, and its value within each
instance of the generate block is the value of the index variable at the time the instance was elaborated. This
parameter can be used anywhere within the generate block that a normal parameter with an integer value can
be used. It can be referenced with a hierarchical name.

Because this implicit localparam has the same name as the genvar, any reference to this name inside the loop
generate block will be a reference to the localparam, not to the genvar. As a consequence, it is not possible to
have two nested loop generate constructs that use the same genvar.

Generate blocks in loop generate constructs can be named or unnamed, and they can consist of only one
item, which need not be surrounded by begin/end keywords. Even if the begin/end keywords are absent, it is
still a generate block, which, like all generate blocks, comprises a separate scope and a new level of hierar-
chy when it is instantiated.

If the generate block is named, it is a declaration of an array of generate block instances. The index values in
this array are the values assumed by the genvar during elaboration. This can be a sparse array because the
genvar values do not have to form a contiguous range of integers. The array is considered to be declared
even if the loop generate scheme resulted in no instances of the generate block. If the generate block is not
named, the declarations within it cannot be referenced using hierarchical names other than from within the
hierarchy instantiated by the generate block itself.

It shall be an error if the name of a generate block instance array conflicts with any other declaration, includ-
ing any other generate block instance array. It shall be an error if the loop generate scheme does not termi-
nate. It shall be an error if a genvar value is repeated during the evaluation of the loop generate scheme. It
shall be an error if any bit of the genvar is set to x or z during the evaluation of the loop generate scheme.

For example, this module implements a continuously running (unclocked) analog-to-digital converter.

module adc (in, out);
parameter bits=8, fullscale=1.0, dly=0.0, ttime=10n;
input in;
output [0:bits-1] out;
electrical in;
electrical [0:bits-1] out;

real sample, thresh;
genvar i;

analog begin
thresh = fullscale/2.0;
sample = V(in);

end

generate
for (i=bits-1; i>=0; i=i-1)

analog begin
V(out[i]) <+ transition(sample > thresh, dly, ttime);
if (sample > thresh) sample = sample - thresh;
sample = 2.0*sample;

end
endgenerate

endmodule
Copyright © 2014 Accellera Systems Initiative. 150

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The model in the next two examples are parametrized modules that use a loop to generate SPICE primitive
instances. The second of these examples makes a net declaration inside of the generate loop to generate the
nodes needed to connect the analog primitives for each iteration of the loop.

This module implements an interconnect line constructed from RC sections.

module rcline (n1, n2);
inout n1, n2;
electrical n1, n2, gnd;
ground gnd;
parameter integer N = 10 from (0:inf);
electrical [0:N] n;
parameter Cap = 1p, Res = 1k;
localparam Csec = Cap/N, Rsec = Res/N;

genvar i;

// "generate" and "endgenerate" keywords are not required.
for (i=0; i <N; i=i+1) begin

resistor #(.r(Rsec)) R(n[i], n[i+1]);
capacitor #(.c(Csec)) C(n[i+1], gnd);

end

analog begin
V(n1, n[0]) <+ 0.0;
V(n2, n[N]) <+ 0.0;

end
endmodule

This module also implements an interconnect line constructed from RC sections, but the sections are now
symmetric. Additionally, the capacitor is now implemented by an analog block.

module rcline2 (n1, n2);

inout n1, n2;
electrical n1, n2, gnd;
ground gnd;
parameter integer N = 10 from (0:inf);
electrical [0:N] n;
parameter Cap = 1p, Res = 1k;
localparam Csec = Cap/N, Rsec = Res/(2*N);

genvar i;

for (i=0; i <N; i=i+1) begin : section
electrical n_int;

resistor #(.r(Rsec)) R1(n[i], n_int);
resistor #(.r(Rsec)) R2(n_int, n[i+1]);
analog

I(n_int, gnd) <+ Csec * ddt(V(n_int));
end

analog begin
V(n1, n[0]) <+ 0.0;
V(n2, n[N]) <+ 0.0;

end
endmodule
151 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
In the above example the block inside the generate loop is a named block. For each block instance created
by the generate loop, the generate block identifier for the loop is indexed by adding the "[genvar value]" to
the end of the generate block identifier. These names can be used in hierarchical path names (see 6.7).

6.6.2 Conditional generate constructs

The conditional generate constructs, if-generate and case-generate, select at most one generate block from a
set of alternative generate blocks based on constant expressions evaluated during elaboration. The selected
generate block, if any, is instantiated into the model.

Generate blocks in conditional generate constructs can be named or unnamed, and they may consist of only
one item, which need not be surrounded by begin-end keywords. Even if the begin-end keywords are
absent, it is still a generate block, which, like all generate blocks, comprises a separate scope and a new level
of hierarchy when it is instantiated.

Because at most one of the alternative generate blocks is instantiated, it is permissible for there to be more
than one block with the same name within a single conditional generate construct. It is not permissible for
any of the named generate blocks to have the same name as generate blocks in any other conditional or loop
generate construct in the same scope, even if the blocks with the same name are not selected for instantia-
tion. It is not permissible for any of the named generate blocks to have the same name as any other declara-
tion in the same scope, even if that block is not selected for instantiation.

If the generate block selected for instantiation is named, then this name declares a generate block instance
and is the name for the scope it creates. Normal rules for hierarchical naming apply. If the generate block
selected for instantiation is not named, it still creates a scope; but the declarations within it cannot be refer-
enced using hierarchical names other than from within the hierarchy instantiated by the generate block itself.

If a generate block in a conditional generate construct consists of only one item that is itself a conditional
generate construct and if that item is not surrounded by begin/end keywords, then this generate block is not
treated as a separate scope. The generate construct within this block is said to be directly nested. The gener-
ate blocks of the directly nested construct are treated as if they belong to the outer construct. Therefore, they
can have the same name as the generate blocks of the outer construct, and they cannot have the same name
as any declaration in the scope enclosing the outer construct (including other generate blocks in other gener-
ate constructs in that scope). This allows complex conditional generate schemes to be expressed without cre-
ating unnecessary levels of generate block hierarchy.

The most common use of this would be to create an if-else-if generate scheme with any number of else-if
clauses, all of which can have generate blocks with the same name because only one will be selected for
instantiation. It is permissible to combine if-generate and case-generate constructs in the same complex gen-
erate scheme. Direct nesting applies only to conditional generate constructs nested in conditional generate
constructs. It does not apply in any way to loop generate constructs.

The following module implements a non-linear resistor that internally uses the SPICE resistor primitive if
the non-linear coefficients are not given or a short if the resistance value is 0.

module nlres (inout electrical a, inout electrical b);

parameter real res = 1k from (0:inf);
parameter real coeff1 = 0.0;

generate
if ($param_given(coeff1) && coeff1 != 0.0)

analog
V(a, b) <+ res * (1.0 + coeff1 * I(a, b)) * I(a, b);

else if (res == 0.0)
analog
Copyright © 2014 Accellera Systems Initiative. 152

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
V(a, b) <+ 0.0;
else

resistor #(.r(res)) R1(a, b);
endgenerate

endmodule

For compact modeling of semiconductor devices where the delay time of signals through the device needs to
be taken into account (non-quasi-static models) introduction of extra nodes and branches can be controlled
through a module parameter.

module nmosfet (d, g, s, b);

inout electrical d, g, s, b;
parameter integer nqsMod = 0 from [0:1];

// "generate" and "endgenerate" keywords are not required.
if (nqsMod) begin : nqs

electrical GP;
electrical BP;
electrical BI;
electrical BS;
electrical BD;
...

end
endmodule

Conditional generate constructs make it possible for a module to contain an instantiation of itself. The same
can be said of loop generate constructs, but it is more easily done with conditional generates. With proper
use of parameters, the resulting recursion can be made to terminate, resulting in a legitimate model hierar-
chy. Because of the rules for determining top-level modules, a module containing an instantiation of itself
will not be a top-level module.

The following example is a continuously running (unclocked) pipeline analog-to-digital converter that
instantiates a lower resolution version of itself as part of its structure.

module pipeline_adc (in, out);

parameter bits=8, fullscale=1.0;
inout in;
inout [0:bits-1] out;
electrical in;
electrical [0:bits-1] out;

comparator #(.ref(fullscale/2)) cmp (in, out[bits-1]);

generate
if (bits > 1) begin

electrical n1, n2;
subtractor #(.level(fullscale)) sub (in, out[bits-1], n1);
amp2x amp (n1, n2);
pipeline_adc #(.bits(bits-1)) section (n2, out[0:bits-2]);

end
endgenerate

endmodule

Some of the functionality of conditional generate constructs can also be achieved using paramset overload-
ing, see 6.4.2. For instance, selection of a particular module based on the value or presence of a parameter
can also be handled by constructing appropriate paramsets.
153 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
6.6.2.1 Dynamic parameters

A special case exists for dc sweep simulations: a series of operating point analyses where one or more
parameters of the circuit change value between each analysis, see also 4.6.1 on the Analysis function. Digital
simulations do not normally allow a parameter to vary during simulation; in analog simulation it is quite
common to sweep a parameter during simulation to get information on how the parameter values influence
the circuit behavior and hence the simulation results.

In connection with the conditional generate construct, an implementation may choose to limit the possible
parameters to sweep to those that do not influence the structure of the circuit.

6.6.3 External names for unnamed generate blocks

Although an unnamed generate block has no name that can be used in a hierarchical name, it needs to have a
name by which external interfaces can refer to it. A name will be assigned for this purpose to each unnamed
generate block as described in the next paragraph.

Each generate construct in a given scope is assigned a number. The number will be 1 for the construct that
appears textually first in that scope and will increase by 1 for each subsequent generate construct in that
scope. All unnamed generate blocks will be given the name "genblk<n>" where <n> is the number assigned
to its enclosing generate construct. If such a name would conflict with an explicitly declared name, then
leading zeroes are added in front of the number until the name does not conflict.

Each generate construct is assigned its number as described in the previous paragraph even if it does not
contain any unnamed generate bocks.

Example:

module top ();
parameter genblk2 = 0;
genvar i;

// The following generate block is implicitly named genblk1
if (genblk2) electrical a; // top.genblk1.a
else electrical b; // top.genblk1.b

// The following generate block is implicitly named genblk02
// as genblk2 is already a declared identifier
if (genblk2) electrical a; // top.genblk02.a
else electrical b; // top.genblk02.b

// The following generate block would have been named genblk3
// but is explicitly named g1
for (i = 0; i < 1; i = i + 1) begin : g1 // block name

// The following generate block is implicitly named genblk1
// as the first nested scope inside of g1
if (1) electrical a; // top.g1[0].genblk1.a

end

// The following generate block is implicitly named genblk4 since
// it belongs to the fourth generate construct in scope "top".
// The previous generate block would have been named genblk3
// if it had not been explicitly named g1
for (i = 0; i < 1; i = i + 1)

// The following generate block is implicitly named genblk1
// as the first nested generate block in genblk4
Copyright © 2014 Accellera Systems Initiative. 154

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
if (1) electrical a; // top.genblk4[0].genblk1.a

// The following generate block is implicitly named genblk5
if (1) electrical a; // top.genblk5.a

endmodule

6.7 Hierarchical names

Every identifier in Verilog-AMS HDL has a unique hierarchical path name. The hierarchy of modules and
the definition of items such as named blocks within the modules define these names. The hierarchy of names
can be viewed as a tree structure, where each module instance or a named begin-end block defines a new
hierarchical level, or as a scope (of a particular branch of the tree).

At the top of the name hierarchy are the names of modules where no instances have been created. This is the
root of the hierarchy. Inside any module, each module instance and named begin-end block define a new
branch of the hierarchy. Named blocks within named blocks also create new branches.

Each net in the hierarchical name tree is treated as a separate scope with respect to identifiers. A particular
identifier can be declared only once in any scope.

Any named object can be referenced uniquely in its full form by concatenating the names of the module
instance or named blocks that contain it. The period character (.) is used to separate names in the hierarchy.
The complete path name to any object starts at a top-level module. This path name can be used from any
level in the description. The first name in a path name can also be the top of a hierarchy which starts at the
level where the path is being used.

The syntax for hierarchical path names is given in Syntax 6-9.

hierarchical_identifier ::= [$root .] { identifier [[constant_expression]] . } identifier

Syntax 6-9—Syntax for hierarchical path name

Hierarchical names consist of instance names separated by periods, where an instance name can be an array
element. The instance name $root refers to the top of the instantiated design and is used to unambigu-
ously gain access to the top of the design.

$root.mymodule.u1 // absolute name
u1.struct1.field1 // u1 must be visible locally or above, including globally
adder1[5].sum

Examples:

module samplehold (in, cntrl, out);
input in, cntrl;
output out;
electrical in, cntrl, out;
electrical store, sample;
parameter real vthresh = 0.0;
parameter real cap = 10e-9;
amp op1 (in, sample, sample);
amp op2 (store, out, out);

analog begin
155 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
I(store) <+ cap * ddt(V(store));
if (V(cntrl) > vthresh)

V(store, sample) <+ 0;
else

I(store, sample) <+ 0;
end

endmodule

module amp(inp, inm, out);
input inp, inm;
output out;
electrical inp, inm, out;
parameter real gain=1e5;

analog begin
V(out) <+ gain*V(inp,inm);

end
endmodule

Figure 6-2 illustrates the hierarchy implicit in the example code.

Figure 6-2: Hierarchy in a model

Figure 6-3 is a list of the hierarchical forms of the names of all the objects defined in the example code.

Figure 6-3: Hierarchical path names in a design

6.7.1 Usage of hierarchical references

The following usage rules and semantic restrictions shall be applied to analog identifiers referred hierarchi-
cally using an out-of-module reference (OOMR) in a mixed signal module:

— Potential and flow access for named and unnamed branches (including port branches) can be done
hierarchically.

— Hierarchical reference of an implicit net is allowed when the referenced net is first coerced to a spe-
cific discipline.

— Access of parameters can be done hierarchically. However, parameter declaration statements shall
not make out-of-module references (e.g., for setting default values).

— Analog user defined functions can be accessed hierarchically.
— It shall be an error to access analog variables hierarchically.
— Potential and flow contributions to named and unnamed branches can be done hierarchically.

op2 op1

samplehold

samplehold in, cntrl, out, sample, store, vthresh, cap
op1 op1.inp, op1.inm, op1.out, op1.gain
op2 op2.inp, op2.inm, op2.out, op2.gain
Copyright © 2014 Accellera Systems Initiative. 156

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
— It shall be an error to assign to an analog variable using hierarchical notation.

Hierarchical references to analog branches and nets can be done in both analog as well as digital blocks.

Verilog-AMS HDL follows the rules for hierarchical upward referencing as described in 12.6 of IEEE Std
1364-2005 Verilog HDL with the addition that the scope_name shall be restricted to a
hierarchical_inst_identifier.

6.8 Scope rules

The following elements define a new scope in Verilog-AMS HDL:
— modules
— tasks
— named blocks
— functions
— generate blocks
— analog functions

An identifier shall be used to declare only one item within a scope. This rule means it is illegal to declare
two or more variables which have the same name, or to name a task the same as a variable within the same
module, or to give an instance the same name as the name of the net connected to its output. For generate
blocks, this rule applies regardless of whether the generate block is instantiated. An exception to this is made
for generate blocks in a conditional generate construct. See 6.6.3 for a discussion of naming conditional gen-
erate blocks.

If an identifier is referenced directly (without a hierarchical path) within a named block, or generate block it
shall be declared either within the named block, or generate block locally or within a module, or within a
named block, or generate block that is higher in the same branch of the name tree containing the named
block, or generate block. If it is declared locally, the local item shall be used; if not, the search shall continue
upward until an item by that name is found or until a module boundary is encountered. If the item is a vari-
able, it shall stop at a module boundary; if the item is a named block, or generate block, it continues to
search higher level modules until found.

Because of the upward searching process, path names which are not strictly on a downward path can be
used.

6.9 Elaboration

Elaboration is the process that occurs between parsing and simulation. It binds modules to module instances,
builds the model hierarchy, computes parameter values, selects paramsets, resolves hierarchical names,
establishes net connectivity, resolves disciplines and inserts connect modules, and prepares all of this for
simulation. With the addition of generate constructs, the order in which these tasks occur becomes signifi-
cant.

6.9.1 Concatenation of analog blocks

A module definition may have multiple analog blocks. The simulator shall internally combine the multiple
analog blocks into a single analog block in the order that the analog blocks appear in the module description.
In other words, the analog blocks shall execute in the order that they are specified in the module.
157 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Concatenation of the analog blocks occurs after all generate constructs have been evaluated, i.e. after the
loop generate constructs have been unrolled, and after the conditional generate constructs have been
selected. If an analog block appears in a loop generate statement, then the order in which the loop is unrolled
during elaboration determines the order in which the analog blocks are concatenated to the eventual single
analog block after elaboration.

6.9.2 Elaboration and paramsets

If a generate construct contains an instantiation of an overloaded paramset, then the paramset selection is
performed after the generate construct has been evaluated. The evaluation of the generate construct may
influence the values and connections of the paramset instance, and hence the selection of matching paramset
and module.

6.9.3 Elaboration and connectmodules

Automatic insertion of connect modules is a post-elaboration operation, as first the disciplines of the various
nets needs to be resolved. This is described in detail in 7.8.

Discipline resolution can only occur after elaboration of the generate constructs once the connections of all
nets has been resolved. It should also occur after the paramset selection as the choice for a particular module
instantiation may affect the disciplines of the connected nets.

6.9.4 Order of elaboration

Because of generate constructs and paramsets, the model hierarchy can depend on parameter values.
Because defparam statements can alter parameter values from almost anywhere in the hierarchy, the result
of elaboration can be ambiguous when generate constructs are involved. The final model hierarchy can
depend on the order in which defparams and generate constructs are evaluated.

The use of paramsets cannot introduce ambiguity as no defparam inside the hierarchy below a paramset
instantiation is allowed, see 6.3.1 and 6.4.

The following algorithm defines an order that produces the correct hierarchy:
1) A list of starting points is initialized with the list of top-level modules.
2) The hierarchy below each starting point is expanded as much as possible without elaborating gener-

ate constructs. All parameters encountered during this expansion are given their final values by
applying initial values, parameter overrides, defparam statements, and paramset selections.

3) In other words, any defparam statement whose target can be resolved within the hierarchy elabo-
rated so far must have its target resolved and its value applied. defparam statements whose target
cannot be resolved are deferred until the next iteration of this step. Because no defparam inside the
hierarchy below a generate construct is allowed to refer to a parameter outside the generate con-
struct, it is possible for parameters to get their final values before going to step 3).

4) Each generate construct encountered in step 2) is revisited, and the generate scheme is evaluated.
The resulting generate block instantiations make up the new list of starting points. If the new list of
starting points is not empty, go to step 2).
Copyright © 2014 Accellera Systems Initiative. 158

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
7. Mixed signal

7.1 Overview

With the mixed use of digital and analog simulators, a common terminology is needed. This clause provides
the core terminology used in this LRM and highlights the behavior of the mixed-signal capabilities of Ver-
ilog-AMS HDL.

Verilog-AMS HDL provides the ability to accurately model analog, digital, and mixed-signal blocks.
Mixed-signal blocks provide the ability to access data and be controlled by events from the other domain. In
addition to providing mixed-signal interaction directly through behavioral descriptions, Verilog-AMS HDL
also provides a mechanism for the mixed-signal interaction between modules.

Verilog-AMS HDL is a hierarchical language which enables top-down design of mixed-signal systems.
Connect modules are used in the language to resolve the mixed-signal interaction between modules. These
modules can be manually inserted (by the user) or automatically inserted (by the simulator) based on rules
provided by the user.

Connect rules and the discipline of the mixed signals can be used to control auto-insertion throughout the
hierarchy. Prior to insertion, all net segments of a mixed signal shall first be assigned a discipline. This is
commonly needed for interconnect, which often does not have a discipline declared for it. Once a discipline
has been assigned (usually through use of a discipline resolution algorithm), connect modules shall be
inserted based on the specified connect rules. Connect rules control which connect modules are used and
where are they inserted.

Connect modules are a special form of a mixed-signal module which allow accurate modeling of the inter-
faces between analog and digital blocks. They help ensure the drivers and receivers of a connect module are
correctly handled so the simulation results are not impacted.

This clause also details a feature which allows analog to accurately model the effects the digital receivers for
mixed signals containing both drivers and receivers. In addition, special functions provide access to driver
values so a more accurate connect module can be created.

The following subclauses define these capabilities in more detail.

7.2 Fundamentals

The most important feature of Verilog-AMS HDL is that it combines the capabilities of both analog and dig-
ital modeling into a single language. This subclause describes how the continuous (analog) and discrete
(digital) domains interact together, as well as the mixed-signal-specific features of the language.

7.2.1 Domains

The domain of a value refers to characteristics of the computational method used to calculate it. In Verilog-
AMS HDL, a variable is calculated either in the continuous (analog) domain or the discrete (digital) domain
every time. The potentials and flows described in natures are calculated in the continuous domain, while reg-
ister contents and the states of gate primitives are calculated in the discrete domain. The values of real and
integer variables can be calculated in either the continuous or discrete domain depending on how their val-
ues are assigned.
159 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Values calculated in the discrete domain change value instantaneously and only at integer multiples of a
minimum resolvable time. For this reason, the derivative with respect to time of a digital value is always
zero (0). Values calculated in the continuous domain, on the other hand, are continuously varying.

7.2.2 Contexts

Statements in a Verilog-AMS HDL module description can appear in the body of an analog block, in the
body of an initial or always block, or outside of any block (in the body of the module itself). Those
statements which appear in the body of an analog block are said to be in the continuous (analog) context; all
others are said to be in the discrete (digital) context. A given variable can be assigned values only in one
context or the other, but not in both. The domain of a variable is that of the context from which its value is
assigned.

7.2.3 Nets, nodes, ports, and signals

In Verilog-AMS HDL, hierarchical structures are created when higher-level modules create instances of
lower level modules and communicate with them through input, output, and bidirectional ports. A port rep-
resents the physical connection between an expression in the instantiating or parent module and an expres-
sion in the instantiated or child module. The expressions involved are referred to as nets, although they can
include registers, variables, and nets of both continuous and discrete disciplines. A port of an instantiated
module has two nets, the upper connection (vpiHiConn) which is a net in the instantiating module and the
lower connection (vpiLoConn) which is a net in the instantiated module, as shown in Figure 7-1. The
vpiLoConn and vpiHiConn connections to a port are frequently referred to as the formal and actual con-
nections respectively.

Figure 7-1: Signal “out” hierarchy of net segments

A net can be declared with either a discrete or analog discipline or no discipline (neutral interconnect).
Within the Verilog-AMS language, only digital blocks and primitives can drive a discrete net (drivers), and
only analog blocks can contribute to an analog net (contributions). A signal is a hierarchical collection of
nets which, because of port connections, are contiguous. If all the nets that make up a signal are in the dis-
crete domain, the signal is a digital signal. If all the nets that make up a signal are in the continuous domain,
the signal is an analog signal. A signal that consists of nets from both domains is called a mixed signal.

Similarly, a port whose connections are both analog is an analog port, a port whose connections are both
digital is a digital port, and a port whose connections are analog and digital is a mixed port.

Module

Module D

Module C

Module B

Module A

Module Top

out

a_out

b_out

c_outd_out

Signal out := Net Top.out
+ Net A.a_out
+ Net B.b_out
+ Net C.c_out
+ Net D.d_out

Port

vpiLoConn

vpiHiConn
Copyright © 2014 Accellera Systems Initiative. 160

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Since it is physically one wire in the design, Kirchhoff’s current law applies to the whole signal, and it forms
one node in analog simulation (see 3.6). Drivers in the digital domain are converted to contributions in the
analog domain using auto-inserted digital-to-analog connection modules (D2As), and the signal value is cal-
culated in the analog domain. Instead of determining the final digital receiver value of the signal by resolv-
ing all the digital drivers, the resolved analog signal is converted back to a digital value. A digital behavioral
block that reads the value of a signal is a receiver, but since Verilog-AMS has no syntax that identifies mul-
tiple receivers within a module as distinct, the associated net can be viewed as a single receiver for the pur-
poses of analog to digital conversion. Drivers are created by declaring a reg, instantiating a digital primitive
or using a continuous assign statement. Since it is only possible to insert connect modules at port boundaries,
when multiple continuous assign statements exist in a module, they are handled by a single connect module.

The drivers and receivers of a mixed signal are associated with their locally-declared net; the discipline of
that net is used to determined which connection modules to use. The discipline of the whole signal is found
by discipline resolution, as described in 7.4, and is used to determine the attributes of the node in simulation.

7.2.4 Mixed-signal and net disciplines

One job of the discipline of a continuous net is to specify the tolerance (abstol) for the potential of the
associated node. A mixed signal can have a number of compatible continuous nets, with different continuous
disciplines and different abstols. In this case, the abstol of the associated node shall be the smallest of the
abstols specified in the disciplines associated with all the continuous nets of the signal.

If an undeclared net segment has multiple compatible disciplines connected to it, a connect statement shall
specify which discipline to use during discipline resolution.

7.3 Behavioral interaction

Verilog-AMS HDL supports several types of block statements for describing behavior, such as analog
blocks, initial blocks, and always blocks. Typically, non-analog behavior is described in initial
and always blocks, assignment statements, or assign declarations. There can be any number of ini-
tial, always and analog blocks in a particular Verilog-AMS HDL module.

Nets and variables in the continuous domain are termed continuous nets and continuous variables respec-
tively. Likewise nets, regs and variables in the discrete domain are termed discrete nets, discrete regs, and
discrete variables. In Verilog-AMS HDL, the nets and variables of one domain can be referenced in the
other’s context. This is the means for passing information between two different domains (continuous and
discrete). Read operations of nets and variables in both domains are allowed from both contexts. Write oper-
ations of nets and variables are only allowed from the context of their domain.

Verilog-AMS HDL provides ways to:
— access discrete primaries (e.g., nets, regs, or variables) from a continuous context
— access continuous primaries (e.g., flows, potentials, or variables) from a discrete context
— detect discrete events in a continuous context
— detect continuous events in a discrete context

The specific time when an event from one domain is detected in the other domain is subject to the synchro-
nization algorithm described in 7.3.6 and Clause 8. This algorithm also determines when changes in nets and
variables of one domain are accessible in the other domain.
161 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
7.3.1 Accessing discrete nets and variables from a continuous context

Discrete nets and variables can be accessed from a continuous context. However, because the data types
which are supported in continuous contexts are more restricted than those supported in discrete contexts,
certain discrete types can not be accessed in a continuous context.

Table 7-1 lists how the various discrete net/variable types can be accessed from a continuous context.

The syntax for a Verilog-AMS HDL primary is defined in Syntax 7-1.

primary ::= // from A.8.4
number

| hierarchical_identifier [{ [expression] } [range_expression]]
| concatenation
| multiple_concatenation
| function_call
| system_function_call
| (mintypmax_expression)
| string
| branch_probe_function_call
| port_probe_function_call

Syntax 7-1—Syntax for primary

The following example accesses the discrete primary in from a continuous context.

module onebit_dac (in, out);
input in;
inout out;
wire in;
electrical out;

Table 7-1—Discrete net/variable access from continuous context

Discrete net/reg/
variable type Examples

Equivalent
continuous

variable type

Access to this discrete net/reg/variable type
from a continuous context

real real r;
real rm[0:8];

real Discrete reals are accessed in the continuous
context as real numbers.

integer integer i;
integer im[0:4];

integer Discrete integers are accessed in continuous
context as integer numbers.

bit reg r1;
wire w1;
reg [0:9] r[0:7];
reg r[0:66];
reg [0:34] rb;

integer Discrete bit and bit groupings (buses and part
selects) are accessed in the continuous context
as integer numbers.
The sign bit (bit 31) of the integer is always set
to zero (0). The lowest bit of the bit grouping
is mapped to the zeroth bit of the integer. The
next bit of the bus is mapped to the first bit of
the integer and so on.
If the bus width is less than 31 bits, the higher
bits of the integer are set to zero (0).
Access of discrete bit groupings with greater
than 31 bits is illegal.
Copyright © 2014 Accellera Systems Initiative. 162

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
real x;

analog begin
if (in == 0)

x = 0.0;
else

x = 3.0;
V(out) <+ x;

end
endmodule

7.3.2 Accessing X and Z bits of a discrete net in a continuous context

Discrete nets can contain bits which are set to x (unknown) or z (high impedance). Verilog-AMS HDL sup-
ports accessing of 4-state logic values within the analog context. The x and z states must be translated to
equivalent analog real or integer values before being used within the analog context. The language supports
the following specific features, which provide a mechanism to perform this conversion.

— the case equality operator (===)
— the case inequality operator (!==)
— the case, casex, and casez statements
— binary, octal and hexadecimal numeric constants which can contain x and x as digits.

The case equality and case inequality operators have the same precedence as the equality operator.

Example:

module a2d(dnet, anet);
input dnet;
output anet;
wire dnet;
ddiscrete dnet;
electrical anet;
real avar;

analog begin
if (dnet === 1'b1)

avar = 5;
else if (dnet === 1'bx)

avar = avar; // hold value
else if (dnet === 1'b0)

avar = 0;
else if (dnet === 1'bz)

avar = 2.5; // high impedance - float value

V(anet) <+ avar;

end
endmodule

A case statement could also have been used as an alternative to the above if-else-if statement to perform the
4-state logic value comparisons.

Example:

case (dnet)
1'b1: avar = 5;
1'bx: avar = avar; // hold value
163 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
1'b0: avar = 0;
1'bz: avar = 2.5; // high impedance - float value

endcase

Accessing digital net and digital binary constant operands are supported within analog context expressions.
It is an error if these operands return x or z bit values when solved. It will be an error if the value of the dig-
ital variable being accessed in the analog context goes either to x or z.

Example:

module converter(dnet, anet);
output dnet;
inout anet;
reg dnet;
electrical anet;
integer var1;
real var2;

initial begin
dnet = 1'b1;
#50 dnet = 1'bz;
$finish;

end

analog begin
var1 = 1'bx; // error
var2 = 1'bz; // error
var1 = 1 + dnet; // error after #50

if (dnet == 1'bx) // error
$display("Error to access x bit in continuous context");

V(anet) <+ 1'bz; // error
V(anet) <+ dnet; // error after #50

end
endmodule

The syntax for the features that support x and z comparisons in a continuous context is defined in 2.6 and
5.8.3. Support for x and z is limited in the analog blocks as defined above.

NOTE—Consult section 5.1.8 in IEEE Std 1364-2005 Verilog HDL for a description of the semantics of these opera-
tors.

7.3.2.1 Special floating point values

Floating point arithmetic can produce special values representing plus and minus infinity and Not-a-Number
(NaN) to represent a bad value. While use of these special numbers in digital expressions is not an error, it is
illegal to assign these values to a branch through contribution in the analog context.

7.3.3 Accessing continuous nets and variables from a discrete context

All continuous nets can be probed from a discrete context using access functions. All probes which are legal
in a continuous context of a module are also legal in the discrete context of a module.

The following example accesses the continuous net V(in) from the discrete context is.

module sampler (in, clk, out);
Copyright © 2014 Accellera Systems Initiative. 164

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
inout in;
input clk;
output out;
electrical in;
wire clk;
reg out;

always @(posedge clk)
out = V(in);

endmodule

Continuous variables can be accessed for reading from any discrete context in the same module where these
variables are declared. Because the discrete domain can fully represent all continuous types, a continuous
variable is fully visible when it is read in a discrete context. If the current time in the continuous and discrete
kernels differ, interpolation is used to determine the value to be used in the discrete context for the continu-
ous variable unless the value of the continuous variable was last assigned in an analog event statement. In
this case, the value used in the digital context is exactly the same as the last value assigned to the continuous
variable.

7.3.4 Detecting discrete events in a continuous context

Discrete events can be detected in a Verilog-AMS HDL continuous context. The arguments to discrete
events in continuous contexts are in the discrete context. A discrete event in a continuous context is non-
blocking like the other event types allowed in continuous contexts. The syntax for events in a continuous
context is shown in Syntax 7-2.

analog_event_control_statement ::= analog_event_control analog_event_statement // from A.6.5
analog_event_control ::=

@ hierarchical_event_identifier
| @ (analog_event_expression)

analog_event_expression ::=
expression

| posedge expression
| negedge expression
| hierarchical_event_identifier
| initial_step [(" analysis_identifier "{ , " analysis_identifier " })]
| final_step [(" analysis_identifier " { , " analysis_identifier " })]
| analog_event_functions
| analog_event_expression or analog_event_expression

analog_event_functions ::=
cross (analog_expression [, analog_expression_or_null

[, constant_expression_or_null [, constant_expression_or_null [, analog_expression]]]])
| above (analog_expression [, constant_expression_or_null

[, constant_expression_or_null [, analog_expression]]])
| timer (analog_expression [, analog_expression_or_null

[, constant_expression_or_null [, analog_expression]]])
analog_event_statement ::=

{ attribute_instance } analog_loop_statement
| { attribute_instance } analog_case_statement
| { attribute_instance } analog_conditional_statement
| { attribute_instance } analog_procedural_assignment
| { attribute_instance } analog_event_seq_block
165 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
| { attribute_instance } analog_system_task_enable
| { attribute_instance } disable_statement
| { attribute_instance } event_trigger
| { attribute_instance } ;

Syntax 7-2—Syntax for event control statement

The following example shows a discrete event being detected in an analog block.

module sampler3 (in, clk1, clk2, out);
input in, clk1, clk2;
output out;
wire clk1;
electrical in, clk2, out;
real vout;

analog begin
@(posedge clk1 or cross(V(clk2), 1))

vout = V(in);
V(out) <+ vout;

end
endmodule

7.3.5 Detecting continuous events in a discrete context

In Verilog-AMS HDL, monitored continuous events can be detected in a discrete context. The arguments to
these events are in the continuous context. A continuous event in a discrete context is blocking like other
discrete events. The syntax for analog events in a discrete context is shown in Syntax 7-3.

event_expression ::= // from A.6.5
expression

| posedge expression
| negedge expression
| hierarchical_event_identifier
| event_expression or event_expression
| event_expression , event_expression
| analog_event_functions
| driver_update expression
| analog_variable_lvalue

Syntax 7-3—Syntax for analog event detection in digital context

The following example detects a continuous event in an always block.

module sampler2 (in, clk, out);
input in, clk;
output out;
wire in;
reg out;
electrical clk;

always @(cross(V(clk) - 2.5, 1))
out = in;
Copyright © 2014 Accellera Systems Initiative. 166

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
endmodule

7.3.6 Concurrency

Verilog-AMS HDL provides synchronization between the continuous and discrete domains. Simulation in
the discrete domain proceeds in integer multiples of the digital tick. This is the smallest value of the second
argument of the `timescale directive (see 19.8 in IEEE Std 1364-2005 Verilog HDL).

Simulation in the continuous domain appears to proceed continuously. Thus, there is no time granularity
below which continuous values can be guaranteed to be constant.

The rest of this subclause describes synchronization semantics for each of the four types of mixed-signal
behavioral interaction. Any synchronization method can be employed, provided the semantics preserved. A
typical synchronization algorithm is described in 8.2.

7.3.6.1 Analog event appearing in a digital event control

In this case, an analog event, such as cross or timer, appears in an @() statement in the digital context.

Example:

always begin
@(cross(V(x) - 5.5,1))

n = 1;
end

Besides using analog event functions, one can also use analog variables that are only assigned values in ana-
log event statements in a digital event control statement. An event occurs whenever a value is assigned to the
variable, regardless of whether the variable changes value or not. This might be done when one wants to
sample a value in the continuous time domain to avoid jitter being created by the discrete nature of time in
the digital context, but wish to process the sample in the digital context.

Example:

analog @(timer(0,100n))
smpl = V(in);

always @(smpl) begin
...

When it is determined the event has occurred in the analog domain, the statements under the event control
shall be scheduled in the digital domain at the nearest digital time tick to the time of the analog event. This
event shall not be schedule in the digital domain earlier than the last or current digital event (see 8.3.3), how-
ever it may appear to be in a delta cycle belonging to a tick started at an earlier or later time.

Zero-delay scheduling is not rounded, so in the case where the digital event causes another event on the dig-
ital to analog boundary with zero delay, it will be handled at the current analog time.

7.3.6.2 Digital event appearing in an analog event control

Example:

analog begin
@(posedge n)
167 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
r = 3.14;
end

In this case, a digital event, such as posedge or negedge, appears in an @() statement in the analog con-
text.

When it is determined the event has occurred in the digital domain, the statements under the event control
shall be executed in the analog domain at the time corresponding to a real promotion of the digital time (e.g.,
27ns to 27.0e-9).

7.3.6.3 Analog primary appearing in a digital expression

In this case, an analog primary (variable, potential, or flow) whose value is calculated in the continuous
domain appears in a expression which is in the digital context; thus the analog primary is evaluated in the
digital domain.

The expression shall be evaluated using the analog value calculated for the time corresponding to a real pro-
motion of the digital time at which the expression is evaluated.

If the current time in the continuous and discrete kernels differ, interpolation is used to determine the value
to be used in the discrete context for the continuous variable unless the value of the continuous variable was
last assigned in an analog event statement. In this case, the value used in the digital context is exactly the
same as the last value assigned to the continuous variable.

7.3.6.4 Analog variables appearing in continuous assigns

Analog variables that are only assigned values within analog event statements can be used in the expressions
that drive continuous assigns, both when the target of the continuous assign is a wreal or a traditional Ver-
ilog wire type (wire, trireg, wor, wand, etc.).

7.3.6.5 Digital primary appearing in an analog expression

In this case, a digital primary (reg, wire, integer, etc.) whose value is calculated in the discrete domain
appears in an expression which is in the analog context; thus the analog primary is evaluated in the continu-
ous domain.

The expression shall be evaluated using the digital value calculated for the greatest digital time tick which is
less than or equal to the analog time when the expression is evaluated.

7.3.7 Function calls

Digital functions cannot be called from within the analog context. Analog functions cannot be called from
within the digital context.

7.4 Discipline resolution

In general a mixed signal is a contiguous collection of nets, some with discrete discipline(s) and some with
continuous discipline(s). A continuous signal is a contiguous collection of nets where all the nets are in the
continuous domain (see 1.3). Additionally, some of the nets can have undeclared discipline(s). Discipline
resolution assigns disciplines and domains to those nets whose discipline is undeclared. This is done to (1)
control auto-insertion of connect modules, according to the rules embodied in connect statements and (2) to
ensure that the nets of all mixed signals and continuous signals have a known discipline and domain.
Copyright © 2014 Accellera Systems Initiative. 168

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The assignments are based on: discipline declarations, `default_discipline directives (see 3.8), and
the hierarchical connectivity of the design. Once all net segments of every mixed signal has been resolved,
insertion of connect modules shall be performed.

7.4.1 Compatible discipline resolution

One factor which influences the resolved discipline of a net whose discipline is undeclared is the disciplines
of nets to which it is connected via ports; i.e., if multiple compatible disciplines are connected to the same
net via multiple ports only one discipline can be assigned to that net. This is controlled by the resolveto
form of the connect statement; the syntax of this form is described in 7.7.2.

If disciplines at the lower connections of ports (where the undeclared net is an upper connection) are among
the disciplines in discipline_list, the result_discipline is the discipline which is assigned to the undeclared
net. If all the nets are of the same discipline, no rule is needed; that discipline becomes the resolved disci-
pline of the net.

In the example shown in Figure 7-2, NetA and NetB are undeclared interconnects. NetB has cmos3 and
cmos4 at the lower connection ports, while it is an upper connection.

Figure 7-2: Compatible discipline resolution

The first connect statement resolves NetB to be assigned the discipline cmos3.

NetA has cmos1, cmos2 and the resulting cmos3 from module twoblks at the lower connection ports;
based on the second connect statement, it resolves to be assigned the discipline cmos1.

7.4.2 Connection of discrete-time disciplines

Ports of discrete-time disciplines (ports where digital signals appear at both upper (vpiHiConn) and lower
(vpiLoConn) connections) shall obey the rules imposed by IEEE Std 1364-2005 Verilog HDL on such con-
nections.

In addition, the real-value nets shall obey the rules imposed by 3.7.

connect cmos3 cmos4 resolveto cmos3;
connect cmos1 cmos2 cmos3 resolveto cmos1;

cmos1

cmos2

cmos3

cmos4

NetA

NetB

module blk (out);

module blk (out);
module blk (out);

module blk (out);

module twoblks (out);module digital_blk (out);
169 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

l

 (out);

2 (out);

;

7.4.3 Connection of continuous-time disciplines

Ports of continuous-time disciplines (ports where analog signals appear at both upper (vpiHiConn) and
lower (vpiLoConn) connections) shall obey the rules imposed in 3.11. It shall be an error to connect incom-
patible continuous disciplines together.

7.4.4 Resolution of mixed signals

Once discipline declarations have been applied, if any mixed-signal or continuous-signal nets don’t have a
discipline and domain assigned additional resolution is needed. This section provides an additional method
for discipline resolution of remaining undeclared nets.

There are two modes for this method of resolution, basic (the default) and detail, which determine how
known disciplines are used to resolve these undeclared nets. For the entire design, undeclared nets shall be
resolved at each level of the hierarchy where continuous (analog) has precedence over discrete (digital). The
selection of these discipline resolution modes shall be vendor-specific.

More than one conflicting discipline declaration from the same context (in or out of context) for the same
hierarchical segment of a signal is an error. In this case, conflicting simply means an attempt to declare more
than one discipline regardless of whether the disciplines are compatible or not.

Sample algorithms for the complete discipline resolution process are listed in Annex F.

7.4.4.1 Basic discipline resolution algorithm

In this mode (the default), both continuous and discrete disciplines propagate up the hierarchy to meet one
another. At each level of the hierarchy where continuous and discrete meet for an undeclared net that net
segment is declared continuous. This typically results in connect modules being inserted higher up the
design hierarchy.

In the example shown in Figure 7-3, NetA, NetB, NetC, and NetD are undeclared interconnects.

Figure 7-3: Discipline resolution mode: basic

cmos1

cmos2

cmos3

cmos4

NetA

NetB

connect cmos3 cmos4 resolveto cmos3;
connect cmos1 cmos2 cmos3 resolveto cmos1;

module blk2 (out);

module blk1 (out);
module blk3 (out);

module blk4 (out);

module twoblks (out);module digital_blk (out);

cmos2

electrica

NetC

module ablk

module blk

module mix (out)

NetD
module top;
Copyright © 2014 Accellera Systems Initiative. 170

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

l

 (out);

 (out);

;

Using the basic mode of discipline resolution and the specified resolveto connect statements for this
example results in the following:

— NetB resolves to cmos3 based on the first resolveto connect statement.
— NetA resolves to cmos1 based on the second resolveto connect statement.
— NetC resolves to electrical based on continuous (electrical) winning over discrete (cmos2).
— NetD resolves to electrical based on continuous (electrical) winning over discrete (cmos1).

7.4.4.2 Detail discipline resolution algorithm

In this mode continuous disciplines propagate up and then back down to meet discrete disciplines. Discrete
disciplines do not propagate up the hierarchy. This can result in more connect modules being inserted lower
down into discrete sections of the design hierarchy for added accuracy.

In the example shown in Figure 7-4, NetA, NetB, NetC, and NetD are undeclared interconnects.

Figure 7-4: Discipline resolution mode: detail

Using the detail mode of discipline resolution for this example results in the following:
— Continuous up: NetC resolves to electrical based on continuous (electrical) winning over discrete

(cmos2).
— Continuous up: NetD resolves to electrical based on continuous (electrical) winning over unde-

clared.
— Continuous down: NetA resolves to electrical based on continuous (electrical) winning over unde-

clared.
— Continuous down: NetB resolves to electrical based on continuous (electrical) winning over unde-

clared.

The specified resolveto connect statements are ignored in this mode unless coercion (see 7.8.1) is used.

cmos1

cmos2

cmos3

cmos4

NetA

NetB

connect cmos3 cmos4 resolveto cmos3; // discrete resolveto’s ignored
connect cmos1 cmos2 cmos3 resolveto cmos1; // discrete resolveto’s ignored

module blk2 (out);

module blk1 (out);
module blk3 (out);

module blk4 (out);

module twoblks (out);module digital_blk (out);

cmos2

electrica

NetC

module ablk

module blk2

module mix (out)

NetDmodule top;
171 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

l

 (out);

 (out);

;

7.4.4.3 Coercing discipline resolution

Connect module insertion can be affected by coercion i.e., declaring disciplines for the interconnect in the
hierarchy. If an interconnect is assigned a discipline, that discipline shall be used unless the resolveto
connect statement overrides the discipline.

The example in Figure 7-5 shows several effects of coercion on auto-insertion.

Figure 7-5: Coercion effects on auto- insertion

Case1: NetB is declared as cmos3 (the others are undeclared)

cmos3 top.digital_blk.twoblks.NetB

discipline resolution basic: Same as without coercion.
discipline resolution detail: NetB stays cmos3; NetA, NetC, and NetD become electrical.

Case2: NetA is declared as cmos1 (the others are undeclared)
discipline resolution basic: NetA stays cmos1, NetB is assigned cmos3, and NetC and NetD
become electrical.
discipline resolution detail: Same as basic mode.

Case3: NetC is declared as cmos2 (the others are undeclared)
discipline resolution basic: NetC stays cmos2, NetB is assigned cmos3, NetA is assigned cmos1,
and NetD is assigned cmos1.
discipline resolution detail: Same as basic mode.

7.4.5 Discipline resolution of continuous signals

The discipline of nets, without a declared discipline, of a continuous signal shall also be determined by using
the discipline resolution algorithms listed in Annex F. Both algorithms will give the same result as there are
no discrete disciplines to propagate upwards.

cmos1

cmos2

cmos3

cmos4

NetA

NetB

connect cmos3 cmos4 resolveto cmos3; // discrete resolveto’s ignored
connect cmos1 cmos2 cmos3 resolveto cmos1; // discrete resolveto’s ignored

module blk2 (out);

module blk1 (out);
module blk3 (out);

module blk4 (out);

module twoblks (out);module digital_blk (out);

cmos2

electrica

NetC

module ablk

module blk2

module mix (out)

NetD

module top;
Copyright © 2014 Accellera Systems Initiative. 172

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
7.5 Connect modules

Connect modules are automatically inserted to connect the continuous and discrete disciplines (mixed nets)
of the design hierarchy together. The continuous and discrete disciplines of the ports of the connect modules
and their directions are used to determine the circumstances in which the module can be automatically
inserted.

The connect module is a special form of a module; its definition is shown in Syntax 7-4.

module_declaration ::= // from A.1.2
{ attribute_instance } module_keyword module_identifier [module_parameter_port_list]

list_of_ports ; { module_item }
endmodule

| { attribute_instance } module_keyword module_identifier [module_parameter_port_list]
[list_of_port_declarations] ; { non_port_module_item }

endmodule

module_keyword ::= module | macromodule | connectmodule

Syntax 7-4—Syntax for connect modules

7.6 Connect module descriptions

The disciplines of mixed nets are determined prior to the connect module insertion phase of elaboration.
Connect module declarations with matching port discipline declarations and directions are instantiated to
connect the continuous and discrete domains of the mixed net.

The port disciplines define the default type of disciplines which shall be bridged by the connect module. The
directional qualifiers of the discrete port determine the default scenarios where the module can be instanti-
ated. The following combinations of directional qualifiers are supported for the continuous and discrete dis-
ciplines of a connect module:

Example 1:

connectmodule d2a (in, out);
input in;
output out;
ddiscrete in;
electrical out;
// insert connect module behavioral here

endmodule

can bridge a mixed input port whose upper connection is compatible with discipline ddiscrete and
whose lower connection is compatible with electrical, or a mixed output port whose upper con-

Table 7-2—Connect module directional qualifier combinations

continuous discrete

input output

output input

inout inout
173 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
nection is compatible with discipline electrical and whose lower connection is compatible with
ddiscrete.

Example 2:

connectmodule a2d (out, in);
output out;
input in;
ddiscrete out;
electrical in;
// insert connect module behavioral here

endmodule

can bridge a mixed output port whose upper connection is compatible with discipline ddiscrete
and whose lower connection is compatible with electrical, or a mixed input port whose upper
connection is compatible with discipline electrical and whose lower connection is compatible
with ddiscrete.

Example 3:

connectmodule bidir (out, in);
inout out;
inout in;
ddiscrete out;
electrical in;
// insert connect module behavioral here

endmodule

can bridge any mixed port whose one connection is compatible with discipline ddiscrete and
whose connection is compatible with electrical.

7.7 Connect specification statements

Any number of connect modules can be defined. The designer can choose and specialize those in the design
via the connect specification statements. The connect specification statements allow the designer to define:

— specification of which connect module is used, including parameterization, for bridging given dis-
crete and continuous disciplines

— overrides for the connect module default disciplines and port directions
— resolution of incompatible disciplines

The syntax for connect specifications is shown in Syntax 7-5.

connectrules_declaration ::= // from A.1.8
connectrules connectrules_identifier ;

{ connectrules_item }
endconnectrules

connectrules_item ::=
connect_insertion

| connect_resolution

Syntax 7-5—Syntax for connect specification statements

The two forms of the connect specification statements and their syntaxes are detailed in the following sub-
clauses.
Copyright © 2014 Accellera Systems Initiative. 174

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
7.7.1 Connect module auto-insertion statement

The connect module insertion statement declares which connect modules are automatically inserted when
mixed nets of the appropriate types are encountered, as shown in Syntax 7-6.

This specifies the connect module connect_module_identifier is used to determine the mixed nets of the type
used in the declaration of the connect module.

There can be multiple connect module declarations of a given (discrete — continuous) discipline
pair and the connect module specification statement specifies which is to be used in the auto-insertion pro-
cess. In addition, parameters of the connect module declaration can be specified via the connect_attributes.

connect_insertion ::= connect connectmodule_identifier [connect_mode] // from A.1.8
[parameter_value_assignment] [connect_port_overrides] ;

connect_mode ::= merged | split
connect_port_overrides ::=

discipline_identifier , discipline_identifier
| input discipline_identifier , output discipline_identifier
| output discipline_identifier , input discipline_identifier
| inout discipline_identifier , inout discipline_identifier

Syntax 7-6—Syntax for connect configuration statements

Connect modules can be reused for different, but compatible disciplines by specifying different discipline
combinations in which the connect module can be used. The form is

connect connect_module_identifier connect_attributes discipline_identifier , discipline_identifier ;

where the specified disciplines shall be compatible for both the continuous and discrete disciplines of the
given connect module.

It is also possible to override the port directions of the connect module, which allows a module to be used
both as a unidirectional and bidirectional connect module. This override also aids library based designs by
allowing the user to specify the connect rules, rather than having to search the entire library. The form is

connect connect_module_identifier connect_attributes direction discipline_identifier ,
direction discipline_identifier ;

where the specified disciplines shall be compatible for both the continuous and discrete disciplines of the
given connect module and the specified directions are used to define the type of connect module.

7.7.2 Discipline resolution connect statement

The discipline resolution connect statement specifies a single discipline to use during the discipline resolu-
tion process when multiple nets with compatible disciplines are part of the same mixed net, as shown in
Syntax 7-7.

connect_resolution ::= connect discipline_identifier { , discipline_identifier } resolveto // from A.1.8
discipline_identifier_or_exclude ;

discipline_identifier_or_exclude ::=
discipline_identifier

| exclude
175 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Syntax 7-7—Syntax for connect configuration resolveto statements

where the discipline identifiers before the resolveto keyword are the list of compatible disciplines and the
discipline identifier after is the discpline to be used. If the keyword exclude follows resolveto rather than a
discipline identifier, then the otherwise compatible disciplines are deemed to be incompatible and an error is
indicated if they are found on the same net.

Example:
connect logic18 logic32 resolveto exclude ;
connect electrical18 electrical32 resolveto exclude ;

In the first case, two discrete disciplines, and the second case two continuous disciplines, are declared to be
incompatible. In both cases, the discipline ending in 18 is associated with 1.8V logic and the discipline end-
ing in 32 is associated with 3.2V logic. These connect statements prevent ports associated with one supply
voltage to be connected to nets associated with the other.

7.7.2.1 Connect Rule Resolution Mechanism

When there is an exact match for the set of disciplines specified as part of the discipline_list, the resolved
discipline would be as per the rule specified in the exact match. When more than one specified rule applies
to a given scenario a warning message shall be issued by the simulator and the first match would be used.

When there is no exact fit, then the resolved discipline would be based on the subset of the rules specified. If
there is more than one subset matching a set of disciplines, the simulator shall give a warning message and
apply the first subset rule that satisfies the current scenario.

The resolved discipline need not be one of the disciplines specified in the discipline list.

The connect...resolveto shall not be used as a mechanism to set the disciplines of simulator primitives
but used only for discipline resolution.

Example 1:

connect x,y,a resolveto a;
connect x,y resolveto x;

For the above set of connect rule specifications:
— disciplines x,y would resolve to discipline x.
— disciplines x,y,a would resolve to discipline a.
— disciplines y,a would resolve to discipline a.

Example 2:

connect x,y,a resolveto y;
connect x,y,a resolveto a;
connect x,y,b resolveto b;

For the above set of connect rule specifications:
— disciplines x,y would resolve to discipline y with a warning.
— disciplines x,y,a would resolve to discipline y with a warning.
— disciplines y,b would resolve to b.
Copyright © 2014 Accellera Systems Initiative. 176

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
7.7.3 Parameter passing attribute

An attribute method can be used with the connect statement to specify parameter values to pass into the Ver-
ilog-AMS HDL connect module and override the default values. Any parameters declared in the connect
module can be specified.

Example:

connect a2d_035u #(.tt(3.5n), .vcc(3.3));

Here each parameter is listed with the new value to be used for that parameter.

7.7.4 connect_mode

This can be used to specify additional segregation of connect modules at each level of the hierarchy. Setting
connect_mode to split or merged defines whether all ports of a common discrete discipline and port
direction share an connect module or have individual connect modules.

Example:

connect a2d_035u split #(.tt(3.5n), .vcc(3.3));

Here each digital port has a separate connect module.

7.8 Automatic insertion of connect modules

Automatic insertion of connect modules is performed when signals and ports with continuous time domain
and discrete time domain disciplines are connected together. The connect module defines the conversion
between these different disciplines.

An instance of the connect module shall be inserted across any mixed port that matches the rule specified by
a connect statement. Rules for matching connect statements with ports take into account the port direction
(see 7.8.1) and the disciplines of the signals connected to the port.

Each connect statement designates a module to be a connect module. When two disciplines are specified
in a connect statement, one shall be discrete and the other continuous.

Example:

module dig_inv(in, out);
input in;
output out;
reg out;
ddiscrete in, out;
always begin

out = #10 ~in;
end

endmodule

module analog_inv(in, out);
input in;
output out;
electrical in, out;
parameter real vth = 2.5;
real outval;
177 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
analog begin
if (V(in) > vth)

outval = 0;
else

outval = 5 ;
V(out) <+ transition(outval);

end
endmodule

module ring;
dig_inv d1 (n1, n2);
dig_inv d2 (n2, n3);
analog_inv a3 (n3, n1);

endmodule

connectmodule elect_to_logic(el,cm);
input el;
output cm;
reg cm;
electrical el;
ddiscrete cm;
always

@(cross(V(el) - 2.5, 1))
cm = 1;

always
@(cross(V(el) - 2.5, -1))

cm = 0;
endmodule

connectmodule logic_to_elect(cm,el);
input cm;
output el;
ddiscrete cm;
electrical el;
analog

V(el) <+ transition((cm == 1) ? 5.0 : 0.0);
endmodule

connectrules mixedsignal;
connect elect_to_logic;
connect logic_to_elect;

endconnectrules

Here two modules, elect_to_logic and logic_to_elect, are specified as the connect modules to be
automatically inserted whenever a signal and a module port of disciplines electrical and ddiscrete are
connected.

Module elect_to_logic converts signals on port out of instance a3 to port in of instance d1. Module
logic_to_elect converts the signal on port out of instance d2 to port in of instance a3.

7.8.1 Connect module selection

The selection of a connect module for automatic insertion depends upon the disciplines of nets connected
together at ports. It is, therefore, a post elaboration operation since the signal connected to a port is only
known when the module in which the port is declared has been instantiated.
Copyright © 2014 Accellera Systems Initiative. 178

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

al

k (out);

2 (out);

);
Auto-insertion of connect modules is done hierarchically. The connect modules are inserted based on the net
disciplines and ports at each level of the hierarchy. The connect_mode split and merged are applied at
each level of the hierarchy. This insertion supports the ability to coerce the placement of connect modules by
declaring the disciplines of interconnect.

Figure 7-6 shows an example of auto-insertion with coercion.

Figure 7-6: Auto-insertion with coercion

Case1: All interconnects are undeclared
— discipline resolution basic:

— merged: d2a at top.mix.blk2 and d2a at top.digital_blk (two connect modules).
— split: Same as merged.

— discipline resolution detail:
— merged: d2a at top.mix.blk2, d2a at top.digital_blk.(blk1-blk2), and d2a at

top.digital_blk.twoblks (three connect modules).
— split: d2a at each of the five cmos1 blocks.

Case2: If NetB is declared as cmos1 and the remaining interconnect is undeclared
— discipline resolution basic:

— merged: d2a at top.mix.blk2 and d2a at top.digital_blk (two connect modules).
— split: Same as merged.

— discipline resolution detail:
— merged: d2a at top.mix.blk2, d2a at top.digital_blk.(blk1-blk2), and d2a at

top.digital_blk.twoblks (three connect modules).
— split: d2a at top.mix.blk2, d2a at top.digital_blk.blk1, d2a at

top.digital_blk.blk2, and d2a at top.digital_blk.twoblks (four connect modules).

cmos1

cmos1

cmos1

cmos1

NetA

NetB

// All digital modules have only output ports of discipline cmos1

module blk2 (out);

module blk1 (out);
module blk3 (out);

module blk4 (out);

module twoblks (out);module digital_blk (out);

cmos1

electric

NetC

module abl

module blk

module mix (out

NetD
module top;

connect cmos_d2a input cmos1 output electrical;
179 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
7.8.2 Signal segmentation

Once a connect module has been selected it can not be inserted until it can be determined whether there
should be one connect module per port or one connect module for all the ports on the net of a signal which
match a given connect statement. Inserting multiple copies of the same connect module on one signal
(i.e., between the signal and the multiple ports) has the effect of creating distinct segments of the signal with
the same discipline at that level of the hierarchy.

This segmentation of the signal which connects ports is only performed in the case of digital ports (i.e., ports
with discrete-time domain or digital discipline). For analog (or continuous-time domain) disciplines, it is not
desirable to segment the signal between the ports; i.e, there shall never be more than one analog node repre-
senting a signal. However, it can be desirable for the simulator’s internal representation of the signal to con-
sist of various separate digital segments, each with its own connect module.

Figure 7-7 shows how to model the loading effect of each individual digital port on the analog node.
Copyright © 2014 Accellera Systems Initiative. 180

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Figure 7-7: Signal segmentation by connect modules

Analog

LOGIC

Analog

LOGIC

LOGIC

Analog

LOGIC

Analog

LOGIC

LOGIC

Analog

LOGIC

Analog

LOGIC

LOGIC

one LOGIC segment for all LOGIC ports

two LOGIC segments
(one for inputs, one for outputs)

connect instance

a separate LOGIC segment for each LOGIC port

in

out

out

in

in

Insertion of connect instances creates distinct
 segments in a signal
181 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
7.8.3 connect_mode parameter

This parameter can be used in the connect statement to direct the segmentation of the signal at each level
of the hierarchy, which can occur while inserting a connect module. It can be one of two predefined values,
split or merged. The default is merged.

The connect_mode indicates how input, output, or inout ports of the given discipline shall be combined for
the purpose of inserting connect modules. It is applied when there is more than one port of discrete disci-
pline on a net of a signal where the connect statement applies.

7.8.3.1 merged

This instructs the simulator to try to group all ports (whether they are input, output, or inout) and to use just
one connector module, provided the module is the same.

Figure 7-9 illustrates the effect of the merged attribute.

Connection of the electrical signal to the ttl inout ports and ttl input ports results in a single connec-
tor module, bidir, being inserted between the ports and the electrical signal. The ttl output ports are
merged, but with a different connect module; i.e., there is one connector module inserted between the elec-
trical signal and all of the ttl output ports.
Copyright © 2014 Accellera Systems Initiative. 182

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Figure 7-8:

Figure 7-9: Connector insertion using merged

7.8.3.2 split

If more than one input port is connected at a net of a signal, using split forces there to be one connect
module for each port which converts between the net discipline and the port discipline. In this way, the net
connecting to the ports is segmented by the insertion of one connect module for each port.

Example 1:

connect elect_to_logic split;

This connect statement specifies the module elect_to_logic shall be split across the discrete module
ports:

— if an input port has ddiscrete discipline and the signal connecting to the port has electrical
discipline, or

TTL

inputs

outputs

inouts

TTL

inputs

outputs

inouts

electrical

connect d2a merged input ttl, output electrical ;
connect bidir merged output electrical, input ttl ;

connect bidir merged inout ttl, inout electrical ;

bidir

d2a

endconnectrules

connectrules example;
183 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
— if an output port has electrical discipline and the signal connecting to the port has ddiscrete
discipline.

Example 2:

In Figure 7-10, the connections of an electrical signal to ttl output ports results in a distinct instance of
the d2a connect module being inserted for each output port. This is mandated by the split parameter.

Connection of the electrical signal to ttl input ports results in a single instance of the a2d connect
module being inserted between the electrical signal and all the ttl input ports. This is mandated by
merged parameter. This behavior is also seen for the ttl inout ports where the merged parameter is used.

Figure 7-10: Connect module insertion with signal segmentation

TTL

inputs

outputs

inouts

TTL

inputs

outputs

inouts

electrical

connect d2a split input ttl, output electrical;

 connect a2d merged output electrical, input ttl ;
connect bidir merged inout electrical, inout ttl ;

a2d

d2a

d2a

d2a

d2a

bidir

connectrules example;

endconnectrules
Copyright © 2014 Accellera Systems Initiative. 184

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Example 3

connect cmosA2d split #(.r(30k) input electrical, output cmos02u;

performs three functions:
1) Connects an instance of cmosA2d module between a signal with electrical discipline and the

input port with cmos02u discipline, or an output port with electrical discipline and the signal
with cmos02u discipline;

2) Sets the value of the parameter r to 30k; and
3) Uses one module instance for each input port.

If there are many output ports where this rule applies, by definition there is no segmentation of the signal
between these ports, since the ports have discipline electrical (an analog discipline).

Example 4

connect cmosA2d merged #(.r(15k) input electrical, output cmos04u;

does three things:
1) Connects an instance of cmosA2d module between a signal with electrical discipline and an

input port with cmos04u discipline, or an output port with electrical discipline and a signal with
cmos4u discipline;

2) Sets the value of the parameter r to 15k; and
3) Uses one module instance regardless of the number of ports.

7.8.4 Rules for driver-receiver segregation and connect module selection and insertion

Driver-receiver segregation and connect module insertion is a post elaboration operation. It depends on a
complete hierarchical examination of each signal in the design, i.e., an examination of the signal in all the
contexts through which it passes. If the complete hierarchy of a signal is digital, i.e., the signal has a digital
discipline in all contexts through which is passes, it is a digital signal rather than a mixed signal. Similarly,
if the complete hierarchy of a signal is analog, it is an analog signal rather than a mixed signal. Rules for
driver-receiver segregation and connect module insertion apply only to mixed signals, i.e., signals which
have an analog discipline in one or more of the contexts through which they pass and a digital discipline in
one or more of the contexts. In this case, context refers to the appearance of a signal in a particular module
instance.

For a particular signal, a module instance has a digital context if the signal has a digital discipline in that
module or an analog context if the signal has an analog discipline. The appearance of a signal in a particular
context is referred to as a segment of the signal. In general, a signal in a fully elaborated design consists of
various segments, some of which can be analog and some of which can be digital.

A port represents a connection between two net segments of a signal. The context of one of the net segments
is an instantiated module and the context of the other is the module which instantiates it. The segment in the
instantiated module is called the lower or formal connection and the segment in the instantiating module is
the upper or actual connection. A connection element is selected for each port where one connection is ana-
log and the other digital.

The following rules govern driver-receiver segregation and connect module selection. These rules apply
only to mixed signals.

1) A mixed signal is represented in the analog domain by a single node, regardless of how its analog
contexts are distributed hierarchically.
185 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
2) Digital drivers of mixed signals are segregated from receivers so the digital drivers contribute to the
analog state of the signal and the analog state determines the value seen by the receivers.

3) A connection shall be selected for a port only if one of the connections to the port is digital and the
other is analog. In this case, the port shall match one (and only one) connect statement. The module
named in the connect statement is the one which shall be selected for the port.

Once connect modules have been selected, they are inserted according to the connect_mode parameter in
the pertinent connect statements. These rules apply to connect module insertion:

1) The connect mode of a port for which a connect module has been selected shall be determined by the
value of the connect_mode parameter of the connect statement which was used to select the
connect module.

2) The connect module for a port shall be instantiated in the context of the ports upper connection.
3) All ports connecting to the same signal (upper connection), sharing the same connect module, and

having merged parameter shall share a single instance of the selected connect module.
4) All other ports shall have an instance of the selected connect module, i.e., one connect module

instance per port.

7.8.5 Instance names for auto-inserted instances

Parameters of auto-inserted connect instances can be set on an instance-by-instance basis with the use of the
defparam statement. This requires predictable instance names for the auto-inserted modules.

The following naming scheme is employed to unambiguously distinguish the connector modules for the case
of auto-inserted instances.

1) merged
In the merged case, one or more ports have a given discipline at their bottom connection, call it
BottomDiscipline, and a common signal, call it SigName, of another discipline at their top con-
nection. A single connect module, call it ModuleName, is placed between the top signal and the bot-
tom signals. In this case, the instance name of the connect module is derived from the signal name,
module name, and the bottom discipline:

SigName__ModuleName__BottomDiscipline

2) split
In the split case, one or more ports have a given discipline at their bottom connection and a common
signal of another discipline, call it TopDiscipline, at their top connection. One module instance is
instantiated for each such port. In this case, the instance name of the connect module is

SigName__InstName__PortName

where InstName and PortName are the local instance name of the port and its instance respec-
tively.

NOTE—The __ between the elements of these generated instance names is a double underscore.

7.8.5.1 Port names for Verilog built-in primitives

In the cases of instances of modules and instances of UDPs, port names are well defined. In these cases the
port name is the name of the signal at the lower connection of the port. In the case of built-in digital primi-
tives, however, IEEE Std 1364-2005 Verilog HDL does not define port names. In order to support the
unique naming of auto inserted connect modules and the ability to override the parameters of those connect
modules, built-in digital primitives ports will be provided with predictable names. These names are only for
Copyright © 2014 Accellera Systems Initiative. 186

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
the purpose of naming the connect modules and do not define actual port names. These port names may not
be used to instantiate or to do access of these primitives.

The following naming conventions shall be used when generating connect module instance names that are
connected to built-in digital primitives.

1) For N-input gates (and, nand, nor, or, xnor, xor) the output will be named out, and the inputs
reading from left to right will be in1, in2, in3, and so forth.

2) For N-output gates (buf, not) The input will be named in, and the outputs reading from left to
right will be named out1, out2, out3, and so forth.

3) For 3 port MOS switches (nmos, pmos, rnmos, rpmos) the ports reading from left to right will be
named source, drain, gate.

4) For 4 port MOS switches (cmos, rcmos) the ports reading from left to right will be named
source, drain, ngate, pgate.

5) For bidirectional pass switches (tran, tranif1, tranif0, rtran, rtranif1, rtranif) the
ports reading from left to right will be named source, drain, gate.

6) For single port primitives (pullup, pulldown) the port will be named out.

7.8.6 Supply sensitive connect module examples

The connect modules described so far in Clause 7 use a constant parameter value to set the supply and
threshold voltage levels used in the behavioral blocks of each module. When we need to consider the time
dependent effect of supplies on the switching behavior of connect modules then using elaboration time con-
stants is not sufficient. The following example demonstrates how a string parameter can be used to hierar-
chically access a branch quantity (see 9.20) so that the connect modules are now dependent upon a supply
voltage defined elsewhere in the design,

module dig_inv(in, out);
input in;
output out;
reg out;
ddiscrete in, out;
always begin

out = #10 ~in;
end

endmodule

module analog_inv(in, out, vdd);
input in;
output out;
electrical in, out;
electrical vdd;
real outval;
analog begin

if (V(in) > V(vdd)/2)
outval = 0;

else
outval = V(vdd) ;

V(out) <+ transition(outval);
end

endmodule

module global_supply;
electrical vdd;
187 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
analog V(vdd) <+ 5.0;
endmodule

module ring;
dig_inv d1 (n1, n2);
dig_inv d2 (n2, n3);
analog_inv a3 (n3, n1, $root.global_supply.vdd);

endmodule

connectmodule elect_to_logic(el, cm);
input el;
output cm;
reg cm;
electrical el;
ddiscrete cm;
always

@(cross(V(el) - V($root.global_supply.vdd)/2.0, 1))
cm = 1;

always
@(cross(V(el) - V($root.global_supply.vdd)/2.0, -1))

cm = 0;
endmodule

connectmodule logic_to_elect(cm, el);
input cm;
output el;
ddiscrete cm;
electrical el;
analog

V(el) <+ V($root.global_supply.vdd) * transition((cm == 1) ? 1 : 0);
endmodule

connectrules mixedsignal;
connect elect_to_logic;
connect logic_to_elect;

endconnectrules

The additional top level module global_supply, now defines a supply voltage vdd. The connect modules
access this supply via a hierarchical reference,

$root.global_supply.vdd

They are now sensitive to changes in the supply as the simulation proceeds. In this example the name of the
supply is hard coded into the module. Using the analog node alias system functions (see 9.20), a more
generic connect module may be written where the supply name is provided via a string parameter. This
parameter may be set via connect rules.

module dig_inv(in, out);
input in;
output out;
reg out;
ddiscrete in, out;
always out = #10 ~in;

endmodule

module analog_inv(in, out, vdd);
input in;
Copyright © 2014 Accellera Systems Initiative. 188

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
output out;
electrical in, out;
electrical vdd;
real outval;
analog begin

if (V(in) > V(vdd)/2.0)
outval = 0;

else
outval = V(vdd);

V(out) <+ transition(outval);
end

endmodule

module global_supply;
electrical vdd;
analog V(vdd) <+ 5.0;

endmodule

module ring;
dig_inv d1 (n1, n2);
dig_inv d2 (n2, n3);
analog_inv a3 (n3, n1, $root.global_supply.vdd);

endmodule

connectmodule elect_to_logic(el, cm);
input el;
output cm;
reg cm;
electrical el;
ddiscrete cm;
electrical vdd;
parameter string vddname = "(not_given)"; // Set via the CR
analog initial begin

if($analog_node_alias(vdd, vddname) == 0)
$error(“Unable to resolve power supply: %s”, vddname);

end

always @(cross(V(el) - V(vdd)/2.0, 1))
cm = 1;

always @(cross(V(el) - V(vdd)/2.0, -1))
cm = 0;

endmodule
189 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
connectmodule logic_to_elect(cm, el);
input cm;
output el;
ddiscrete cm;
electrical el;
electrical vdd;
parameter string vddname = "(not_given)"; // Set via the CR
analog initial begin

if($analog_node_alias(vdd, vddname) == 0)
$error(“Unable to resolve power supply: %s”, vddname);

end

analog V(el) <+ V(vdd) * transition((cm == 1) ? 1 : 0);
endmodule

connectrules mixedsignal;
connect elect_to_logic #(.vddname("$root.global_supply.vdd"));
connect logic_to_elect #(.vddname("$root.global_supply.vdd"));

endconnectrules

When there are multiple supplies in the design distinct disciplines must be specified for each digital net that
is associated with a given supply. This may be done by explicitly specifying the discipline of the digital nets
or by using remote disciplines. Supply sensitivity in multi supply designs is managed in the same way as
above but with the specific supply hierarchical reference provided on each connect rule as the following
example shows.

`include "disciplines.vams"
`timescale 1ns/1ns

discipline ddiscrete_1v2
domain discrete;

enddiscipline

discipline ddiscrete_1v8
domain discrete;

enddiscipline

module global_supply;
electrical vdd_1v2;
electrical vdd_1v8;
analog begin

V(vdd_1v2) <+ 1.2;
V(vdd_1v8) <+ 1.8;

end
endmodule
Copyright © 2014 Accellera Systems Initiative. 190

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
module analog_inv(in, out, vdd);
input in;
output out;
electrical in, out;
electrical vdd;
real outval;
analog begin

if (V(in) > V(vdd)/2.0)
outval = 0;

else
outval = V(vdd);

V(out) <+ transition(outval);
end

endmodule

// 1.2v supply level
module dig_inv_1v2(in, out);

input in;
output out;
ddiscrete_1v2 in, out;
reg out;
always out = #10 ~in;

endmodule

module ring_1v2;
dig_inv_1v2 d1(n1, n2);
dig_inv_1v2 d2(n2, n3);
analog_inv a3 (n3, n1, $root.global_supply.vdd_1v2);

endmodule

// 1.8v supply level
module dig_inv_1v8(in, out);

input in;
output out;
ddiscrete_1v8 in, out;
reg out;
always out = #10 ~in;

endmodule

module ring_1v8;
dig_inv_1v8 d1(n1, n2);
dig_inv_1v8 d2(n2, n3);
analog_inv a3 (n3, n1, $root.global_supply.vdd_1v8);

endmodule
191 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
connectmodule elect_to_logic(el, cm);
input el;
output cm;
reg cm;
electrical el;
ddiscrete cm;
electrical vdd;
parameter string vddname = "(not_given)"; // Set via the connect rule
analog initial begin

if($analog_node_alias(vdd, vddname) == 0)
$error(“Unable to resolve power supply: %s”, vddname);

end

always @(cross(V(el) - V(vdd)/2.0, 1))
cm = 1;

always @(cross(V(el) - V(vdd)/2.0, -1))
cm = 0;

endmodule

connectmodule logic_to_elect(cm, el);
input cm;
output el;
ddiscrete cm;
electrical el;
electrical vdd;
parameter string vddname = "(not_given)"; // Set via the connect rule
analog initial begin

if($analog_node_alias(vdd, vddname) == 0)
$error(“Unable to resolve power supply: %s”, vddname);

end

analog V(el) <+ V(vdd) * transition((cm == 1) ? 1 : 0);
endmodule

connectrules mixedsignal;
connect elect_to_logic #(.vddname("$root.global_supply.vdd_1v2"))

input electrical, output ddiscrete_1v2;

connect logic_to_elect #(.vddname("$root.global_supply.vdd_1v2"))
input ddiscrete_1v2, output electrical;

connect elect_to_logic #(.vddname("$root.global_supply.vdd_1v8"))
input electrical, output ddiscrete_1v8;

connect logic_to_elect #(.vddname("$root.global_supply.vdd_1v8"))
input ddiscrete_1v8, output electrical;

endconnectrules

In the above examples the supply hierarchical reference is specified as an absolute name via the $root
prefix (see 6.2.1). If $root is not supplied then the hierarchical reference search proceeds in the usual way
as defined in 6.7. The hierarchical reference search will start from the connect module insertion point. This
should be taken into consideration when naming the supplies as changes to discipline resolution controls
will affect the connect module location and therefore may change how the supply hierarchical reference
resolves.
Copyright © 2014 Accellera Systems Initiative. 192

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
7.9 Driver-receiver segregation

If the hierarchical segments of a signal are all digital or all analog, the signal is not a mixed signal and the
internal representation of the signal does not differ from that of a purely digital or an analog signal.

If the signal has both analog and digital segments in its hierarchy, it is a mixed signal. In this case, the appro-
priate conversion elements are inserted, either manually or automatically, based on the following rules.

— All the analog segments of a mixed signal are representations of a single analog node.
— Each of the non-contiguous digital segments of a signal shall be represented internally as a separate

digital signal, with its own state.
— Each non-contiguous digital segment shall be segregated into the collection of drivers of the seg-

ment and the collection of receivers of the segment.

In the digital domain, signals can have drivers and receivers. A driver makes a contribution to the state of the
signal. A receiver accesses, or reads, the state of the signal. In a pure digital net, i.e., one without an analog
segment, the simulation kernel resolves the values of the drivers of a signal and it propagates the new value
to the receivers by means of an event when there is a change in state.

In the case of a mixed net, i.e., one with digital segments and an analog segment, it can be useful to propa-
gate the change to the analog simulation kernel, which can then detect a threshold crossing, and then propa-
gate the change in state back to the digital kernel. This, among other things, allows the simulation to account
for rise and fall times caused by analog parasitics.

Within digital segments of a mixed-signal net, drivers and receivers of ordinary modules shall be segregated,
so transitions are not propagated directly from drivers to receivers, but propagate through the analog domain
instead. In this case, the drivers and receivers of connect modules shall be oppositely segregated; i.e., the
connect module drivers shall be grouped with the ordinary module receivers and the ordinary module drivers
shall be grouped with the connect module receivers.

Thus, digital transitions are propagated from drivers to receivers by way of analog (through using connect
module instances). Figure 7-11 shows driver-receiver segregation in modules having bidirectional and uni-
directional ports, respectively.
193 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Figure 7-11: Driver-receiver segregation in modules with bidirectional ports

analog

digital

digital

analog

inout port

inout port

inout port

drivers

drivers

receivers

receivers

analog
digital

drivers

drivers

receivers

receivers

Hierarchical definition Internal representation

output
port

input
port

connection

digital

connection

connection

connection
receiver

driver

driver

receiver
Copyright © 2014 Accellera Systems Initiative. 194

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
8. Scheduling semantics

8.1 Overview

This clause details the simulation cycles for analog simulation and mixed A/D simulations.

A mixed-signal simulator shall contain an analog solver that complies with the analog simulation cycle
described in 8.3. This component of the mixed-signal simulator is termed the analog engine. A mixed signal
simulator shall also contain a discrete event simulator that complies with the scheduling semantics described
in 8.5. This component is termed the digital engine.

In a mixed-signal circuit, an analog macro-process is a set of continuous nodes that must be solved together
because they are joined by analog blocks or analog primitives. A mixed-signal circuit can comprise one or
more analog macro-process separated by digital processes.

8.2 Simulation initialization

Before simulation of the network or system can be proceed, initialization of the system must first be per-
formed as outlined in Figure 8-1.

The system initialization is divided into three main processes, compilation, elaboration, and simulation.
Compilation refers to the process where the design artifacts are incorporated into the simulator. Elaboration
is the process where the system is hierarchically instantiated. During this process, as each design element is
elaborated, parameter declaration assignments are evaluated and module level generate constructs expanded.
Once the system has been elaborated, the simulator will move onto the simulation process. It is during this
process that module level variable declaration assignments are evaluated followed by the execution of ana-
log initial blocks. Once analog initial blocks are evaluated, node declaration assignments and simulator
nodeset values are then applied.

At this point, the system is initialized and the simulation cycle will proceed as detailed in 8.3.
195 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Figure 8-1: System initialization flow

It is important to note that for parametric sweep type analyses like dc sweep, the tool shall re-evaluate the
Eleboration and Pre-simulation steps as outlined in Figure 8-1 for each sweep point to ensure that all param-
eter value changes are captured.

8.3 Analog simulation cycle

Simulation of a network, or system, starts with an analysis of each node to develop equations which define
the complete set of values and flows in a network. Through transient analysis, the value and flow equations
are solved incrementally with respect to time. At each time increment, equations for each signal are itera-
tively solved until they converge on a final solution.

Compilation
Compilation of

design data

Elaboration

Hierarchical instantiation
of design

Evaluation of parameter
declaration assignments

Execution of generate
constructs

Pre-simulation
Variable declaration

assignments

Execution of analog
initial blocks

Node declaration
assignments and simulator

nodeset evaluation
Copyright © 2014 Accellera Systems Initiative. 196

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
8.3.1 Nodal analysis

To describe a network, simulators combine constitutive relationships with Kirchhoff’s Laws in nodal analy-
sis to form a system of differential-algebraic equations of the form

These equations are a restatement of Kirchhoff’s Flow Law (KFL).
v is a vector containing all node values
t is time
q and i are the dynamic and static portions of the flow
f() is a vector containing the total flow out of each node
v0 is the vector of initial conditions

This equation was formulated by treating all nodes as being conservative (even signal flow nodes). In this
way, signal-flow and conservative terminals can be connected naturally. However, this results in unneces-
sary KFL equations for those nodes with only signal-flow terminals attached. This situation is easily recog-
nized and those unnecessary equations are eliminated along with the associated flow unknowns, which shall
be zero (0) by definition.

8.3.2 Transient analysis

The equation describing the network is differential and non-linear, which makes it impossible to solve
directly. There are a number of different approaches to solving this problem numerically. However, all
approaches discretize time and solve the nonlinear equations iteratively, as shown in Figure 8-2.

The simulator replaces the time derivative operator (dq/dt) with a discrete-time finite difference approxima-
tion. The simulation time interval is discretized and solved at individual time points along the interval. The
simulator controls the interval between the time points to ensure the accuracy of the finite difference approx-
imation. At each time point, a system of nonlinear algebraic equations is solved iteratively. Most circuit sim-
ulators use the Newton-Raphson (NR) method to solve this system.

f v t,() dq v t,()
dt

------------------ i v t,()+ 0= =

v 0() v0=
197 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Figure 8-2: Simulation flowchart (transient analysis)

8.3.3 Convergence

In the analog kernel, the behavioral description is evaluated iteratively until the NR method converges. On
the first iteration, the signal values used in expressions are approximate and do not satisfy Kirchhoff’s Laws.

In fact, the initial values might not be reasonable, so models need to be written so they do something reason-
able even when given unreasonable signal values.

No

System initializa-
tion (see 8.2)

Update time
t <- t + Δt

Update values
v <- v + Δv

Evaluate equations
f(v,t) = residue

 Converged?
residue < e

Δv < Δ

Yes

No
time step?
Accept the

$Display

Start Analysis

Done? (T = t)

Yes

No

Yes
End
Copyright © 2014 Accellera Systems Initiative. 198

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
For example, the log or square root of a signal value is being computed, some signal values cause the argu-
ments to these functions to become negative, even though a real-world system never exhibits negative val-
ues.

As the iteration progresses, the signal values approach the solution. Iteration continues until two conver-
gence criteria are satisfied. The first criterion is the proposed solution on this iteration, v(j)(t), shall be close
to the proposed solution on the previous iteration, v(j-1)(t), and

where reltol is the relative tolerance and abstol is the absolute tolerance.

reltol is set as a simulator option and typically has a value of 0.001. There can be many absolute tolerances,
which one is used depends on the quantity the signal represents (volts, amps, etc.). The absolute tolerance is
important when vn is converging to zero (0). Without abstol, the iteration never converges.

The second criterion ensures Kirchhoff's Flow Law is satisfied:

where fni(v(j)) is the flow exiting node n from branch i.

Both of these criteria specify the absolute tolerance to ensure convergence is not precluded when vn or fn(v)
go to zero (0). The relative tolerance can be set once in an options statement to work effectively on any node
in the circuit, but the absolute tolerance shall be scaled appropriately for its associated signal. The absolute
tolerance shall be the largest signal value which is considered negligible on all the signals where it is associ-
ated.

The simulator uses absolute tolerance to get an idea of the scale of signals. Absolute tolerances are typically
1,000 to 1,000,000 times smaller than the largest typical value for signals of a particular quantity. For exam-
ple, in a typical integrated circuit, the largest potential is about 5 volts, so the default absolute tolerance for
voltage is 1μV. The largest current is about 1mA, so the default absolute tolerance for current is 1pA.

8.4 Mixed-signal simulation cycle

This section describes the semantics of the initialization, the process of mixed-signal DC analysis, and the
synchronization of analog and digital in transient analysis for Verilog-AMS simulation.

8.4.1 Circuit initialization

The initialization phase of mixed-signal simulation is the process of initializing the circuit state for analysis
tasks such as DC, transient, and AC. It is a one time execution of nodeset statements (3.6.3.2), then the pro-
cedural statements in analog initial block, and then the procedural statements in the Verilog initial block for
time zero. These procedures can also be used for assertion of circuit/module parameters and initial state.

8.4.2 Mixed-signal DC analysis

Mixed-signal DC analysis is the process of finding the steady state of the circuit, which is the DC operating
point for transient and AC analysis. The steady state of the digital circuit is defined as the final state at time
0 when all analog and digital events are executed. For mixed-signal DC analysis, the processes of the analog
DC analysis and the digital simulation at time 0 are executed iteratively, starting with the initialization phase

| vn
(j) - vn

(j-1) | < reltol (max(| vn
(j)| , |vn

(j-1)|)) + abstol

fn v j()()
n
∑ reltol max fi

n v j()()()() abstol+<
199 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
(including analog and digital) defined in circuit initialization (8.4.1), until all signals at the A/D boundaries
reach steady state. The signal propagation at the A/D boundaries follows the same scheduling semantics as
are defined in transient analysis in the following sections.

8.4.3 Mixed-signal transient analysis

A Verilog-AMS simulation consists of a number of analog and digital processes communicating via events,
shared memory and conservative nodes. Analog processes that share conservative nodes are “solved” jointly
and can be viewed as a “macro” process, there may be any number “macro” processes, and it is left up to the
implementation whether it solves them in a single matrix, multiple matrices or uses other techniques but it
should abide by the accuracy stipulated in the disciplines and analog functions.

8.4.3.1 Concurrency

Most (current) simulators are single-threaded in execution, meaning that although the semantics of Verilog-
AMS imply processes are active concurrently, the reality is that they are not. If an implementation is genu-
inely multi-threaded, it should not evaluate processes that directly share memory concurrently, as there are
no data locking semantics in Verilog-AMS.

8.4.3.2 Analog macro process scheduling semantics

The internal evaluation of an analog macro process is described in 8.3.2. Once the analog engine has deter-
mined its behavior for a given time, it must communicate the results to other processes in the mixed signal
simulation through events and shared variables. When an analog macro process is evaluated, the analog
engine finds a potential “solution” at a future time (the “acceptance time”), and it stores (but does not com-
municate) values1 for all the process’s nodes up to that time. A “wake up” event is scheduled for the accep-
tance time of the process, and the process is then inactive until it is either woken up or receives an event
from another process. If it is woken up by its own “wake up” event, it calculates a new solution point, accep-
tance time (and so forth) and deactivates. If it is woken up prior to acceptance time by an event that disturbs
its current solution, it will cancel its own “wake up” event, accept at the wake-up time, recalculate its solu-
tion and schedule a new “wake up” event for the new acceptance time. The process may also wake itself up
early for reevaluation by use of a timer (which can be viewed as just another process).

If the analog process identifies future analog events such as “crossings” or timer events (see 5.10.3) then it
will schedule its wake-up event for the time of the first such event rather than the acceptance time. If the
analog process is woken by such an analog event it will communicate any related events at that time and de-
activate, rescheduling its wake-up for the next analog event or acceptance. Events to external processes gen-
erated from analog events are not communicated until the global simulation time reaches the time of the ana-
log event.

If the time to acceptance is infinite then no wake-up event needs to be scheduled2.

Analog processes are sensitive to changes in all variables and digital signals read by the process unless that
access is only in statements ‘guarded’ by event expressions. For example the following code implements a
simple digital to analog convertor:

module d2a(val,vo); // 16 bit D->A
parameter Vgain = 1.0/65536;
input val;
wire [15:0] val;
electrical vo;
analog begin

1Or derivatives w.r.t. time used to calculate the values.
2The case when all derivatives are zero - the circuit is stable.
Copyright © 2014 Accellera Systems Initiative. 200

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
V(vo) <+ Vgain * val;
end

endmodule

The output voltage V(vo) is reevaluated when any bit in val changes, which is not a problem if all the bits
change simultaneously and no ‘X’ values occur. A practical design would require that the digital value is
latched to avoid bad bit sequences, as in the following version:

module d2aC(clk,val,vo); // Clocked 16 bit D2A
parameter Vgain = 1.0/65536;
input clk;
input val;
wire [15:0] val;
electrical vo;
real v_clkd;
analog begin

@(posedge clk) v_clkd = Vgain * val;
V(vo) <+ v_clkd;

end
endmodule

Since val is now guarded by the @(posedge clock) expression the analog block is not sensitive to
changes in val and only reevaluates when clk changes.

Macro processes can be evaluated separately but may be evaluated together1, in which case, the wake up
event for one process will cause the re-evaluation of all or some of the processes. Users should bear this in
mind when writing mixed-signal code, as it will mean that the code should be able to handle re-evaluation at
any time (not just at its own event times).

8.4.3.3 A/D boundary timing

In the analog kernel, time is a floating point value. In the digital kernel time is an integer value. Hence, A2D
events generally do not occur exactly at digital integer clock ticks.

For the purpose of reporting results and scheduling delayed future events, the digital kernel converts analog
event times to digital times such that the error is limited to half the precision base for the module where the
conversion occurs. For the examples below the timescale is 1ns/1ns, so the maximum scheduling error when
swapping a digital module for its analog counterpart will be 0.5ns.

Consequently an A2D event that results in a D2A event being scheduled with zero (0) delay, shall have its
effect propagated back to the analog kernel with zero (0) delay.

1This is implementation-dependent.
201 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Figure 8-3: A zero delay inverter

If the circuit shown in Figure 8-3 is being simulated with a digital time resolution of 1e-9 (one (1) nanosec-
ond) then all digital events shall be reported by the digital kernel as having occurred at an integer multiple of
1e-9. The A2D and D2A modules inserted are a simple level detector and a voltage ramp generator:

connectmodule a2d(i,o);
parameter vdd = 1.0;
ddiscrete o;
input i;
output o;
reg o;
electrical i;
always begin @(cross(V(i) - vdd/2,+1))o = 1; end
always begin @(cross(V(i) - vdd/2,-1))o = 0; end

endmodule
connectmodule d2a(i, o);

parameter vdd = 1.0;
parameter slewrate = 2.0/1e-9; // V/s
input i;
output o;
electrical o;
reg qd_val, // queued value

nw_val;
real et; // delay to event
real start_delay; // .. to ramp start
always @(driver_update i) begin

nw_val = $driver_next_state(i,0); // assume one driver
if (nw_val == qd_val) begin

// no change (assume delay constant)
end else begin

et = $driver_delay(i,0) * 1e-9; // real delay
qd_val = nw_val;

end
end
analog begin

@(qd_val) start_delay = et - (vdd/2)/slewrate;
V(o) <+ vdd * transition(qd_val,start_delay,vdd/slewrate);

end
endmodule

Connection modules

Zero delay inverter:

A B

 always @(A) B<= !A;
Copyright © 2014 Accellera Systems Initiative. 202

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
If connector A detects a positive threshold crossing, the resulting falling edge at connector B generated by the
propagation of the signal through verilog inverter model shall be reported to the analog kernel with no fur-
ther advance of analog time. The digital kernel will treat these events as if they occurred at the nearest nano-
second.

Example:

If A detects a positive crossing as a result of a transient solution at time 5.2e-9, the digital kernel shall report
a rising edge at A at time 5.0e-9 and falling edge at B at time 5.0e-9, but the analog kernel shall see the tran-
sition at B begin at time 5.2e-9, as shown in Figure 8-4. D2As fed with zero delay events cannot be preemp-
tive, so the crossover on the return is delayed from the digital event; zero-delay inverters are not physically
realizable devices.

Figure 8-4: Zero delay transient solution times

If the inverter equation is changed to use a one unit delay (always @(A) B<= #1 !A), then the timing is as
in Figure 8-5.

5 ns 6 ns

A

B

4 ns

analog

digital reported

analog

digital reported

signal

signal

digital real-time

digital real-time

Analog gate delay
203 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Figure 8-5: Unit delay transient solution times

8.4.4 The synchronization loop

Verilog-AMS uses a “conservative” simulation algorithm, the analog and digital processes that are managed
by the simulation kernel are synchronized such that neither computes results that will invalidate signal val-
ues that have already been assigned; time never goes backwards. While the implementation of the simulator
may have separate event queues for analog and digital events (see 8.4.5), it can be viewed as a single event
queue logically with a common global time. Analog processes are similar to Verilog initial statements in
that they start automatically at time zero. The event sequence for the transient simulation shown in
Figure 8-5 would be as follows:

Time Event Queue

4.9ns Evaluate the first analog inverter

Evaluate acceptance at 5.4ns, but schedule wake-up for
5.2 for crossing.

5.2ns Evaluate crossing event

The A2D logic sets the digital signal A, which triggers the evaluation
of the non-blocking assign to B, which schedules the actual
assignment for 6ns (rounded 1ns delay).

D2A notices queued event and schedules wake-up for 5.75 via
rampgen module.

Schedule wake-up at 5.4ns (as previously calculated).

5 ns 6 ns

A

B

4 ns

analog

digital reported

analog

digital reported

signal

signal

digital real-time

digital real-time

Analog gate delay
Copyright © 2014 Accellera Systems Initiative. 204

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
5.4ns Evaluate acceptance

Circuit evaluates stable, nothing scheduled.

5.75ns D2A/rampgen process wake-up

Start ramp in analog domain.

6.0ns Non blocking assign performed (digital event).

D2A may be sensitive, but doesn’t need to do anything.

6.25ns D2A/rampgen process wake-up

Drive 0V to complete ramp. Nothing more to schedule.

Any events queued ahead of the current global event time may be canceled. For instance, if the sequence
above is interrupted by a change on the primary input before digital assignment takes place as shown in
Figure 8-6.

Time Event Queue

4.9ns Evaluating the first analog inverter

Evaluate acceptance at 5.4ns, but schedule wake-up

for 5.2 for crossing.

5.2ns Evaluate crossing event

The A2D logic sets the digital signal A, which triggers the
evaluation of the non-blocking assign to B, which schedules the
actual assignment for 6ns (rounded 1ns delay).

D2A notices queued event and changes value using transition filter.

Schedule wake-up at 5.4ns (as previously calculated).

5.3ns Analog event disturbs the solution

Accept at 5.3ns.

Cancel 5.4ns wake-up.

New acceptance is 5.45ns, but schedule wake-up for crossing at 5.4ns.

5.4ns Evaluate crossing event

The A2D logic sets the digital signal A, which triggers the evaluation
of the non-blocking assign to B, which schedules the actual
assignment for 6ns (rounded 1ns delay), canceling previous event.

D2A detects the driver change and qd_val toggles back to 1 before
the 0 propagates through the transition filter, so no analog change
occurs at B.

Schedule wake-up at 5.45ns (as previously calculated).

5.45ns Evaluate acceptance

Circuit evaluates stable, nothing scheduled.

6.00ns Non blocking assign performed (digital event).

Value of B doesn’t change.
205 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Figure 8-6: Transient solution times with glitch

If the canceling event arrived after the ramp on B had started but before the assignment to the digital B, it is
possible to see the glitch propagate back into the analog domain without an event appearing on B.

8.4.5 Synchronization and communication algorithm

Figure 8-7 is an abstract representation of how the analog engine simulating an analog macro process com-
municates and synchronizes with the digital engine and vice-versa.

The synchronization algorithm can exploit characteristics of the analog and digital kernels described in the
next section. The arrows represent an engine moving from one synchronization point to another, which in
the case of an analog macro-process involves one or more time-steps and in the case of a digital engine,
involves once or more discrete times at which events are processed.

5 ns 6 ns

A

B

4 ns

analog

digital reported

analog

digital reported

signal

signal

digital real-time

digital real-time
Copyright © 2014 Accellera Systems Initiative. 206

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

etc.
Figure 8-7: Sample run

1) The Analog engine begins transient analysis and sends state information (that it is good up to T2) to
the Digital engine (1, 2).

2) The Digital engine begins to run using its own time steps (3); however, if there is no D2A event, the
Analog engine is not notified and the digital engine continues to simulate until it can not advance its
time without surpassing the time of the analog solution (4). Control of the simulation is then
returned to the analog engine (5), which accepts at T2. This process is repeated (7, 8, 9, 10, and 11).

3) If the Digital engine produces a D2A event (12), control of the simulation is returned to the Analog
engine (13). The analog engine accepts at the time of the D2A event (14, which may involve recal-
culating from T3). The Analog engine then calculates the next time step (15).

4) If the Analog engine produces an A2D event, it returns control to the Digital engine (16), which sim-
ulates up to the time of the A2D event, and then surrenders control (17 and 18).

5) This process continues until transient analysis is complete.

8.4.6 absdelta interpolated A2D events

The absdelta() monitored event function allows the analog solver to generate A2D events by interpolat-
ing the times between the last time step and next time step at which the absdelta expression changed by
delta and schedules them in the digital event queue. The digital engine will then consume these events by
simulating up to either

a) the time of the next D2A event or
b) the time of the next time step in the analog engine. At this point, it will surrender control to the ana-

log engine.

In the case of a), unconsumed absdelta A2D events in the digital engine are rejected.

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

D2A

A2D

T1 T2 T3 T4 T5 T6

ANALOG

DIGITAL
207 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
8.4.7 Assumptions about the analog and digital algorithms

1) Advance of time in a digital algorithm
a) The digital engine has some minimum time granularity and all digital events occur at a time

which is some integer multiple of that granularity.
b) The digital engine can always accept events for a given simulation time provided it has not yet

executed events for a later time. Once it executes events for a given time, it can not accept
events for an earlier time.

c) The digital engine can always report the time of the most recently executed event and the time of
the next pending event.

2) Advance of time in an analog algorithm
a) The analog engine advances time by calculating a sequence of solutions. Each solution has an

associated time which, unlike the digital time, is not constrained to a particular minimum granu-
larity.

b) The analog engine can not tell for certain the time when the next solution converges. Thus, it can
tell the time of the most recently calculated solution, but not the time of the next solution.

c) In general, the analog solution is a function of one or more previous solutions. Having calcu-
lated the solution for a given time, the analog engine can either accept or reject that solution; it
cannot calculate a solution for a future time until it has accepted the solution for the current time.

3) Analog to digital events
a) Certain analog events (above, cross, initial_step, and final_step) cause an ana-

log solution of the time where they occur. Such events are associated with the solution that pro-
duced them until they are consumed by the digital engine. Until then, they can be rejected along
with the solution, if it is rejected.

b) absdelta analog to digital events can occur at times interpolated between two analog solution
times (that of the last analog solution and the next analog solution). These events are associated
with the next analog solution. If the next analog solution is rejected, the absdelta events
associated with that solution, that have not be consumed by the digital engine, are rejected (see
8.4.6).

4) Digital to analog events shall cause an analog solution of the time where they occur.

8.5 Scheduling semantics for the digital engine

The scheduling semantics for Verilog-HDL simulation are outlined in Clause 11 of IEEE Std 1364-2005
Verilog HDL.

The digital engine of a Verilog-AMS mixed-signal simulator shall comply with that section except for the
changes outlined in this section.

For mixed-signal simulation, the major change from Clause 11 of IEEE Std 1364-2005 Verilog HDL is that
two new types of event must be supported by the event queue called the explicit D2A (digital-to-analog)
event, and the analog macro-process event.

Explicit D2A events are created when a digital event occurs to which an analog block is explicitly sensitive.
An analog block is explicitly sensitive to event expressions mentioned in an event control statement in that
analog block.

Similarly, there is also the concept of the implicit D2A event that is created when a digital variable to which
an analog block is implicitly sensitive changes value. An analog block is implicitly sensitive to all digital
variable references that are not guarded by event control statements in that analog block.
Copyright © 2014 Accellera Systems Initiative. 208

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
An analog macro-process event is also created when either type of D2A event occurs. The analog macro-
process event is associated with the analog macro-process that is sensitive to the D2A event. An analog
macro-process event is evaluated by calling the analog engine to solve it. Note that implicit D2A events are
not added to the stratified event queue, but as they directly cause an analog macro-process event, they effec-
tively force a digital-analog synchronization when they occur.

8.5.1 The stratified event queue

The Verilog event queue is logically segmented into seven different regions. Events are added to any of the
seven regions but are only removed from the active region. Regions 1b and 3b have been added for mixed-
signal simulation.

1. Events that occur at the current simulation time and can be processed in any order.
These are the active events.

1b. Explicit D2A events that occur at the current simulation time shall be processed
after all the active events are processed.

2. Events that occur at the current simulation time, but that shall be processed after all
the active and explicit D2A events are processed. These are the inactive events.

3. Events that have been evaluated during some previous simulation time, but that
shall be assigned at this simulation time after all the active, explicit D2A and inac-
tive events are processed. These are the non blocking assign update events.

3b. Analog macro-process events shall be processed after all active, explicit D2A
events, inactive events and non blocking assign update events are processed.

4. Events that shall be processed after all the active, explicit D2A, inactive, non
blocking assign update events and analog macro-process events are processed.
These are the monitor events.

5. Events that occur at some future simulation time. These are the future events.
Future events are divided into future inactive events and future non blocking
assignment update events.

The processing of all the active events is called a simulation cycle.

The freedom to choose any active event for immediate processing is an essential source of nondeterminism
in the IEEE Std 1364-2005 Verilog HDL.

An explicit zero delay (#0) requires that the process be suspended and added as an inactive event for the cur-
rent time so that the process is resumed in the next simulation cycle in the current time.

A nonblocking assignment (see 9.2.2 of IEEE Std 1364-2005 Verilog HDL) creates a non blocking assign
update event, scheduled for current or a later simulation time.

The $monitor, $strobe and $debug system tasks (see 17.1 of IEEE Std 1364-2005 Verilog HDL) cre-
ate monitor events for their arguments. These events are continuously re-enabled in every successive time
step. The monitor events are unique in that they cannot create any other events.

The call back procedures scheduled with PLI routines such as tf_synchronize() (see Section 25.58 of
IEEE 1364-2001) or vpi_register_cb(cb_readwrite) (see 27.33 of IEEE Std 1364-2005 Verilog
HDL) shall be treated as inactive events.

Note that A2D events must be analog event controlled statements (e.g., @cross, @timer). These are
scheduled just like other event controlled statements in Verilog-HDL (e.g., @posedge).
209 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
8.5.2 The Verilog-AMS digital engine reference model

In all the examples that follow, T refers to the current simulation time of the digital engine, and all events are
held in the event queue, ordered by simulation time.

while (there are events){
if (no active events){

if (there are inactive events){
activate all inactive events;

else if (there are explicit D2A events) {
activate all explicit D2A events;

}else if (there are non blocking assign update events){
activate all non blocking assign update events;

}else if (there are analog macro-process events) {
activate all analog macro-process events;

}else if (there are monitor events){
activate all monitor events;

}else {
advance T to the next event time;
activate all inactive events for time T;

}
}
E =any active event;
if (E is an update event){

update the modified object;
add evaluation events for sensitive processes to event queue;

}else if (E is a D2A event) {
evaluate the D2A
modify the analog values
add A2D events to event queue, if any

}else if (E is an analog macro-process event) {
evaluate the analog macro-process
modify the analog values
add A2D events to event queue, if any

}else {/*shall be an evaluation event */
evaluate the process;
add update events to the event queue;

}
}

8.5.3 Scheduling implication of assignments

Assignments are translated into processes and events as follows.

8.5.3.1 Continuous assignment

A continuous assignment statement (6.1 of IEEE Std 1364-2005 Verilog HDL) corresponds to a process,
sensitive to the source elements in the expression.When the value of the expression changes, it causes an
active update event to be added to the event queue, using current values to determine the target.

8.5.3.2 Procedural continuous assignment

A procedural continuous assignment (which is the assign or force statement; see 9.3 of IEEE Std 1364-
2005 Verilog HDL) corresponds to a process that is sensitive to the source elements in the expression. When
the value of the expression changes, it causes an active update event to be added to the event queue, using
current values to determine the target.
Copyright © 2014 Accellera Systems Initiative. 210

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
A deassign or a release statement deactivates any corresponding assign or force statement(s).

8.5.3.3 Blocking assignment

A blocking assignment statement (see 9.2.1 of IEEE Std 1364-2005 Verilog HDL) with a delay computes
the right-hand side value using the current values, then causes the executing process to be suspended and
scheduled as a future event. If the delay is 0, the process is scheduled as an inactive event for the current
time.

When the process is returned (or if it returns immediately if no delay is specified), the process performs the
assignment to the left-hand side and enables any events based upon the update of the left-hand side. The val-
ues at the time the process resumes are used to determine the target(s). Execution may then continue with the
next sequential statement or with other active events.

8.5.3.4 Non blocking assignment

A nonblocking assignment statement (see 9.2.2 of IEEE Std 1364-2005 Verilog HDL) always computes the
updated value and schedules the update as a nonblocking assign update event, either in this time step if the
delay is zero or as a future event if the delay is nonzero. The values in effect when the update is placed on
the event queue are used to compute both the right-hand value and the left-hand target.

8.5.3.5 Switch (transistor) processing

The event-driven simulation algorithm described in 11 of IEEE Std 1364-2005 Verilog HDL depends on
unidirectional signal flow and can process each event independently. The inputs are read, the result is com-
puted, and the update is scheduled. The IEEE Std 1364-2005 Verilog HDL provides switch-level modeling
in addition to behavioral and gate-level modeling. Switches provide bi-directional signal flow and require
coordinated processing of nodes connected by switches.

The IEEE Std 1364-2005 Verilog HDL source elements that model switches are various forms of transistors,
called tran, tranif0, tranif1, rtran, rtranif0, and rtranif1.

Switch processing shall consider all the devices in a bidirectional switch-connected net before it can deter-
mine the appropriate value for any node on the net, because the inputs and outputs interact. A simulator can
do this using a relaxation technique. The simulator can process tran at any time. It can process a subset of
tran-connected events at a particular time, intermingled with the execution of other active events. Further
refinement is required when some transistors have gate value x. A conceptually simple technique is to solve
the network repeatedly with these transistors set to all possible combinations of fully conducting and non-
conducting transistors. Any node that has a unique logic level in all cases has steady-state response equal to
this level. All other nodes have steady-state response.

8.5.3.6 Processing explicit D2A events (region 1b)

An explicit D2A event is processed by evaluating the analog block that is sensitive to this event. This is so
that the values used for the digital variables referenced inside the explicitly sensitive event control statement
in the analog block are the values of those variables after region 1 has been processed, not the values of
those variables just before region 3b is processed.

8.5.3.7 Processing analog macro-process events (region 3b)

An analog macro-process event is evaluated by calling the analog engine to solve the associated analog
macro-process. Note that if multiple events for a particular analog macro-process are active, then a single
evaluation of the analog macro-process shall consume all of these events from the queue.
211 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The reason for processing analog macro-processes after regions 1-3 have been processed is to minimize the
number of times analog macro-processes are evaluated, because such evaluations tend to be expensive.
Copyright © 2014 Accellera Systems Initiative. 212

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
9. System tasks and functions

9.1 Overview

Verilog-AMS HDL is a superset of IEEE Std 1364-2005 Verilog HDL and hence all the system tasks in
IEEE Std 1364-2005 Verilog HDL are supported. Verilog-AMS adds several system tasks and system func-
tions. These are described in this clause. In addition, Verilog AMS HDL extends the behavior of several
Verilog systems tasks and functions including allowing some of them to be used in an analog context.

The system task and functions support by Verilog-AMS HDL are categorized in 9.2. A subclause is devoted
to each category from 9.4 until the end of this clause.

The behavior of a system task or function which is allowed in an analog context will be described in the con-
text of the analog simulation cycle (9.2) if required in the relevant section for that system task or function.

9.2 Categories of system tasks and functions

This subclause describes system tasks and functions that are considered part of the Verilog-AMS HDL. It
also states whether a particular system task or function is supported in the digital context and if it is sup-
ported in the analog context. The system tasks and functions are divided into sixteen categories. Each cate-
gory has a table describing the support level in Verilog-AMS HDL for the system task or functions in that
category.

Table 9-1—Display system tasks

Task name Supported in digital context Supported in analog context

$display Yes Yes

$displayb, $displayh, $displayo Yes No

$strobe Yes Yes

$strobeb, $strobeh, $strobeo Yes No

$write Yes Yes

$writeb, $writeh, $writeo Yes No

$monitor Yes Yes

$monitorb, $monitorh, $monitoro Yes No

$monitoron, $monitoroff Yes No

$debug No Yes

Table 9-2—File input-output system tasks and functions

Task/function name(s) Supported in digital context Supported in analog context

$fclose, $fopen Yes Yes

$fdisplay Yes Yes

$fdisplayb, $fdisplayh, $fdisplayo Yes No
213 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
$fwrite Yes Yes

$fwriteb, $fwriteh, $fwriteo Yes No

$fstrobe Yes Yes

$fstrobeb, $fstrobeh, $fstrobeo Yes No

$fmonitor Yes Yes

$fmonitorb, $fmonitorh, $fmonitoro Yes No

$fgetc, $ungetc Yes No

$fgets Yes Yes

$fscanf Yes Yes

$swrite, $sformat, $sscanf Yes Yes

$swriteb, $swriteh, $swriteo Yes No

$fread Yes No

$rewind, $fseek, $ftell Yes Yes

$fflush Yes Yes

$ferror Yes Yes

$feof Yes Yes

$readmemb, $readmemh Yes No

$sdf_annotate Yes No

$fdebug No Yes

Table 9-3—Timescale system tasks

Task/Function Name(s) Supported in Digital Context Supported in Analog Context

$printtimescale Yes No

$timeformat Yes No

Table 9-4—Simulation control system tasks

Task name Supported in digital context Supported in analog context

$finish Yes Yes

$stop Yes Yes

$fatal No Yes

Table 9-2—File input-output system tasks and functions (continued)

Task/function name(s) Supported in digital context Supported in analog context
Copyright © 2014 Accellera Systems Initiative. 214

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
$warning No Yes

$error No Yes

$info No Yes

Table 9-5—PLA modeling system tasks

Task name Supported in digital context Supported in analog context

$async$and$array Yes No

$async$nand$array Yes No

$async$or$array Yes No

$async$nor$array Yes No

$sync$and$array Yes No

$sync$nand$array Yes No

$sync$or$array Yes No

$sync$nor$array Yes No

$async$and$plane Yes No

$async$nand$plane Yes No

$async$or$plane Yes No

$async$nor$plane Yes No

$sync$and$plane Yes No

$sync$nand$plane Yes No

$sync$or$plane Yes No

$sync$nor$plane Yes No

Table 9-6—Stochastic analysis system tasks

Task name Supported in digital context Supported in analog context

$q_initialize Yes No

$q_remove Yes No

$q_exam Yes No

$q_add Yes No

$q_full Yes No

Table 9-4—Simulation control system tasks (continued)

Task name Supported in digital context Supported in analog context
215 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Table 9-7—Simulation time system functions

Function name Supported in digital context Supported in analog context

$realtime Yes No

$time Yes No

$stime Yes No

$abstime Yes Yes

Table 9-8—Conversion system functions

Function name Supported in digital context Supported in analog context

$bitstoreal Yes Yes

$itor Yes No

$signed Yes No

$realtobits Yes Yes

$rtoi Yes No

$unsigned Yes No

Table 9-9—Command line input system functions

Function name Supported in digital context Supported in analog context

$test$plusargs Yes Yes

$value$plusargs Yes Yes

Table 9-10—Probabilistic distribution system functions

Function name Supported in digital context Supported in analog context

$dist_chi_square Yes Yes

$dist_exponential Yes Yes

$dist_poisson Yes Yes

$dist_uniform Yes Yes

$dist_erlang Yes Yes

$dist_normal Yes Yes
Copyright © 2014 Accellera Systems Initiative. 216

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
$dist_t Yes Yes

$random Yes Yes

$arandom Yes Yes

$rdist_chi_square Yes Yes

$rdist_exponential Yes Yes

$rdist_poisson Yes Yes

$rdist_uniform Yes Yes

$rdist_erlang Yes Yes

$rdist_normal Yes Yes

$rdist_t Yes Yes

Table 9-11—Math system functions

Function name Supported in digital context Supported in analog context

$clog2 Yes Yes

$ln Yes Yes

$log10 Yes Yes

$exp Yes Yes

$sqrt Yes Yes

$pow Yes Yes

$floor Yes Yes

$ceil Yes Yes

$sin Yes Yes

$cos Yes Yes

$tan Yes Yes

$asin Yes Yes

$acos Yes Yes

$atan Yes Yes

$atan2 Yes Yes

$hypot Yes Yes

$sinh Yes Yes

$cosh Yes Yes

$tanh Yes Yes

Table 9-10—Probabilistic distribution system functions (continued)

Function name Supported in digital context Supported in analog context
217 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
$asinh Yes Yes

$acosh Yes Yes

$atanh Yes Yes

Table 9-12—Analog kernel parameter system functions

Function Name Supported in digital context Supported in analog context

$temperature Yes Yes

$vt Yes Yes

$simparam Yes Yes

$simparam$str Yes Yes

Table 9-13—Dynamic simulation probe system function

Function Name Supported in digital context Supported in analog context

$simprobe No Yes

Table 9-14—Analog kernel control system tasks and functions

Task/function name Supported in digital context Supported in analog context

$discontinuity No Yes

$limit No Yes

$bound_step No Yes

Table 9-15—Hierarchical parameter system functions

Function name Supported in digital context Supported in analog context

$mfactor Yes Yes

$xposition Yes Yes

$yposition Yes Yes

$angle Yes Yes

Table 9-11—Math system functions (continued)

Function name Supported in digital context Supported in analog context
Copyright © 2014 Accellera Systems Initiative. 218

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
$hflip Yes Yes

$vflip Yes Yes

Table 9-16—Explicit binding detection system functions

Function name Supported in digital context Supported in analog context

$param_given No Yes

$port_connected No Yes

Table 9-17—Analog node alias system function

Function name Supported in digital context Supported in analog context

$analog_node_alias No Yes

$analog_port_alias No Yes

Table 9-18—Table based interpolation and lookup system function

Function name Supported in digital context Supported in analog context

$table_model Yes Yes

Table 9-19—Connectmodule driver access system functions and operator

Function/operator name Supported in digital context
of connectmodule

Supported in analog context
of connectmodule

$driver_count Yes No

$driver_state Yes No

$driver_strength Yes No

@(driver_update) Yes No

Table 9-15—Hierarchical parameter system functions (continued)

Function name Supported in digital context Supported in analog context
219 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
9.3 System tasks/functions executing in the context of the Analog Simulation Cycle

From 8.2, the analog simulation cycle has some different characteristics than the digital simulation cycle in
VerilogAMS HDL. These differences requires some additional description for certain system tasks or func-
tions that are supported in IEEE Std 1364-2005 Verilog HDL and have been extended to work in the analog
context by VerilogAMS HDL.

A key difference is that the analog engine iteratively evaluates the analog blocks in an analog macro process
until that process is converged 8.4. The behavior of a particular system task or function during the iterative
evaluation process will be stated in the relevant section for that system task or function, if required. The goal
of the defined behavior of a system task or function in the analog context is that a call to a such system task
or function in an analog block during an iteration that is rejected should cause no side-effects on the next
iteration.

Another difference is that the analog engine supports additional analyses beyond a single transient analysis.
A single transient analysis is the only analysis that IEEE Std 1364-2005 Verilog HDL supports. Verilog
AMS HDL extends this to allows multiple analyses, including multiple transient analyses, to be run within a
single simulation process. Because of this extension, the behavior of a particular system task or function dur-
ing different analysis types and between different analyses will be stated in the relevant section for that sys-
tem task or function, if required.

9.4 Display system tasks

9.4.1 Behavior of the display tasks in the analog context

Verilog-AMS HDL extends the display tasks so that they can be used in the analog context.

The syntax for these functions are shown in Syntax 9-1.

display_tasks_in_analog_block ::=
$strobe (list_of_arguments) ;

| $display (list_of_arguments) ;
| $monitor (list_of_arguments) ;
| $write (list_of_arguments) ;
| $debug (list_of_arguments) ;

Syntax 9-1—Syntax for the display_tasks_in_analog_block

Table 9-20—Supplementary connectmodule driver access system functions

Task/Function Name(s) Supported in Digital Context
of Connectmodule

Supported in Analog Context
of Connectmodule

$driver_delay Yes No

$driver_next_state Yes No

$driver_next_strength Yes No

$driver_type Yes No
Copyright © 2014 Accellera Systems Initiative. 220

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The following rules apply to these functions.
— $strobe provides the ability to display simulation data when the simulator has converged on a

solution for all nodes.
— $strobe displays its arguments in the same order they appear in the argument list. Each argument

can be a quoted string, an expression which returns a value, or a null argument.
— The contents of string arguments are output literally, except when certain escape sequences are

inserted to display special characters or specify the display format for a subsequent expression.
— Escape sequences are inserted into a string in three ways:

— The special character \ indicates the character to follow is a literal or non-printable character
(see Table 9-21).

— The special character % indicates the next character shall be interpreted as a format specification
which establishes the display format for a subsequent expression argument (see Table 9-22).
For each % character which appears in a string, a corresponding expression argument shall be
supplied after the string.

— The special character string %% indicates the display of the percent sign character (%) (see
Table 9-21).

— Any null argument produces a single space character in the display. (A null argument is character-
ized by two adjacent commas (,,) in the argument list.)

— When $strobe is invoked without arguments, it simply prints a newline character.

The $display task provides the same capabilities as $strobe. The $write task provides the same
capabilities as $strobe, but with no newline. The $debug task provides the capability to display simula-
tion data while the analog simulator is solving the equations; it displays its arguments for each iteration of
the analog solver.

The $monitor task provides the ability to monitor and display the values of any variables or expressions
specified as arguments to the task. The arguments for this task are specified in exactly the same manner as
for the $strobe system task.

When a $monitor task is invoked with one or more arguments, the simulator sets up a mechanism
whereby for each accepted step, if the variable or an expression in the argument list changes value compared
with the last accepted step —with the exception of the $abstime or $realtime system functions—the
entire argument list is displayed at the end of the time step as if reported by the $strobe task. If two or
more arguments change value at the same time, only one display is produced that shows the new values.

9.4.2 Escape sequences for special characters

The escape sequences shown in Table 9-21, when included in a string argument, print special characters.

Table 9-21— Escape sequences for printing special characters

\n The newline character

\t The tab character

\\ The \ character

\" The " character

\ddd A character specified by 1 to 3 octal digits

%% The % character
221 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
9.4.3 Format specifications

Table 9-22 shows the escape sequences used for format specifications. The special character % indicates that
the next character should be interpreted as a format specification that establishes the display format for a
subsequent expression argument. For each % character (except %m, %% and %l) that appears in a string, a cor-
responding expression argument shall be supplied after the string.

The formatting specification %l (or %L) is defined for displaying the library information of the specific mod-
ule. This information shall be displayed as “library.cell" corresponding to the library name from which the
current module instance was extracted and the cell name of the current module instance. See Clause 13 of
IEEE Std 1364-2005 Verilog HDL for information on libraries and configuring designs.

Any expression argument which has no corresponding format specification is displayed using the default
decimal format in $strobe.

The format specifications in Table 9-23 are used for real numbers and have the full formatting capabilities
available in the C language. For example, the format specification %10.3g sets a minimum field width of 10
with three (3) fractional digits.

9.4.4 Hierarchical name format

The %m format specifier does not accept an argument. Instead, it causes the display task to print the hierar-
chical name of the module, task, function, or named block which invokes the system task containing the for-
mat specifier. This is useful when there are many instances of the module which call the system task. One
obvious application is timing check messages in a flip-flop or latch module; the %m format specifier pin-
points the module instance responsible for generating the timing check message.

Table 9-22— Escape sequences for format specifications

%h or %H Display in hexadecimal format

%d or %D Display in decimal format

%o or %O Display in octal format

%b or %B Display in binary format

%c or %C Display in ASCII character format

%l or %L Display library binding information

%m or %M Display hierarchical name

%s or %S Display as a string

Table 9-23— Format specifications for real numbers

%e or %E Display ‘real’ in an exponential format

%f or %F Display ‘real’ in a decimal format

%g or %G Display ‘real’ in exponential or decimal format, which-
ever format results in the shorter printed output

%r or %R Display ‘real’ in engineering notation, using the scale fac-
tors defined in 2.6.2
Copyright © 2014 Accellera Systems Initiative. 222

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
9.4.5 String format

The %s format specifier is used to print ASCII codes as characters. For each %s specification which appears
in a string, a corresponding argument shall follow the string in the argument list. The associated argument is
interpreted as a sequence of 8-bit hexadecimal ASCII codes, with each 8 bits representing a single character.
If the argument is a variable, its value shall be right-justified so the right-most bit of the value is the least-
significant bit of the last character in the string. No termination character or value is required at the end of a
string and leading zeros (0) are never printed.

9.4.6 Behavior of the display tasks in the analog block during iterative solving

All the display tasks, except $debug, shall not display output unless an iteration has been accepted.

9.4.7 Extensions to the display tasks in the digital context

For $strobe, $display, $write and $monitor
— the %r (or %R) format specifier may be used on real expressions in the digital context

9.5 File input-output system tasks and functions

Verilog-AMS HDL extends many of the file operation tasks so that they can be used in the analog context.
This section describes the File I/O tasks that can be used in the analog context.

The system tasks and functions for file-based operations are divided into the following categories:
— Functions and tasks that open and close files
— Tasks that output values into files
— Tasks that output values into variables
— Tasks and functions that read values from files and load into variables

9.5.1 Opening and closing files

The syntax for $fopen and $fclose system tasks is shown in Syntax 9-2.

file_open_function ::=
mcd = $fopen (filename) ;

| fd = $fopen (filename , type) ;
file_close_task ::=

$fclose (multi_channel_descriptor) ;
| $fclose (fd) ;

Syntax 9-2—Syntax for $fopen and $fclose system tasks

The function $fopen opens the file specified as the filename argument and returns either a 32-bit multi-
channel descriptor or a 32-bit file descriptor, determined by the absence or presence of the type argument.

filename is an expression that is a string literal, string data type, or an integral data type containing a
character string that names the file to be opened.

type is a string expression containing a character string of one of the forms in Table 9-24 that indicates how
the file should be opened. If type is omitted, the file is opened for writing, and a multichannel descriptor mcd
223 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
is returned. If type is supplied, the file is opened as specified by the value of type, and a file descriptor fd is
returned.

The multichannel descriptor mcd is a 32-bit integer in which a single bit is set indicating which file is
opened. The least significant bit (bit 0) of an mcd always refers to the standard output. Output is directed to
two or more files opened with multichannel descriptors by bitwise OR-ing together their multichannel
descriptors and writing to the resultant value.

The most significant bit (bit 31) of a multichannel descriptor is reserved and shall always be cleared, limit-
ing an implementation to at most 31 files opened for output via multichannel descriptors.

The file descriptor fd is a 32-bit value. The most significant bit (bit 31) of a fd is reserved and shall always
be set; this allows implementations of the file input and output functions to determine how the file was
opened. The remaining bits hold a small number indicating what file is opened. Three file descriptors are
pre-opened; they are STDIN, STDOUT, and STDERR, which have the values 32'h8000_0000,
32'h8000_0001, and 32'h8000_0002, respectively. STDIN is pre-opened for reading, and STDOUT and
STDERR are pre-opened for append.

Unlike multichannel descriptors, file descriptors cannot be combined via bitwise OR in order to direct out-
put to multiple files. Instead, files are opened via file descriptor for input, output, and both input and output,
as well as for append operations, based on the value of type, according to Table 9-24.

If a file cannot be opened (either the file does not exist and the type specified is "r", "rb", "r+", "r+b", or
"rb+", or the permissions do not allow the file to be opened at that path), a zero is returned for the mcd or
fd. Applications can call $ferror to determine the cause of the most recent error (see 9.5.7).

The "b" in the above types exists to distinguish binary files from text files. Many systems (such as Unix)
make no distinction between binary and text files, and on these systems the "b" is ignored. However, some
systems (such as machines running Windows NT) perform data mappings on certain binary values written to
and read from files that are opened for text access.

The $fclose system task closes the file specified by fd or closes the file(s) specified by the multichannel
descriptor mcd. No further output to or input from any file descriptor(s) closed by $fclose is allowed. The
$fopen function shall reuse channels that have been closed.

NOTE—The number of simultaneous input and output channels that can be open at any one time is dependent on the
operating system. Some operating systems do not support opening files for update.

Table 9-24—Types for file descriptors

Argument Description

"r" or "rb" open for reading

"w" or "wb" truncate to zero length or create for writing

"a" or "ab" append; open for writing at end of file, or create for writing

"r+", "r+b", or "rb+" open for update (reading and writing)

"w+", "w+b", or "wb+" truncate or create for update

"a+", "a+b", or "ab+" append; open or create for update at end-of-file
Copyright © 2014 Accellera Systems Initiative. 224

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
9.5.1.1 opening and closing files during multiple analyses

Verilog AMS HDL supports multiple analyses during the same simulation process (see Clause 8).

If a file is opened in a write mode in the first analysis and reopened in that write mode in following analysis,
then content written from the following analyses shall be appended to the content written during the previ-
ous analyses.

9.5.1.2 Sharing of file descriptors between the analog and digital contexts

The file I/O system functions and tasks in both the analog and digital contexts can use file descriptors
opened in either context, if the file descriptors are opened for writing or appending.

9.5.2 File output system tasks

The syntax for $fdisplay, $fwrite, $fmonitor, $fstrobe and $fdebug system tasks is shown
in Syntax 9-3.

file_open_function ::=
file_output_task_name (fd [, list_of_arguments]) ;

file_output_task_name ::=
$fdisplay | $fwrite | $fstrobe | $fmonitor | $fdebug

Syntax 9-3—Syntax for file output system tasks

Each of the formatted display tasks — $display, $write, $monitor, and $strobe — has a counter-
part that writes to specific files as opposed to the standard output. These counterpart tasks — $fdisplay,
$fwrite, $fmonitor, $fstrobe, and $fdebug — accept the same type of arguments as the tasks
upon which they are based, with one exception: The first argument shall be either a multichannel descriptor
or a file descriptor, which indicates where to direct the file output. Multichannel descriptors are described in
detail in 9.5.1. A multichannel descriptor is either a variable or the result of an expression that takes the form
of a 32-bit unsigned integer value.

The $fstrobe and $fmonitor system tasks work just like their counterparts, $strobe and $moni-
tor, except that they write to files using the file descriptor.

9.5.3 Formatting data to a string

The syntax for the $swrite family of tasks and for $sformat system task is shown in Syntax 9-4.

string_output_task ::=
$swrite (string_variable , list_of_arguments) ;

variable-format_string_output_task ::=
$sformat (string_variable , format_string , list_of_arguments) ;

Syntax 9-4—Syntax for formatting data tasks

The $swrite family of tasks is based on the $fwrite family of tasks and accepts the same type of argu-
ments as the tasks upon which it is based, with one exception: The first argument to $swrite shall be a
225 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
string variable to which the resulting string shall be written, instead of a variable specifying the file to which
to write the resulting string.

The system task $sformat is similar to the system task $swrite, with one major difference.

Unlike the display and write family of output system tasks, $sformat always interprets its second argu-
ment, and only its second argument, as a format string. This format argument can be a static string, such as
"data is %d" or can be a string variable whose content is interpreted as the format string. No other argu-
ments are interpreted as format strings. $sformat supports all the format specifiers supported by $dis-
play, as documented in Table 9-22.

The remaining arguments to $sformat are processed using any format specifiers in the format_string,
until all such format specifiers are used up. If not enough arguments are supplied for the format specifiers or
too many are supplied, then the application shall issue a warning and continue execution. The application, if
possible, can statically determine a mismatch in format specifiers and number of arguments and issue a com-
pile time error message.

If the format_string is a string variable, it might not be possible to determine its value at compile time.

9.5.4 Reading data from a file

Files opened using file descriptors can be read from only if they were opened with either the r or r+ type
values. See 9.5.2 for more information about opening files.

9.5.4.1 Reading a line at a time

For example:

integer code ;
code = $fgets (str, fd);

reads characters from the file specified by fd into the string variable, str until a newline character is read and
transferred to str, or an EOF condition is encountered.

If an error occurs reading from the file, then code is set to zero. Otherwise, the number of characters read is
returned in code. Applications can call $ferror to determine the cause of the most recent error (see 9.5.7).

9.5.4.2 Reading formatted data

For example:

integer code ;
code = $fscanf (fd, format, args);
code = $sscanf (str, format, args);

$fscanf reads from the files specified by the file descriptor fd.

$sscanf reads from the string, str. The string str, shall be a string variable, string parameter or a string lit-
eral.

Both functions read characters, interpret them according to a format, and store the results. Both expect as
arguments a control string, format, and a set of arguments specifying where to place the results. If there are
insufficient arguments for the format, the behavior is undefined. If the format is exhausted while arguments
remain, the excess arguments are ignored.
Copyright © 2014 Accellera Systems Initiative. 226

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
If an argument is too small to hold the converted input, then, in general, the least significant bits are trans-
ferred. Arguments of any length that is supported by Verilog AMS HDL in the analog context can be used.
However, if the destination is a real, then the value +Inf (or -Inf) is transferred. The format is a string
expression. The string contains conversion specifications, which direct the conversion of input into the argu-
ments. The control string can contain the following:

a) White space characters (blanks, tabs, newlines, or formfeeds) that, except in one case described
below, cause input to be read up to the next nonwhite space character. For $sscanf, null charac-
ters shall also be considered white space.

b) An ordinary character (not %) that must match the next character of the input stream.
c) Conversion specifications consisting of the character %, an optional assignment suppression charac-

ter *, a decimal digit string that specifies an optional numerical maximum field width, and a conver-
sion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
specified in the corresponding argument unless assignment suppression was indicated by the character *. In
this case, no argument shall be supplied.

The suppression of assignment provides a way of describing an input field that is to be skipped. An input
field is defined as a string of nonspace characters; it extends to the next inappropriate character or until the
maximum field width, if one is specified, is exhausted. For all descriptors except the character c, white space
leading an input field is ignored.

% A single % is expected in the input at this point; no
assignment is done.

d Matches an optionally signed decimal number, consisting
of the optional sign from the set + or -, followed by a
sequence of characters from the set 0,1,2,3,4,5,6,7,8,9,
and _.

f, e, or g Matches a floating point number. The format of a floating
point number is an optional sign (either + or -), followed by
a string of digits from the set 0,1,2,3,4,5,6,7,8,9 optionally
containing a decimal point character (.), followed by an
optional exponent part including e or E, followed by an
optional sign, followed by a string of digits from the set
0,1,2,3,4,5,6,7,8,9.

r Matches a ‘real’ number in engineering notation, using the
scale factors defined in 2.6.2

s Matches a string, which is a sequence of nonwhite space
characters.

m Returns the current hierarchical path as a string. Does not
read data from the input file or str argument.

If an invalid conversion character follows the %, the results of the operation are implementation dependent.

If EOF is encountered during input, conversion is terminated. If EOF occurs before any characters matching
the current directive have been read (other than leading white space, where permitted), execution of the cur-
rent directive terminates with an input failure. Otherwise, unless execution of the current directive is termi-
nated with a matching failure, execution of the following directive (if any) is terminated with an input
failure.
227 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
If conversion terminates on a conflicting input character, the offending input character is left unread in the
input stream. Trailing white space (including newline characters) is left unread unless matched by a direc-
tive. The success of literal matches and suppressed assignments is not directly determinable.

The number of successfully matched and assigned input items is returned in code; this number can be 0 in
the event of an early matching failure between an input character and the control string. If the input ends
before the first matching failure or conversion, EOF is returned. Applications can call $ferror to deter-
mine the cause of the most recent error (see 9.5.7).

9.5.5 File positioning

Example 1

integer pos ;
pos = $ftell (fd);

returns in pos the offset from the beginning of the file of the current byte of the file fd, which shall be read or
written by a subsequent operation on that file descriptor.

This value can be used by subsequent $fseek calls to reposition the file to this point. Any repositioning
shall cancel any $ungetc operations. If an error occurs, EOF is returned. Applications can call $ferror
to determine the cause of the most recent error (see 17.2.7 of IEEE Std 1364-2005 Verilog HDL).

Example 2

code = $fseek (fd, offset, operation);
code = $rewind (fd);

sets the position of the next input or output operation on the file specified by fd. The new position is at the
signed distance offset bytes from the beginning, from the current position, or from the end of the file,
according to an operation value of 0, 1, and 2 as follows:

— 0 sets position equal to offset bytes
— 1 sets position to current location plus offset
— 2 sets position to EOF plus offset

$rewind is equivalent to $fseek (fd,0,0);

Repositioning the current file position with $fseek or $rewind shall cancel any $ungetc operations.

$fseek() allows the file position indicator to be set beyond the end of the existing data in the file. If data
are later written at this point, subsequent reads of data in the gap shall return zero until data are actually writ-
ten into the gap. $fseek, by itself, does not extend the size of the file.

When a file is opened for append (that is, when type is "a" or "a+"), it is impossible to overwrite informa-
tion already in the file. $fseek can be used to reposition the file pointer to any position in the file, but when
output is written to the file, the current file pointer is disregarded. All output is written at the end of the file
and causes the file pointer to be repositioned at the end of the output.

If an error occurs repositioning the file, then code is set to -1. Otherwise, code is set to 0.

Applications can call $ferror to determine the cause of the most recent error (see 9.5.7).
Copyright © 2014 Accellera Systems Initiative. 228

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
9.5.6 Flushing output

For example:

$fflush (mcd);
$fflush (fd);
$fflush ();

writes any buffered output to the file(s) specified by mcd, to the file specified by fd, or if $fflush is
invoked with no arguments, to all open files.

9.5.7 I/O error status

Should any error be detected by one of the file I/O routines, an error code is returned. Often this is sufficient
for normal operation (i.e., if the opening of an optional configuration file fails, the application typically
would simply continue using default values). However, sometimes it is useful to obtain more information
about the error for correct application operation. In this case, the $ferror function can be used:

integer errno ;
errno = $ferror (fd, str);

A string description of type of error encountered by the most recent file I/O operation is written into str,
which should be at least 640 bits wide. The integral value of the error code is returned in errno. If the most
recent operation did not result in an error, then the value returned shall be zero, and the string variable str
shall be empty.

9.5.8 Detecting EOF

For example:

integer code;
code = $feof (fd);

returns a nonzero value when EOF has previously been detected reading the input file fd. It returns zero oth-
erwise.

9.5.9 Behavior of the file I/O tasks in the analog block during iterative solving

If a file is being read from during an iterative solve and if that iteration is rejected, then the file pointer is
reset to the file position that it pointed to before the iterative solve started.

If a file is being written to during an iterative solve, then the file write operations shall not be performed
unless the iteration is accepted. The exception to this is the $fdebug. If $fdebug is evaluated during an itera-
tion, the write operation shall occur even if the evaluation occurred during an iteration that was rejected.

The features of the underlying implementation of file I/O on the host system may prevent the file position
being reset after an iteration is rejected. In this case, a fatal error will be reported.

9.6 Timescale system tasks

Verilog AMS HDL does not extend the timescale tasks defined in IEEE Std 1364-2005 Verilog HDL.
229 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
9.7 Simulation control system tasks

Verilog AMS HDL extends the two simulation control tasks, $finish and $stop so that they can be run
in the analog context.

This section describes their behavior if used in the analog context.

Verilog AMS HDL also supports three new simulation control tasks in the analog context only; $fatal,
$error, $warning.

9.7.1 $finish

The syntax for this task is shown in Syntax 9-5.

finish_task ::=
$finish [(n)] ;

Syntax 9-5—Syntax for the finish_task

If $finish is called during an accepted iteration, then the simulator shall exit after the current solution is
complete. $finish called during a rejected iteration shall have no effect. As a result of the simulation ter-
minating due to a $finish task, it is expected that all appropriate final_step blocks are also triggered.
If $finish is called from an analog initial block, the simulator shall exit without performing the
simulation.

If an expression is supplied to this task, its value determines which diagnostic messages are printed after the
$finish call is executed, as shown in Table 9-25. One (1) is the default if no argument is supplied.

If $finish is called from within an analog initial block, the simulator shall report that the call was
made during initialization in place of the simulation time. If $finish is called from the analog context dur-
ing a dc sweep (but outside of an analog initial block), the simulator shall report the current value of
the swept variable in place of the simulation time.

9.7.2 $stop

The syntax for this task is shown in Syntax 9-6.

stop_task ::=
$stop [(n)] ;

Syntax 9-6—Syntax for the stop_task

Table 9-25—Diagnostic messages

Parameter Message

0 Prints nothing

1 Prints simulation time and location

2 Prints simulation time, location, and statistics about the memory and CPU time used in simulation
Copyright © 2014 Accellera Systems Initiative. 230

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
A call to $stop during an accepted iteration causes simulation to be suspended at a converged timepoint.
This task takes an optional expression argument (0, 1, or 2), which determines what type of diagnostic mes-
sage is printed. The amount of diagnostic messages output increases with the value of n, as shown in
Table 9-25. The $stop task shall not be used within an analog initial block.

The mechanism for resuming simulation is left to the implementation.

9.7.3 $fatal, $error, $warning, and $info

The syntax form for the severity system task is as follows:

assert_severity_task ::=
fatal_message_task

| nonfatal_message_task
fatal_message_task ::= $fatal [(finish_number [, message_argument { , message_argument }])] ;
nonfatal_message_task ::= severity_task [([message_argument { , message_argument] }])] ;
severity_task ::= $error | $warning | $info
finish_number ::= 0 | 1 | 2

Syntax 9-7—Assertion severity tasks

The behavior of assert severity tasks is as follows:
— $fatal shall generate a run-time fatal assertion error, which terminates the simulation with an

errorcode. The first argument passed to $fatal shall be consistent with the corresponding argument
to the Verilog $finish system task, which sets the level of diagnostic information reported by the
tool. Calling $fatal results in an implicit call to $finish.

— $error shall be a run-time error.
— $warning shall be a run-time warning, which can be suppressed in a tool-specific manner.
— $info shall indicate that the assertion failure carries no specific severity.

Non-fatal system severity tasks ($error, $warning, $info) called during a rejected iteration shall have
no effect. $fatal terminates the simulation without checking whether the iteration would be rejected.

If $fatal is executed within an analog initial block, then after outputting the message, the initial-
ization may be aborted, and in no case shall simulation proceed past initialization. Some of the system sever-
ity task calls may not be executed either. The finish_number may be used in an implementation-specific
manner.

If $error is executed within an analog initial block, then the message is issued and the initializa-
tion continues. However, the simulation shall not proceed past initialization.

The other two tasks, $warning and $info, only output their text message but do not affect the rest of the
initialization and the simulation.

For simulation tools, these tasks shall also report the simulation run time at which the severity system task is
called. If any of these tasks is called from an analog context during a dc sweep, the simulator shall report the
current value of the swept variable in place of the simulation run time. If the task is called from an analog
initial block, the simulator shall report that the call was made during initialization.
231 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Each of these system tasks can also include additional user-specified information using the same format as
the Verilog $display.

9.8 PLA modeling system tasks

Verilog AMS HDL does not extend the PLA modeling tasks defined in IEEE Std 1364-2005 Verilog HDL.

9.9 Stochastic analysis system tasks

Verilog AMS HDL does not extend the stochastic analysis tasks defined in IEEE Std 1364-2005 Verilog
HDL.

9.10 Simulator time system functions

Verilog AMS HDL extends the simulator time functions defined in IEEE Std 1364-2005 Verilog HDL as
follows;

— A new function is added called $abstime that can be used from the analog and digital contexts.
$abstime returns the absolute time, that is a real value number representing time in seconds.

NOTE—In previous versions of the Verilog-AMS LRM, $realtime was supported in the analog context and it had an
additional argument. This version of the LRM deprecates using $realtime in the analog context.

9.11 Conversion system functions

Verilog AMS HDL extends the conversion functions defined in IEEE Std 1364-2005 Verilog HDL so that
$bitstoreal and $realtobits can be used in the analog context.

9.12 Command line input

Verilog AMS HDL extends the command line input functions defined in IEEE Std 1364-2005 Verilog HDL
so that they can be used in the analog context.

9.13 Probabilistic distribution system functions

Verilog-AMS HDL extends the probabilistic distribution functions so that they are supported in the analog
context. Also, real versions of the probabilistic distribution functions are introduced. Also, real versions of
the probabilistic distribution functions are introduced as well as a special analog random system task called
$arandom.

9.13.1 $random and $arandom

This subclause describes how the $random and $arandom system functions are supported in the analog
context.

The syntax for these functions is shown in Syntax 9-8.
Copyright © 2014 Accellera Systems Initiative. 232

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
random_function ::=
$random [(random_seed)]

random seed ::=
 integer_variable_identifier

| reg_variable_identifier
| time_variable_identifier

analog_random_function ::=
$arandom [(analog_random_seed [, type_string])]

analog_random_seed ::=
 integer_variable_identifier

| reg_variable_identifier
| time_variable_identifier
| integer_parameter_identifier
| [sign] decimal_number

type_string ::=
"global"

| "instance"

Syntax 9-8—Syntax for the random_function and analog random function

he system functions $random and $arandom provide a mechanism for generating random numbers. The
random number returned is a 32-bit signed integer; it can be positive or negative. The two functions differ in
the arguments they take. $arandom is upwardly compatible with $random — $arandom can take the
same arguments as $random and has the same behavior.

The random_seed argument may take one of several forms. It may be omitted, in which case the simulator
picks a seed. If the call to $random is within the analog context, the random_seed may be an analog
integer variable. If the call to $random is within the digital context it may be a reg, integer, or
time variable. If the random_seed argument is specified it is an inout argument; that is, a value is passed
to the function and a different value is returned. The variable should be initialized by the user prior to calling
$random and only updated by the system function. The function returns a new 32-bit random number each
time it is called.

The system function $random shall always return the same stream of values given the same initial
random_seed. This facilitates debugging by making the operation of the system repeatable.

$arandom supports the seed argument analog_random_seed. The analog_random_seed argument can also
be a parameter or a constant, in which case the system function does not update the parameter value. How-
ever an internal seed is created which is assigned the initial value of the parameter or constant and the inter-
nal seed gets updated every time the call to $arandom is made. This allows the $arandom system
function to be used for parameter initialization. In order to get different random values when the
analog_random_seed argument is a parameter, the user can override the parameter using a method in 6.3.

The type_string is an additional argument that $arandom supports beyond $random. The type_string pro-
vides support for Monte-Carlo analysis and shall only by used in calls to $arandom from within a param-
set. If the type_string is "global" (or not specified in a call within a paramset), then one value is generated
for each Monte-Carlo trial. If the type_string is "instance" then one value is generated for each instance
that references this value, and a new set of values for these instances is generated for each Monte-Carlo trial.

Examples:
233 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Where b > 0, the expression ($random % b) gives a number in the following range:
[(-b+1) : (b-1)].

The following code fragment shows an example of random number generation between -59 and 59:

integer rand;
rand = $random % 60;

9.13.2 distribution functions

The section describes how the distribution functions are supported in the analog context.

The syntax for these functions are shown in Syntax 9-9.

distribution_functions ::=
$digital_dist_functions (args)

| $rdist_uniform (seed , start_expression , end_expression [, type_string])
| $rdist_normal (seed , mean_expression , standard_deviation_expression [, type_string])
| $rdist_exponential (seed , mean_expression [, type_string])
| $rdist_poisson (seed , mean_expression [, type_string])
| $rdist_chi_square (seed , degree_of_freedom_expression [, type_string])
| $rdist_t (seed , degree_of_freedom_expression [, type_string])
| $rdist_erlang (seed , k_stage_expression , mean_expression [, type_string])

seed ::=
integer_variable_identifier

| integer_parameter_identifier
| [sign] decimal_number

type_string ::=
"global"

| "instance"

Syntax 9-9—Syntax for the probabilistic distribution functions

The following rules apply to these functions.
— All arguments to the system functions are real values, except for seed (which is defined by $ran-

dom). For the $rdist_exponential, $rdist_poisson, $rdist_chi_square,
$rdist_t, and $rdist_erlang functions, the arguments mean, degree_of_freedom, and
k_stage shall be greater than zero (0). Otherwise an error shall be reported.

— Each of these functions returns a pseudo-random number whose characteristics are described by the
function name, e.g., $rdist_uniform returns random numbers uniformly distributed in the
interval specified by its arguments.

— For each system function, the seed argument shall be an integer. If it is an integer variable, then it is
an inout argument; that is, a value is passed to the function and a different value is returned. The
variable is initialized by the user and only updated by the system function. This ensures the desired
distribution is achieved upon successive calls to the system function. If the seed argument is a
parameter or constant, then the system function does not update the parameter value. However an
internal seed is created which is assigned the initial value of the parameter or constant and the inter-
nal seed gets updated every time the call to the system function is made. This allows the system
function to be used for parameter initialization.
Copyright © 2014 Accellera Systems Initiative. 234

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
— The system functions shall always return the same value given the same seed. This facilitates debug-
ging by making the operation of the system repeatable. In order to get different random values when
the seed argument is a parameter, the user can override the parameter.

— All functions return a real value.
— In $rdist_uniform, the start and end arguments are real inputs which bound the values

returned. The start value shall be smaller than the end value.
— The mean argument used by $rdist_normal, $rdist_exponential, $rdist_poisson,

and $rdist_erlang is an real input which causes the average value returned by the function to
approach the value specified.

— The standard_deviation argument used by $rdist_normal is a real input, which helps determine
the shape of the density function. Using larger numbers for standard_deviation spreads the returned
values over a wider range. Using a mean of zero (0) and a standard_deviation of one (1),
$rdist_normal generates Gaussian distribution.

— The degree_of_freedom argument used by $rdist_chi_square and $rdist_t is a real input,
which helps determine the shape of the density function. Using larger numbers for
degree_of_freedom spreads the returned values over a wider range.

— The type_string provides support for Monte-Carlo analysis and shall only by used in calls to a distri-
bution function from within a paramset. If the type_string is "global" (or not specified in a call
within a paramset), then one value is generated for each Monte-Carlo trial. If the type_string is
"instance" then one value is generated for each instance that references this value, and a new set
of values for these instances is generated for each Monte-Carlo trial. See 6.4.1 for an example.

9.13.3 Algorithm for probabilistic distribution

17.9.3 of IEEE Std 1364-2005 Verilog HDL contains the C-code to describe the algorithm of probabilistic
system functions based on the seed value passed to them.

This code also describe the algorithm of the IEEE Std 1364-2005 Verilog HDL probabilistic functions
extensions in Verilog-AMS HDL as indicated in Table 9-26.

9.14 Math system functions

Verilog-AMS HDL extends the IEEE Std 1364-2005 Verilog HDL math functions so that they can be used
from the analog context.

Table 9-26—Verilog AMS to C function cross-listingss-listing

Verilog AMS Function C function in IEEE Std 1364-2005 Verilog HDL (subclause 17.9.3)

$rdist_uniform uniform

$rdist_normal normal

$rdist_exponential exponential

$rdist_poisson poisson

$rdist_chi_square chi_square

$rdist_t t

$rdist_erlang erlang
235 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
All of these functions, except $clog2, are aliases of the analog math operators described in 4.3.1 and
Table 4-14 shows which analog math operators are aliases of which math system functions.

The system function $clog2 shall return the ceiling of the log base 2 of the argument (the log rounded up
to an integer value). $clog2 is defined more completely in IEEE Std 1364-2005 Verilog HDL.

Users are encourage to use the system function version of the math operation instead of the operator for bet-
ter compatibility with IEEE Std 1364-2005 Verilog HDL.

9.15 Analog kernel parameter system functions

Verilog AMS HDL adds a set of system functions called the analog kernel parameter functions.

The syntax for these functions are shown in Syntax 9-10.

environment_parameter_functions ::=
$temperature

| $vt [(temperature_expression)]
| $simparam (param_name [, expression])
| $simparam$str (param_name)

Syntax 9-10—Syntax for the environment parameter functions

These functions return information about the current environment parameters as a real value.

$temperature does not take any input arguments and returns the circuit’s ambient temperature in Kelvin
units.

$vt can optionally have temperature (in Kelvin units) as an input argument and returns the thermal voltage
(kT/q) at the given temperature. $vt without the optional input temperature argument returns the thermal
voltage using $temperature.

$simparam() queries the simulator for a real-valued simulation parameter named param_name. The
argument param_name is a string value, either a string literal, string parameter, or a string variable. If
param_name is known, its value is returned. If param_name is not known, and the optional expression is not
supplied, then an error is generated. If the optional expression is supplied, its value is returned if
param_name is not known and no error is generated. $simparam() shall always return a real value; simu-
lation parameters that have integer values shall be coerced to real. There is no fixed list of simulation param-
eters. However, simulators shall accept the strings in Table 9-27 to access commonly-known simulation
parameters, if they support the parameter. Simulators can also accept other strings to access the same param-
eters.

Table 9-27—Simulation real and integer parameter names

String Units Description

gdev 1/Ohms Additional conductance to be added to nonlinear branches for conduc-
tance homotopy convergence algorithm.

gmin 1/Ohms Minimum conductance placed in parallel with nonlinear branches.

imax Amps Branch current threshold above which the constitutive relation of a non-
linear branch should be linearized.
Copyright © 2014 Accellera Systems Initiative. 236

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The values returned by simulatorVersion and simulatorSubversion are at the vendor’s discretion, but the val-
ues shall be monotonically increasing for new versions or releases of the simulator, to facilitate checking
that the simulator supports features that were added in a certain version or sub-version.

Examples:

In this first example, the variable gmin is set to the simulator’s parameter named gmin, if it exists, other-
wise, an error is generated.

gmin = $simparam("gmin");

In this second example, the variable sourcescale is set to the simulator’s parameter named sourceS-
caleFactor, if it exists, otherwise, the value 1.0 is returned.

sourcescale = $simparam("sourceScaleFactor", 1.0);

$simparam$str is similar to $simparam. However it is used for returning string-valued simulation
parameters. Table 9-28 gives a list of simulation string parameter names that shall be supported by $sim-
param$str.

Example:

imelt Amps Branch current threshold indicating device failure.

iteration Iteration number of the analog solver.

scale Scale factor for device instance geometry parameters.

shrink Optical linear shrink factor.

simulatorSubversion The simulator sub-version.

simulatorVersion The simulator version.

sourceScaleFactor Multiplicative factor for independent sources for source stepping homo-
topy convergence algorithm.

tnom Celsius Default value of temperature at which model parameters were extracted.

timeUnit s Time unit as specified in ‘timescale in seconds.

timePrecision s Time precision as specified in ‘timescale in seconds.

Table 9-28—Simulation string parameter names

String Description

analysis_name The name of the current analysis e.g. tran1, mydc

analysis_type The type of the current analysis e.g. dc, tran, ac

cwd The current working directory in which the simulator was started

module The name of the module from which $simparam$str is called.

instance The hierarchical name of the instance from which $simparam$str is called.

path The hierarchical path to the $simparam$str function.

Table 9-27—Simulation real and integer parameter names (continued)
237 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
module testbench;
dut dut1;

endmodule
module dut;

task mytask;
$display("%s\n%s\n%s\n", $simparam$str("module"),

 $simparam$str("instance"),
 $simparam$str("path"));

endtask
endmodule

produces
dut
testbench.dut1
testbench.dut1.mytask

9.16 Dynamic simulation probe function

Verilog-AMS HDL supports a system function that allows the probing of values within a sibling instance
during simulation.

dynamic_monitor_function ::=
$simprobe (inst_name , param_name [, expression])

Syntax 9-11—Syntax for the dynamic monitor function

$simprobe() queries the simulator for an output variable named param_name in a sibling instance called
inst_name. The arguments inst_name and param_name are string values, either a string literal, string param-
eter, or a string variable. To resolve the value, the simulator will look for an instance called inst_name in the
parent of the current instance i.e. a sibling of the instance containing the $simprobe() expression. Once
the instance is resolved, it will then query that instance for an output variable called param_name. If either
the inst_name or param_name cannot be resolved, and the optional expression is not supplied, then an error
shall be generated. If the optional expression is supplied, its value will be returned in lieu of raising an error.
The intended use of this function is to allow dynamic monitoring of instance quantities.

Example:

module monitor;
parameter string inst = "default";
parameter string quant = "default";
parameter real threshold = 0.0;
real probe;
analog begin

probe = $simprobe(inst,quant);
if (probe > threshold) begin

$strobe("ERROR: Time %e: %s#%s (%g) > threshold (%e)",
$abstime, inst,quant, probe, threshold);

$finish;
end

end
endmodule

The module monitor will probe the quant in instance inst. If its value becomes larger than threshold,
then the simulation will raise an error and stop.
Copyright © 2014 Accellera Systems Initiative. 238

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

module top(d,g,s);

electrical d,g,s;
inout d,g,s;
electrical gnd; ground gnd;
SPICE_pmos #(.w(4u),.l(0.1u),.ad(4p),.as(4p),.pd(10u),.ps(10u))

mp(d,g,s,s);
SPICE_nmos #(.w(2u),.l(0.1u),.ad(2p),.as(2p),.pd(6u),.ps(6u))

mn(d,g,gnd,gnd);
monitor #(.inst("mn"),.quant("id"),.threshold(4.0e-3))

amonitor();
endmodule

Here the monitor instance amonitor will keep track of the dynamic quantity id in the mosfet instance mn.
If the value of id goes above the specified threshold of 4.0e-3 amps then instance amonitor will generate
the error message and stop the simulation.

9.17 Analog kernel control system tasks and functions

Verilog AMS HDL adds a set of tasks and functions to control the analog solver’s behavior on a signals and
instances called the analog kernel control tasks.

9.17.1 $discontinuity

The $discontinuity task is used to give hints to the simulator about the behavior of the module so the
simulator can control its simulation algorithms to get accurate results in exceptional situations. This task
does not directly specify the behavior of the module. $discontinuity shall be executed whenever the
analog behavior changes discontinuously.

The general form is

$discontinuity [(constant_expression)];

where constant_expression indicates the degree of the discontinuity if the argument to $discontinuity
is non-negative, i.e. $discontinuity(i) implies a discontinuity in the i’th derivative of the constitutive
equation with respect to either a signal value or time where i must be a non-negative integer. Hence, $dis-
continuity(0) indicates a discontinuity in the equation, $discontinuity(1) indicates a discontinuity
in its slope, etc. A special form of the $discontinuity task, $discontinuity(-1), is used with the
$limit() function so -1 is also a valid argument of $discontinuity. See 9.17.3 for an explanation.

Because discontinuous behavior can cause convergence problems, discontinuity shall be avoided whenever
possible.

The filter functions (transition(), slew(), laplace(), etc.) can be used to smooth discontinuous
behavior. However, in some cases it is not possible to implement the desired functionality using these filters.
In those cases, the $discontinuity task shall be executed when the signal behavior changes abruptly.

Discontinuity created by switch branches and filters, such as transition() and slew(), does not need
to be announced.

The following example uses the discontinuity task to model a relay.

module relay (c1, c2, pin, nin) ;
inout c1, c2 ;
input pin, nin ;
239 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
electrical c1, c2, pin, nin ;
parameter real r=1 ;
analog begin

@(cross(V(pin,nin))) $discontinuity ;
if (V(pin,nin) >= 0)

I(c1,c2) <+ V(c1,c2)/r;
else

I(c1,c2) <+ 0 ;
end

endmodule

In this example, cross() controls the time step so the time when the relay changes position is accurately
resolved. It also triggers the $discontinuity task, which causes the simulator to react properly to the
discontinuity. This would have been handled automatically if the type of the branch (c1,c2) had been
switched between voltage and current.

Another example is a source which generates a triangular wave. In this case, neither the model nor the wave-
forms generated by the model are discontinuous. Rather, the waveform generated is piecewise linear with
discontinuous slope. If the simulator is aware of the abrupt change in slope, it can adapt to eliminate prob-
lems resulting from the discontinuous slope (typically changing to a first order integration method).

module triangle(out);
output out;
voltage out;
parameter real period = 10.0, amplitude = 1.0;
integer slope;
real offset;

analog begin
@(timer(0, period)) begin

slope = +1;
offset = $abstime ;
$discontinuity;

end

@(timer(period/2, period)) begin
slope = -1 ;
offset = $abstime;
$discontinuity ;

end

V(out) <+ amplitude*slope*
(4*($abstime - offset)/period - 1);

end
endmodule

9.17.2 $bound_step task

The $bound_step() task puts a bound on the next time step. It does not specify exactly what the next
time step is, but it bounds how far the next time point can be from the present time point. The task takes the
maximum time step as an argument. It does not return a value.

The general form is

$bound_step (expression) ;
Copyright © 2014 Accellera Systems Initiative. 240

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
where expression is a required argument and represents the maximum timestep the simulator can advance.
The expression argument shall be non-negative. If the value is less than the simulator’s minimum allowable
time step, the simulator’s minimum time step shall be used instead. Refer to the simulator’s documentation
for further information regarding limits on step size for time dependent analysis.

For a given time step, the simulator shall ensure that the next time step taken is no larger than the smallest
$bound_step() argument currently active. The $bound_step() statement shall be ignored during a non
time-domain analysis.

The example below implements a sinusoidal voltage source and uses the $bound_step() task to assure
the simulator faithfully follows the output signal (it is forcing 20 points per cycle).

module vsine(out);
output out;
voltage out;
parameter real freq=1.0, ampl=1.0, offset=0.0;

analog begin
V(out) <+ ampl*sin(2.0*‘M_PI*freq*$abstime) + offset;
$bound_step(0.05/freq);

end
endmodule

9.17.3 $limit

Other nonlinearities besides the exponential are present in semiconductor device compact models. The
$limit() function provides a method to indicate these nonlinearities to the simulator and, if necessary,
recommend a function to use to limit the change of its output from iteration to iteration. Syntax 9-12 shows
the methods of using the $limit() function.

limit_call ::=
$limit (access_function_reference)

| $limit (access_function_reference , string, arg_list)
| $limit (access_function_reference , analog_function_identifier , arg_list)

Syntax 9-12—Syntax for $limit()

When the simulator has converged, the return value of the $limit() function is the value of the access
function reference, within appropriate tolerances. For some analysis types or solution methods, such as
damped Newton-Raphson, the return value of the $limit() function may depend on the value of the
access function and internal state of the function. In all cases, the simulator is responsible for determining if
limiting should be applied and what the return value is on a given iteration.

When more than one argument is supplied to the $limit() function, the second argument recommends a
function to use to compute the return value. When the second argument is a string, it refers to a built-in func-
tion of the simulator. The two most common such functions are pnjlim and fetlim, which are found in SPICE
and many SPICE-like simulators. Simulators may support other built-in functions and need not support
pnjlim or fetlim. If the string refers to an unknown or unsupported function, the simulator is responsible for
determining the appropriate limiting algorithm, just as if no string had been supplied.

pnjlim is intended for limiting arguments to exponentials, and the limexp() function of 4.5.13 may be
implemented through a function derived from pnjlim. Two additional arguments to the $limit() function
241 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
are required when the second argument to the limit function is the string “pnjlim”: the third argument to
$limit() indicates a step size vte and the fourth argument is a critical voltage vcrit. The step size vte
is usually the product of the thermal voltage $vt and the emission coefficient of the junction. The critical
voltage is generally obtained from the formula , where is the saturation
current of the junction.

fetlim is intended for limiting the potential across the oxide of a MOS transistor. One additional argument to
the $limit() function is required when the second argument to the limit function is the string "fetlim":
the third argument to $limit() is generally the threshold voltage of the MOS transistor.

In the case that none of the built-in functions of the simulator is appropriate for limiting the potential (or
flow) used in a nonlinear equation, the second argument of the $limit() function may be an identifier
referring to a user-defined analog function. User-defined functions are described in 4.7. In this case, if the
simulator determines that limiting is needed to improve convergence, it will pass the following quantities as
arguments to the user-defined function:

— The first argument of the user-defined function shall be the value of the access function reference for
the current iteration.

— The second argument shall be the appropriate internal state; generally, this is the value that was
returned by the $limit() function on the previous iteration.

— If more than two arguments are given to the $limit() function, then the third and subsequent
arguments are passed as the third and subsequent arguments of the user-defined function.

The arguments of the user-defined function shall all be declared input.

In order to prevent convergence when the output of the $limit() function is not sufficiently close to the
value of the access function reference, the user-defined function shall call $discontinuity(-1) (see
9.17) when its return value is not sufficiently close to the value of its first argument.

The module below defines a diode and includes an analog function that mimics the behavior of pnjlim in
SPICE. Though limexp() could have been used for the exponential in the current, using $limit()
allows the same voltage to be used in the charge calculation.

module diode(a,c);
inout a, c;
electrical a, c;
parameter real IS = 1.0e-14;
parameter real CJO = 0.0;
analog function real spicepnjlim;

input vnew, vold, vt, vcrit;
real vnew, vold, vt, vcrit, vlimit, arg;
begin

vlimit=vnew;
if ((vnew > vcrit) && (abs(vnew-vold) > (vt+vt))) begin

if (vold > 0) begin
arg = 1 + (vnew-vold) / vt;
if (arg > 0)

vlimit = vold + vt * ln(arg);
else

vlimit = vcrit;
end else

vlimit = vt * ln(vnew/vt);
$discontinuity(-1);

end
spicepnjlim = vlimit;

end

Vcrit vte vte 2 Is⋅()⁄()ln⋅= Is
Copyright © 2014 Accellera Systems Initiative. 242

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
endfunction
real vdio, idio, qdio, vcrit;
analog begin

vcrit=0.7;
vdio = $limit(V(a,c), spicepnjlim, $vt, vcrit);
idio = IS * (exp(vdio/$vt) - 1);
I(a,c) <+ idio;
if (vdio < 0.5) begin

qdio = 0.5 * CJO * (1-sqrt(1-V(a,c)));
end else begin

qdio = CJO* (2.0*(1.0-sqrt(0.5))
+ sqrt(2.0)/2.0*(vdio*vdio+vdio-3.0/4.0));

end
I(a,c) <+ ddt(qdio);

end
endmodule

9.18 Hierarchical parameter system functions

Verilog AMS HDL adds system functions that can return hierarchically inherited values in a particular
instance.

The syntax for these functions are shown in Syntax 9-13.

hierarchical_parameter_system_functions ::=
$mfactor

| $xposition
| $yposition
| $angle
| $hflip
| $vflip

Syntax 9-13—Syntax for the hierarchical parameter system functions

These functions return hierarchical information about the instance of a module or paramset. Subclause 6.3.6
discusses how these parameters are specified for an instance, as well as the automatic rules applied to
instances with a non-unity value of $mfactor. The remaining hierarchical system parameters do not have
any automatic effect on the simulation.

$mfactor is the shunt multiplicity factor of the instance, that is, the number of identical devices that
should be combined in parallel and modeled.

$xposition and $yposition are the offsets, in meters, of the location of the center of the instance.

$hflip and $vflip are used to indicate that the instance has been mirrored about its center, and $angle
indicates that the instance has been rotated some number of degrees in the counter-clockwise directions.

Hierarchical parameter system functions can also be used as targets in parameter alias declarations (see
3.4.7)

The value returned for each of these functions is computed by combining values from the top of the hierar-
chy down to the instance making the function call. The rules for combining the values are given in
Table 9-29. The top-level value is the starting value at the top of the hierarchy. If a module is instantiated
243 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
without specifying a value of one of these system parameters (using any of the methods in 6.3), then the
value of that system parameter will be unchanged from the instantiating module. If a value is specified, then
it is combined with the value from the instantiating module according to the appropriate rule from
Table 9-29: the subscript “specified” indicates the value specified for the instance, and the subscript “hier”
indicates the value obtained by traversing the hierarchy from the top to the instantiating module.

For example, when a module makes a call to $mfactor, the simulator computes the product of the multi-
plicity factor specified for the instance (or 1.0, if no override was specified) times the value for the parent
module that instantiated the module, times the parent’s parent’s value, and so on, until the top level is
reached.

Note that $angle is specified and returned in degrees, but the trigonometric functions of 4.3.2 operate in
radians.

Example 1

module test_module(p,n);
inout p,n;
electrical p,n;
module_a A1(p,n);

endmodule

module module_a(p,n);
inout p,n;
electrical p,n;
module_b #(.$mfactor(2)) B1(p,n); // mfactor = 3 * 2

endmodule

module module_b(p,n);
inout p,n;
electrical p,n;
module_c #(.$mfactor(7)) C1(p,n); // mfactor = 3 * 2 * 7 = 42

endmodule

// linear resistor
module module_c(p,n);

inout p,n;

Table 9-29— Hierarchical parameter values

System
parameter

Top-level
value Resolved value for instance Allowed values

$angle 0 degrees $anglespecified + $anglehier,
modulo 360 degrees

0 ≤ $angle < 360

$hflip +1 $hflipspecified * $hfliphier $hflip = +1 or -1

$mfactor 1.0 $mfactorspecified * $mfactorhier $mfactor > 0

$vflip +1 $vflipspecified * $vfliphier $vflip = +1 or -1

$xposition 0.0 m $xpositionspecified +
$xpositionhier

Any

$yposition 0.0 m $ypositionspecified +
$ypositionhier

Any
Copyright © 2014 Accellera Systems Initiative. 244

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
electrical p,n;
parameter r=1.0;
(* desc = "effective resistance" *) real reff;
analog begin

I(p,n) <+ V(p,n)/r; // mfactor scaling of currents
// handled automatically

reff = r / $mfactor; // the effective resistance = 1/42
end

endmodule

shows how the effect mfactor of an instance, test_module.A1.B1.C1 of a linear resistance is determined.

Example 2

module test_module(p,n);
inout p,n;
electrical p,n;
module_a A1(p,n);

endmodule

module module_a(p,n);
inout p,n;
electrical p,n;
module_b #(.$xposition(1u)) B1(p,n); // xposition=1.1u + 1u

endmodule

module module_b(p,n);
inout p,n;
electrical p,n;
module_c #(.$xposition(2u)) C1(p,n); // xposition=1.1u + 1u + 2u = 4.1u

endmodule

// linear resistor
module module_c(p,n);

inout p,n;
electrical p,n;
parameter r=1.0;
analog begin

// Expected value of xposition=4.1e-6
if ($xposition == 4.1u)

I(p,n) <+ V(p,n)/1.0;
else

I(p,n) <+ V(p,n)/2.0;
end

endmodule

9.19 Explicit binding detection system functions

Verilog AMS HDL adds functions that can be used to check whether a parameter or port binding was explic-
itly made.

The behavioral code of a module can depend on the way in which it was instantiated. The hierarchy detec-
tion functions shown in Syntax 9-14 may be used to determine information about the instantiation.

genvar_system_function ::=
$param_given (module_parameter_identifier)
245 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
| $port_connected (port_scalar_expression)

Syntax 9-14—Syntax for the hierarchy detection functions

Note that the return values of these functions shall be constant during a simulation; the value is fixed during
elaboration. As such, these functions can be used in genvar expressions controlling conditional or looping
behavior of the analog operators of 4.5.

The $param_given() function can be used to determine whether a parameter value was obtained from
the default value in its declaration statement or if that value was overridden. The $param_given() func-
tion takes a single argument, which must be a parameter identifier. The return value shall be one (1) if the
parameter was overridden, either by a defparam statement or by a module instance parameter value
assignment, and zero (0) otherwise.

The following example sets the variable temp to represent the device temperature. Note that $tempera-
ture is not a constant_expression, so it cannot be used as the default value of the parameter tdevice. It is
important to be able to distinguish the case where tdevice has its default value (say, 27) from the declara-
tion statement from the case where the value 27 was in fact specified as an override, if the simulation is per-
formed at a different temperature.

if ($param_given(tdevice))
temp = tdevice + ‘P_CELSIUS0;

else
temp = $temperature;

Module ports need not be connected when the module is instantiated. The $port_connected() function
can be used to determine whether a connection was specified for a port. The $port_connected() func-
tion takes one argument, which must be a port identifier. The return value shall be one (1) if the port was
connected to a net (by order or by name) when the module was instantiated, and zero (0) otherwise. Note
that the port may be connected to a net that has no other connections, but $port_connected() shall still
return one.

In the following example, $port_connected() is used to skip the transition filter for uncon-
nected nodes. In module twoclk, the instances of myclk only have connections for their vout_q ports, and
thus the filter for vout_qbar is not implemented for either instance. In module top, the vout_q2 port is
not connected, so that the vout_q port of topclk1.clk2 is not ultimately used in the circuit; however, the
filter for vout_q of clk2 is implemented, because it vout_q is connected on clk2’s instantiation line.

module myclk(vout_q, vout_qbar);
output vout_q, vout_qbar;
electrical vout_q, vout_qbar;
parameter real tdel = 3u from [0:inf);
parameter real trise = 1u from (0:inf);
parameter real tfall = 1u from (0:inf);
parameter real period = 20u from (0:inf);
integer q;
analog begin

@ (timer(0, period))
q = 0;

@ (timer(period/2, period))
q = 1;

if ($port_connected(vout_q))
V(vout_q) <+ transition(q, tdel, trise, tfall);

else
V(vout_q) <+ 0.0;
Copyright © 2014 Accellera Systems Initiative. 246

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
if ($port_connected(vout_qbar))
V(vout_qbar) <+ transition(!q, tdel, trise, tfall);

else
V(vout_qbar) <+ 0.0;

end
endmodule

module twoclk(vout_q1, vout_q2);
output vout_q1, vout_q2;
electrical vout_q1, vout_q1b;
myclk clk1(.vout_q(vout_q1));
myclk clk2(.vout_q(vout_q2));

endmodule

module top(clk_out);
output clk_out;
electrical clk_out;
twoclk topclk1(.vout_q1(clk_out));

endmodule

9.20 Analog node alias system functions

Verilog-AMS HDL adds system functions that allows a local node to be aliased to a hierarchical node via a
string reference. The node alias system functions are shown in Syntax 9-15.

analog_node_alias_system_function ::=
$analog_node_alias (analog_net_reference , hierarchical_reference_string)

| $analog_port_alias (analog_net_reference , hierarchical_reference_string)

Syntax 9-15—Syntax for the analog node alias system functions

Both system functions take two arguments. The analog_net_reference shall be either a scalar or vector con-
tinuous node declared in the module containing the system function call. If the analog_net_reference is a
vector node, it shall reference the full vector node, it shall be an error for it to be a bit select or part select of
a vector node. It shall be an error for the analog_net_reference to be a port or to be involved in port connec-
tions.

The hierarchical_reference_string shall be a constant string value (string literal or string parameter) con-
taining a hierarchical reference to a continuous node. It shall be an error for the
hierarchical_reference_string to reference a node that is used as an analog_net_reference in another
$analog_node_alias() or $analog_port_alias() system function call. The
hierarchical_reference_string shall follow the resolution rules for hierarchical references as described in
6.7.

It shall be an error for the $analog_node_alias() and $analog_port_alias() system functions
to be used outside the analog initial block. Along with their enclosing analog initial block
scopes, both system functions shall be re-evaluated each sweep point of a dc sweep as needed (see 5.2.1 and
8.2 for details).

The $analog_node_alias() and $analog_port_alias() system functions shall not be used
inside conditional (if, case, or ?:) statements unless the conditional expression controlling the statement
consists of terms which can not change during the course of a simulation.
247 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The return value for both system functions shall be one (1) if the hierarchical_reference_string points to a
valid continuous node and zero (0) otherwise. If the hierarchical_reference_string references a valid contin-
uous node, then the analog_net_reference will be aliased to that hierarchical node and shall refer to the same
circuit matrix position.

If the return value is zero (0), then the node referenced by the analog_net_reference shall be treated as a nor-
mal continuous node declared in the module containing the system function call. As such, the user is encour-
aged to check the return value from the system function call and to take necessary steps to avoid runtime
topology issues like a singular matrix.

In addition, a node that is aliased to a valid hierarchical port reference via the $analog_port_alias()
function shall be allowed as an input to the port access function (see 5.4.3) and shall measure the flow
through the port of the instance referred to by the hierarchical reference.

If a particular node is involved in multiple calls to either system function, then the last evaluated call shall
take precedence.

The following rules shall be applied to determine whether the node or port referenced by the hierarchical_
reference_string is considered valid. If any of these rules are violated then the system function shall return a
value of zero (0).

— The hierarchical_reference_string shall refer to a scalar continuous node or a scalar element of a
continuous vector node

— The discipline of the analog_net_reference and the resolved hierarchical node reference shall be
compatible (see 3.11)

— For the $analog_port_alias() system function, the resolved hierarchical node reference
shall be a port
Copyright © 2014 Accellera Systems Initiative. 248

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
An example showing the use of these two system functions is as follows:

module top;
electrical a, b, c, gnd;
ground gnd;
resistor #(.r(1k)) r1(.p(a), .n(gnd));
checker #(.n1_str("top.a")) ch1();
analog V(a,gnd) <+ 5;

endmodule

module checker;
electrical n1, n2;
parameter string n1_str = "(not_given)";
integer status;
real iprobe, vprobe;
analog initial begin

// node n1 will be aliased to top.gnd
status = $analog_node_alias(n1, "top.gnd");

// Invalid alias as top.a is not a port. Node n2 at this stage
// is still just a local node in ch1(). The integer status will
// be assigned a value of 0.
status = $analog_port_alias(n2, "$root.top.a");

// even though n1 was assigned a valid alias to top.gnd, this
// one to top.a will take precedence.
status = $analog_node_alias(n1, n1_str);

// Here n2 is now successfully aliased to the port p in instance r1.
status = $analog_port_alias(n2, "top.r1.p");

end
analog begin

// since n2 is aliased to the port p of instance top.r1
// we are allowed to probe the port current. In this case,
// the probe will return a value of 5mA.
iprobe = I(<n2>);

// since n1 is aliased to the node top.a, we will be
// probing the potential of that node. In this case,
// the probe will return a value of 5V.
vprobe = V(n1);

end
endmodule

9.21 Table based interpolation and lookup system function

Verilog-AMS HDL provides a multidimensional interpolation and lookup function called
$table_model. The function is designed to operate specifically on multidimensional data in a form that
is commonly generated via parametric sweeping schemes available in most analog simulators. This type of
data is generated when simulating a system while varying (sweeping) a parameter across some range. Data
dimensionality increases when parameter sweeps are nested. While the samples are those of a multidimen-
sional function, sample generation via parametric sweeping leads to a simple recursive interpolation and
extrapolation process defined by the $table_model function.

A typical example will help to explain the process. A user may wish to create a data based model of some
function f(x,y) over some range of x and y and use that data as the basis of a behavioral model described in
Verilog-AMS.
249 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Figure 9-1: Samples on isolines

We can say that f(x,y) is sampled on a set of isolines. An isoline for each value of y is generated when y is
held constant and x is varied across a desired range. Each isoline may exist over a different range of x values
and the number and spacing of samples may be different on each isoline.

When describing the sampled set, x and y are called independent variables and f(x,y) is called the dependent
variable. The sampling scheme also introduces the concept of an innermost and outermost dimension. In this
example, x is the fastest changing or innermost dimension associated with the sampled function f(x,y) and y
is the slowest changing or outermost dimension.

Understanding that the underlying multidimensional function is sampled on a set of isolines, we can now
describe a simple recursive process to interpolate, extrapolate, or perform lookup on this sampled function.

Figure 9-2: Interpolation on isolines

4

3

2

1

2 4 6

y=0.0

y=1.0

y=0.5

f(x,y)

x

4

3

2

1

2 4 6

y=0.0

y=1.0

y=0.5

f(x,y)

x

x1=3.5

ylyh

f(x1,y)

y 1.00.0

y1=0.25

y

2.75

1.75

f(x1,y1)=2.0
Copyright © 2014 Accellera Systems Initiative. 250

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Using the above example let us assume the user requests a value for the lookup pair (x1,y1). We first look
through the set of isolines in y and find the pair that bracket y1. Now for each isoline in y we find the two
points that bracket x1 and interpolate each isoline to find f(x1,yh) and f(x1,yl). Having thus generated an iso-
line in y for the point x1 in x, we may interpolate this isoline to find the value f(x1,y1). If the lookup point
falls off the end of any given isoline then we extrapolate its value on that isoline.

As a consequence of this algorithm, the interpolation and extrapolation schemes always operate in a single
dimension analogous to how the data was originally generated, so the interpolation and extrapolation
schemes used may be specified on a per dimension basis.

The minimum data requirement is to have the product of at least two points per dimension (2N for N dimen-
sions). In addition, the result of the bracketing to produce intermediate points (as per Figure 9-2 and descrip-
tion above) must also produce at least two points per subsequent lower dimension. Within the data set, each
point shall be distinct in terms of its independent variable values. If there are two or more data points with
the same independent and dependent values, then the duplicates shall be ignored and the tool may generate a
warning. If there are two or more data points with the same independent values but different dependent val-
ues then an error is generated.

The $table_model function defines a format to represent the isolines of multidimensional data and a set
of interpolation schemes that we need only define for single dimensional data. The data may be stored in a
file or as a sequence of one-dimension arrays or a single two-dimensional array.

The interpolation schemes are closest point (discrete) lookup, linear, quadratic splines, and cubic splines.
Extrapolation may be specified as being constant, linear, or error (meaning if extrapolation occurs the sys-
tem should error out).

The lookup variables, (x1, y1) in the example above (table_inputs in Syntax 9-16) may be any legal
expression that can be assigned to an analog signal.

The syntax for the $table_model function is shown in Syntax 9-16.

table_model_function ::=
$table_model (table_inputs , table_data_source [, table_control_string])

table_inputs ::=
expression [, 2nd_dim_expression [, nth_dim_expression]]

table_data_source ::=
file_name | table_model_array

file_name ::=
string_literal | string_parameter

table_model_array ::=
1st_dim_array_identifier [, 2nd_dim_array_identifier [, nth_dim_array_identifier]],
output_array_identifier

table_control_string::=
"[interp_control[;dependent_selector]]"

interp_control::=
1st_dim_table_ctrl_substr_or_null [, 2nd_dim_table_ctrl_substr_or_null [,

nth_dim_table_ctrl_substr_or_null]]
dependent_selector::=

integer
table_ctrl_substr ::=

[table_interp_char][table_extrap_char [higher_table_extrap_char]]
251 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
table_interp_char ::=
I | D | 1 | 2 | 3

table_extrap_char ::=
C | L | E

Syntax 9-16—Syntax for table model function

9.21.1 Table data source

table_data_source specifies the data source, samples of a multidimensional function arranged on isolines.
The data is specified as columns in a text file or as a set of arrays (hence the name table model). In either
case the layout is conceptually the same.

A table of M dependent variables of dimension N are laid out in N+M columns in the file, with the indepen-
dent variables appearing in the first N columns followed by the dependent variables in the remaining M col-
umns. The independent variables are ordered from the outermost (slowest changing) variable to the
innermost (fastest changing) variable. Though an isoline ordinate does not change for a given isoline, in this
scheme the ordinate is repeated for each point of that isoline (thus keeping the input data as a set of data
rows all with the same number of points). The result is a sequential listing of each isoline with the total num-
ber of points in the listing being equal to the total number of samples on all isolines.

Again, the above example described via samples will help illustrate the layout. The function being described
is

f(x,y)=0.5x + y

f(x,y) is the only dependent variable we consider in this case, and there are three isolines for values of y 0.0,
0.5 and 1.0; x is sampled at various points on each of the three isolines.

2-D table model sample example
#
y x f(x,y)
#y=0 isoline

0.0 1.0 0.5
0.0 2.0 1.0
0.0 3.0 1.5
0.0 4.0 2.0
0.0 5.0 2.5
0.0 6.0 3.0

#y=0.5 isoline
0.5 1.0 1.0
0.5 3.0 2.0
0.5 5.0 3.0

#y=1.0 isoline
1.0 1.0 1.5
1.0 2.0 2.0
1.0 4.0 3.0

As can be seen here, the slowly changing outer independent variable appears to the left while the rapidly
changing inner independent variable appears to the right; isoline ordinates are repeated for each sample on a
given isoline.

Each sample point is separated by a newline and each column is separated by one or more spaces or tabs.
Comments begin with ‘#’ and continue to the end of that line. They may appear anywhere in the file. Blank
lines are ignored. The numbers shall be real or integer.
Copyright © 2014 Accellera Systems Initiative. 252

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
When the data source is a sequence of 1-D arrays the isolines are laid out in conceptually the same way with
each array being just as a column in the file format described above. Arrays may be specified directly via the
concatenation operator or via array variable names.

The state of the data source is captured on the first call to the table model function. Any change after this
point is ignored.

While it is suggested that the user arrange the sampled isolines in sorted order (one isoline following another
in all dimensions); if the user provides the data in random order the system will sort the data into isolines in
each dimension. Whether the data is sorted or not, the system determines the isoline ordinate by reading its
exact value from the file or array. Any noise on the isoline ordinate may cause the system to incorrectly gen-
erate multiple isolines where the user intended a single isoline.

The input example above illustrated the isoline format for a single two-dimensional function (or dependent
variable). The file may contain multiple dependent variables, all sharing the same set of isoline samples. A
column in the data source may also be marked as ignore. These and all interpolation control settings are pro-
vided via the interpolation control string.

9.21.2 Control string

The control string is used to specify how the $table_model function should interpolate or lookup the
data in each dimension and how it should extrapolate at the boundaries of each dimension. It also provides
for some control on how to treat columns of the input data source. The string consists of a set of comma sep-
arated sub-strings followed by a semicolon and the dependent selector. The first group of sub-strings pro-
vide control over each independent variable with the first sub-string applying to the outermost dimension
and so on. The dependent variable selector is a column number allowing us to specify which dependent vari-
able in the data source we wish to interpolate. This number runs 1 though M with M being the total number
of dependent variables specified in the data source.

Each sub-string associated with interpolation control has at most 3 characters. The first character controls
interpolation and obeys Table 9-30.

Table 9-30—Interpolation control character

Control
character Description

I Ignore this input column

D Closest point (discrete) lookup

1 Linear interpolation (default)

2 Quadratic spline interpolation

3 Cubic spline interpolation
253 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The remaining character(s) in the sub-string specify the extrapolation behavior.

The constant extrapolation method returns the table endpoint value. Linear extrapolation extends linearly to
the requested point from the endpoint using a slope consistent with the selected interpolation method. The
user may also disable extrapolation by choosing the error extrapolation method. With this method, an
extrapolation error is reported if the $table_model function is requested to evaluate a point beyond the
interpolation region.

For each dimension, users may use up to 2 extrapolation method characters to specify the extrapolation
method used for each end. When no extrapolation method character is given, the linear extrapolation method
will be used for both ends as default. Error extrapolation results in a fatal error being raised. When one
extrapolation method character is given, the specified extrapolation method will be used for both ends.
When two extrapolation method characters are given, the first character specifies the extrapolation method
used for the end with the lower coordinate value, and the second character is used for the end with the higher
coordinate value.

Table 9-31—Extrapolation control character

Control
character Description

C Constant extrapolation

L Linear extrapolation (default)

E Error on an extrapolation request
Copyright © 2014 Accellera Systems Initiative. 254

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
9.21.3 Example control strings

9.21.4 Interpolation algorithms

The closest point lookup algorithm returns the closest point in the specified dimension. When the lookup
ordinate is equidistant from two bracketing samples the function snaps away from zero.

The linear interpolation algorithm provides a simple linear interpolation between the closest sample points
on a given isoline. Cubic spline interpolation1 generates a spline for each isoline being interpolated. The
extrapolation option specified is taken into account when generating the spline coefficients so as to avoid
end point discontinuities in the first order derivative of the interpolated function.

When formulating the cubic spline equations the desired derivative of the interpolation function at both end
points must be specified in order to provide the complete set of constraints for the cubic spline equations. It
is convenient then that the table model function specifies end point extrapolation behavior. If the user selects
linear extrapolation this leads to a natural spline. If constant extrapolation is specified the end point deriva-
tive is set to zero thus avoiding a discontinuity in the first order derivative at that end point.

Quadratic splines are similar to cubic splines, offering more efficient evaluation with generally less favor-
able interpolation results. Again one should attempt to avoid end point discontinuities, though it is not
always possible in this case.

As a general rule cubic splines are best applied to smoothly varying samples (such as the DC I-V character-
istic of a diode) while linear interpolation is a better option for data with abrupt transitions (such as a tran-
sient pulsed waveform).

Table 9-32—Example control strings

Control string Description

"" or control
string omitted

Null string, default linear interpolation and extrapolation. Dimensional-
ity of the data is assumed to be N. Column N+1 is taken as the depen-
dent.

"1L,1L" Data is 2-D, linear interpolation and extrapolation in both dimensions.

"1LL,1LL" Same as above, extrapolation method specified for both ends in each
dimension.

"1LL,1LL;1" Same as above, dependent variable 1 is specified. This is the default
behavior when there are multiple dependent variables in the file and
there is no dependent variable selector specified in the control string

"D,1,3" Closest point lookup in the outer dimension, linear interpolation on
dimension two and cubic spline interpolation on the inner dimension.

"I,1CC,1CC;3" Ignore column 1, linear interpolation and constant extrapolation in all
dimensions, interpolation applies to dependent variable 3. There are at
least 6 column in the data file.

"3,D,I,1;3" Cubic spline interpolation in dimension 3, (column 1), closest lookup in
dimension 2 (column 2), ignore column 3, and use linear interpolation on
the innermost dimension (dimension 1, column 4). Interpolate dependent
variable 3 (column 7). This file has at least 7 columns.

“C,,3” Data is 3D, equivalent to “1CC, 1LL, 3LL”.

1Numerical Methods in Scientific Computing, Germund Dahlquist and Åke Björck.
255 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
9.21.5 Example

A simple call to the $table_model function is illustrated using the two dimensional sample set given in
the above plots and tables. Let’s first assume this data is stored in a file called sample.dat. The data is two
dimensional with a single dependent variable. The independent variables were named x and y above. y is the
outermost independent variable in the sample set while x is the innermost independent variable.

module example_tb(a, b);
electrical a, b;
inout a, b;
analog begin

I(a, b) <+ $table_model(0.0, V(a,b),"sample.dat");
end

endmodule

This instance specifies zero for y and uses a module potential to interpolate x. No control string is specified
and so the function defaults to performing linear interpolation and linear extrapolation in both dimensions.

It is possible to specify how to perform the interpolation via the control string:

I(a, b) <+ $table_model(0.0, V(a,b),"sample.dat", "1LL,3LL");

Linear interpolation and extrapolation are specified in y and cubic interpolation with linear extrapolation in
x.

The data source may also be specified as an array.

module example_tb(a, b);
electrical a, b;
inout a, b;
real y[0:11], x[0:11],f_xy[0:11];
analog begin

@(initial_step) begin
// y=0.0 isoline
y[0] =0.0; x[0] =1.0; f_xy[0] =0.5;
y[1] =0.0; x[1] =2.0; f_xy[1] =1.0;
y[2] =0.0; x[2] =3.0; f_xy[2] =1.5;
y[3] =0.0; x[3] =4.0; f_xy[3] =2.0;
y[4] =0.0; x[4] =5.0; f_xy[4] =2.5;
y[5] =0.0; x[5] =6.0; f_xy[5] =3.0;
// y=0.5 isoline
y[6] =0.5; x[6] =1.0; f_xy[6] =1.0;
y[7] =0.5; x[7] =3.0; f_xy[7] =2.0;
y[8] =0.5; x[8] =5.0; f_xy[8] =3.0;
// y=1.0 isoline
y[9] =1.0; x[9] =1.0; f_xy[9] =1.5;
y[10]=1.0; x[10]=2.0; f_xy[10]=2.0;
y[11]=1.0; x[11]=4.0; f_xy[11]=3.0;

end
I(a, b) <+ $table_model(0, V(a,b), y, x, f_xy);

end
endmodule

Here the array is specified via array variables. The variables are initialized inside an initial_step block
ensuring that they do not change after the first call to $table_model. Arrays may also be specified
directly via an array assignment pattern.
Copyright © 2014 Accellera Systems Initiative. 256

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
9.22 Connectmodule driver access system functions and operator

Verilog-AMS HDL extends IEEE Std 1364-2005 Verilog HDL with a set of driver access functions. Ver-
ilog-AMS HDL also adds a new operator, driver_update that is used in combination with the driver
access functions which is described here for that reason.

Access to individual drivers and net resolution is necessary for accurate implementation of connect modules
(see 7.5). A driver of a signal is a process which assigns a value to the signal, or a connection of the signal to
an output port of a module instance or simulation primitive.

The driver access functions described here only access drivers found in ordinary modules and not to those
found in connect modules. Driver access functions can only be called from connect modules.

A signal can have any number of drivers; for each driver the current status, value, and strength can be
accessed.

9.22.1 $driver_count

$driver_count returns an integer representing the number of drivers associated with the signal in ques-
tion. The syntax is shown in Syntax 9-17.

driver_count_function ::=
$driver_count (signal_name)

Syntax 9-17—Syntax for $driver_count

The drivers are arbitrarily numbered from 0 to N-1, where N is the total number of ordinary drivers contrib-
uting to the signal value. For example, if this function returns a value 5 then the signal has five drivers num-
bered from 0 to 4.

9.22.2 $driver_state

driver_state returns the current value contribution of a specific driver to the state of the signal. The
syntax is shown in Syntax 9-18.

driver_state_function ::=
$driver_state (signal_name , driver_index)

Syntax 9-18—Syntax for $driver_state

driver_index is an integer value between 0 and N-1, where N is the total number of drivers contributing to
the signal value. The state value is returned as 0, 1, x, or z.

9.22.3 $driver_strength

driver_strength returns the current strength contribution of a specific driver to the strength of the sig-
nal. The syntax is shown in Syntax 9-19.

driver_strength_function ::=
$driver_strength (signal_name , driver_index)
257 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

Bit its

B5 2

B4 1

B3 0
Syntax 9-19—Syntax for $driver_strength

driver_index is an integer value between 0 and N-1, where N is the total number of drivers contributing to
the signal value. The strength value is returned as two strengths, Bits 5-3 for strength0 and Bits 2-0
for strength1 (see IEEE Std 1364-2005 Verilog HDL, subclauses 7.10 and 7.11).

If the value returned is 0 or 1, strength0 returns the high-end of the strength range and strength1
returns the low-end of the strength range. Otherwise, the strengths of both strength0 and strength1 is
defined as shown in Figure 9-3 below.

Figure 9-3: Strength value mapping

9.22.4 driver_update

The status of drivers for a given signal can be monitored with the event detection keyword
driver_update. It can be used in conjunction with the event detection operator @ to detect updates to
any of the drivers of the signal.

Example:

always @(driver_update clock)
 statement;

causes the statement to execute any time a driver of the signal clock is updated. Here, an update is
defined as the addition of a new pending value to the driver. This is true whether or not there is a change in
the resolved value of the signal.

9.22.5 Receiver net resolution

As a result of driver receiver segregation, the drivers and receivers are separated so that any analog con-
nected to a mixed net has the opportunity to influence the value driving the digital receivers. Since a single
digital port is used in the connect module, the user must specify the value that the receivers will see. By not
specifying the receiver value directly in the connect module driver, receiver segregation will be ignored,
which is the default case. This assignment of the receiver value is done via the assign statement in which
the digital port will be used to read the driver values as well as to set the receiver value.

1) The default is equivalent of assign d_receivers = d_drivers ;
Where the value passed to the receivers through driver receiver segregation is the value being driven
without delay or any impact from analog connections to the net. This is essentially bypassing driver
receiver segregation.

2) Anything else is done explicitly, such as:

strength0 strength1

s 7
Su0

6
St0

5
Pu0

4
La0

3
We0

2
Me0

1
Sm0

0
HiZ0

0
HiZ1

1
Sm1

2
Me1

3
We1

4
La1

5
Pu1

6
St1

7
Su1

B

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 B

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 B

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 B
Copyright © 2014 Accellera Systems Initiative. 258

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
reg out; // value of out determined in CM, see example in 9.22.6
assign d = out;

In this case, the digital port of the connect module will drive the receivers with a value determined in
the connect module. This value may potentially be different from the value of the drivers of the con-
nect module digital port.

9.22.6 Connect module example using driver access functions

Using the example shown in Figure 9-4, a connect module can be created using driver access functions to
accurately model the effects of multiple drivers on an interface.

Figure 9-4: Driver-receiver segregation connect module example

The connect module below takes advantage of much of the mixed-signal language including driver access
functions. This module effectively adds another parallel resistor from output to ground whenever a digital
output connected to the net goes high, and another parallel resistor from output to rail (supply) whenever a
digital output connected to the net goes low. If this is used as the connect module in Figure 9-4, not only is
the delay from digital outputs to the digital input a function of the value of the capacitor, for a given capaci-
tance it takes approximately half the time (since two gates are driving the signal rather than one).

connectmodule c2e(d,a);
input d;
output a;

ddiscrete d;
electrical a, rail, gnd;

reg out;
ground gnd;
branch (rail,a)pull_up;
branch (a,gnd)pull_down;
branch (rail,gnd)power;
parameter real impedance0 = 120.0;
parameter real impedance1 = 100.0;
parameter real impedanceOff = 1e6;
parameter real vt_hi = 3.5;
parameter real vt_lo = 1.5;
parameter real supply = 5.0;

d3

d1

d2

c2e

c1

n1
259 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
integer i, num_ones, num_zeros;

assign d=out;
initial begin

num_ones = 0;
num_zeros = 0;

end

always @(driver_update(d)) begin
num_ones = 0;
num_zeros = 0;
for (i = 0; i < $driver_count(d); i=i+1)

if ($driver_state(d,i) == 1)
num_ones = num_ones + 1;

else
num_zeros = num_zeros + 1;

end

always @(cross(V(a) - vt_hi, -1) or cross(V(a) - vt_lo, +1))
out = 1'bx;

always @(cross(V(a) - vt_hi, +1))
out = 1'b1;

always @(cross(V(a) - vt_lo, -1))
out = 1'b0;

analog begin
// Approximately one impedance1 resistor to rail per high output
// connected to the digital net
V(pull_up) <+ 1/((1/impedance1)*num_ones+(1/impedanceOff)) *

I(pull_up);
// Approximately one impedance0 resistor to ground per low output
// connected to the digital net
V(pull_down) <+ 1/((1/impedance0)*num_zeros+(1/impedanceOff)) *

I(pull_down);
V(power) <+ supply;

end
endmodule

9.23 Supplementary connectmodule driver access system functions

Verilog-AMS HDL extends IEEE Std 1364-2005 Verilog HDL so that a set of supplementary driver access
functions are supported in the digital context of connectmodules.

These driver access functions are provided for access to digital events which have been scheduled onto a
driver but might not have matured by the current simulation time.

These functions can be used to create analog waveforms which cross a specified threshold at the same time
the digital event matures, thus providing accurate registration of analog and digital representations of a sig-
nal. This assumes there is at least as long a delay in the maturation of the digital signal as the required rise/
fall times of the analog waveform.

NOTE—Because the scheduled digital events can be scheduled with an insufficient delay or canceled before they
mature, be careful when using these functions.
Copyright © 2014 Accellera Systems Initiative. 260

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
9.23.1 $driver_delay

$driver_delay returns the delay, from current simulation time, after which the pending state or strength
becomes active. If there is no pending value on a signal, it returns the value minus one (-1.0). The syntax is
shown in Syntax 9-20.

driver_delay_function ::=
$driver_delay (signal_name , driver_index)

Syntax 9-20—Syntax for $driver_delay

driver_index is an integer value between 0 and N-1, where N is the total number of drivers contributing to
the signal value. The returned delay value is a real number, which is defined by the `timescale for that
module where the call has been made. The fractional part arises from the possibility of a driver being
updated by an A2D event off the digital timeticks.

9.23.2 $driver_next_state

$driver_next_state returns the pending state of the driver, if there is one. If there is no pending state,
it returns the current state. The syntax is shown in Syntax 9-21.

driver_next_state_function ::=
$driver_next_state (signal_name , driver_index)

Syntax 9-21—Syntax for $driver_next_state

driver_index is an integer value between 0 and N-1, where N is the total number of drivers contributing to
the signal value. The pending state value is returned as 1'b0, 1'b1, 1'bx, or 1'bz.

9.23.3 $driver_next_strength

$driver_next_strength returns the strength associated with the pending state of the driver, if there is
one. If there is no pending state, it returns the current strength. The syntax is shown in Syntax 9-22.

driver_next_strength_function ::=
$driver_next_strength (signal_name , driver_index)

Syntax 9-22—Syntax for$ driver_next_strength

driver_index is an integer value between 0 and N-1, where N is the total number of drivers contributing to
the signal value. The pending strength value is returned as an integer between 0 and 7.

9.23.4 $driver_type

$driver_type returns an integer value with its bits set according to the system header file
“driver_access.vams” (refer to Annex D for the header file) for the driver specified by the signal_name and
the driver_index. Connect modules for digital to analog conversion can use the returned information to help
minimize the difference between the digital event time and the analog crossover when the user swaps
between coding styles and performs backannotation1. A simulator that cannot provide proper information
for a given driver type should return 0 (‘DRIVER_UNKNOWN). All drivers on wor and wand nets will
261 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
have a bit set indicating such, and any extra drivers added by the kernel for pull-up or pull-down will be
marked as belonging to the kernel. The syntax is shown in Syntax 9-23.

driver_type_function ::=
$driver_type (signal_name , driver_index)

Syntax 9-23—Syntax for$ driver_type

Digital primitives (like nand and nor gates) should always provide data about their scheduled output
changes; i.e., a gate with a 5ns delay should provide 5ns of look-ahead. Behavioral code with blocking
assigns cannot provide look-ahead, but non-blocking assigns with delays can. However, since the capability
is implementation- and configuration-dependent, this function is provided so that the connect module can
adapt for a particular instance.

1SDF backannotation will not change which D2A is inserted.
Copyright © 2014 Accellera Systems Initiative. 262

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
10. Compiler directives

10.1 Overview

All Verilog-AMS HDL compiler directives are preceded by the (`) character. This character is called
accent grave (ASCII 0x60). It is different from the character (’), which is the apostrophe character
(ASCII 0x27). The scope of compiler directives extends from the point where it is processed, across all files
processed, to the point where another compiler directive supersedes it or the processing completes.

The following compiler directives are supported:
`begin_keywords [1364-2005]
`celldefine [1364-2005]
`default_discipline [10.2]
`default_nettype [1364-2005]
`default_transition [10.3]
`define [10.4]
`else [1364-2005]
`elsif [1364-2005]
`end_keywords [1364-2005]
`endcelldefine [1364-2005]
`endif [1364-2005]
`ifdef [1364-2005]
`ifndef [1364-2005]
`include [1364-2005]
`line [1364-2005]
`nounconnected_drive [1364-2005]
`pragma [1364-2005]
`resetall [1364-2005]
`timescale [1364-2005]
`unconnected_drive [1364-2005]
`undef [10.4]

10.2 `default_discipline

The default discipline is applied by discipline resolution (see 7.4 and Annex F)to all discrete signals without
a discipline declaration that appear in the text stream following the use of the `default_discipline
directive, until either the end of the text stream or another `default_discipline directive with the
qualifier (if applicable) is found in the subsequent text, even across source file boundaries. Therefore, more
than one `default_discipline directive can be in force simultaneously, provided each differs in
qualifier.

In addition to `resetall, if this directive is used without a discipline name, discipline resolution will not
use a default discipline for nets declared after this directive is encountered in the text stream. Syntax 10-1
shows the syntax for this directive.

default_discipline_directive ::=
263 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
`default_discipline [discipline_identifier [qualifier]]
qualifier ::=

integer | real | reg | wreal | wire | tri | wand | triand
| wor | trior | trireg | tri0 | tri1 | supply0 | supply1

Syntax 10-1—Syntax for the default discipline compiler directive

Example:

`default_discipline ddiscrete
module behavnand(in1, in2, out);

input in1, in2;
output out;
reg out;
always begin

out = ~(in1 && in2);
end

endmodule

This example illustrates the usage of the `default_discipline directive. The nets in1, in2, and out
all have discipline ddiscrete by default.

There is a precedence of compiler directives; the more specific directives have higher precedence over gen-
eral directives.

10.3 `default_transition

The scope of this directive is similar to the scope of the `define compiler directive although it can be used
only outside of module definitions. This directive specifies the default value for rise and fall time for the
transition filter (see 4.5.8). There are no scope restrictions for this directive. The syntax for this directive is
shown in Syntax 10-2.

default_transition_compiler_directive ::=
`default_transition transition_time

transition_time ::=
constant_expression

Syntax 10-2—Syntax for default transition compiler directive

transition_time is a real value.

For all transition filters which follow this directive and do not have rise time and fall time arguments speci-
fied, transition_time is used as the default rise and fall time values. If another `default_transition
directive is encountered in the subsequent source description, the transition filters following the newly
encountered directive derive their default rise and fall times from the transition time value of the newly
encountered directive. In other words, the default rise and fall times for a transition filter are derived from
the transition_time value of the directive which immediately precedes the transition filter.

If a `default_transition directive is not used in the description, transition_time is controlled by the
simulator.
Copyright © 2014 Accellera Systems Initiative. 264

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
10.4 `define and `undef

The ‘define and ‘undef compiler directives are described in IEEE Std 1364-2005 Verilog HDL.

To avoid conflicts with predefined Verilog-AMS macros (10.5), the ‘define compiler directive’s macro
text shall not begin with __VAMS_. The ‘undef compiler directive shall have no effect on predefined Ver-
ilog-AMS macros; the simulator may issue a warning for an attempt to undefine one of these macros.

The syntax for text macro definitions is given in Syntax 10-3

text_macro_definition ::=
‘define text_macro_name macro_text

text_macro_name ::=
text_macro_identifier [(list_of_formal_arguments)]

list_of_formal_arguments ::=
formal_argument_identifier { , formal_argument_identifier }

formal_argument_identifier ::=
simple_identifier

text_macro_identifier ::=
identifier

Syntax 10-3—Syntax for text macro definition (not in Annex A)

10.5 Predefined macros

Verilog-AMS HDL supports a predefined macro to allow modules to be written that work with both IEEE
Std 1364-2005 Verilog HDL and Verilog-AMS HDL.The predefined macro is called __VAMS_ENABLE__.

This macro shall always be defined during the parsing of Verilog-AMS source text. Its purpose is to support
the creation of modules which are both legal Verilog and Verilog-AMS. The Verilog-AMS features of such
modules are made visible only when the __VAMS_ENABLE__ macro has previously been defined.

Example:

module not_gate(in, out);
input in;
output out;
reg out;
`ifdef __VAMS_ENABLE__

parameter integer del = 1 from [1:100];
`else

parameter del = 1;
`endif
always @ in

out = #del !in;
endmodule

Verilog-AMS HDL version 2.2 introduced a number of extensions to support compact modeling. A pre-
defined macro allows modules to add functionality if these extensions are supported, or to generate warnings
or errors if they are not. This predefined macro is called __VAMS_COMPACT_MODELING__ and shall be
defined during the parsing of Verilog-AMS source text if and only if all the compact modeling extensions
are supported by the simulator.
265 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The following example computes noise of a nonlinear resistor only if the extensions, specifically ddx, are
supported.

module nonlin_res(a, b);
input a, b;
electrical a, b;
parameter real rnom = 1;
parameter real vc1 = 0;
real reff, iab;
analog begin

iab = V(a,b) / (rnom * (1.0 + vc1 * V(a,b)));
I(a,b) <+ iab;

`ifdef __VAMS_COMPACT_MODELING__
reff = ddx(iab, V(a));
I(a,b) <+ white_noise(4.0*‘P_K*$temperature*reff, "thermal");

`else
if (analysis("noise"))

$strobe("Noise not computed.");
`endif
end

endmodule

Verilog-AMS simulators shall also provide a predefined macro so that the module can conditionally include
(or exclude) portions of the source text specific to a particular simulator. This macro shall be documented in
the Verilog-AMS section of the simulator manual.

10.6 `begin_keywords and `end_keywords

Verilog-AMS HDL extends the `begin_keywords and `end_keywords compiler directives from
IEEE Std 1364-2005 Verilog HDL by adding a "VAMS-2.3" version specifier.

The version_specifier specifies the valid set of reserved keywords in effect when a design unit is parsed by
an implementation. The `begin_keywords and `end_keywords directives can only be specified out-
side of a design element (module, primitive, configuration, paramset, connectrules or connectmodule). The
`begin_keywords directive affects all source code that follows the directive, even across source code
file boundaries, until the matching `end_keywords directive is encountered.

The version_specifier, "VAMS-2.3" specifies that only the identifiers listed as reserved keywords in the
Verilog-AMS HDL are considered to be reserved words. These identifiers are listed in Annex B.

The `begin_keywords and `end_keywords directives only specify the set of identifiers that are
reserved as keywords. The directives do not affect the semantics, tokens, and other aspects of the Verilog-
AMS language.

The version specifiers "1364-1995", "1364-2001" and "1364-2005" must also be supported. "1364-
1995" represents the keywords for IEEE Std 1364-1995. "1364-2001" represents the keywords for IEEE
std 1364-2001. "1364-2005" represents the keywords for IEEE Std 1364-2005 Verilog HDL.

In the example below, it is assumed that the definition of module m1 does not have a `begin_keywords
directive specified prior to the module definition. Without this directive, the set of reserved keywords in
effect for this module shall be the implementation’s default set of reserved keywords.

module m1; // module definition with no `begin_keywords directive
...

endmodule
Copyright © 2014 Accellera Systems Initiative. 266

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The following example specifies a `begin_keywords "1364-2005" directive. The source code within
the module uses the identifier sin as a port name. The `begin_keywords directive would be necessary
in this example if an implementation uses Verilog-AMS as its default set of keywords because sin is a
reserved keyword in Verilog-AMS but not in 1364-2005. Specifying the "1364-1995" or "1364-2001"
Verilog keyword lists would also work with this example.

`begin_keywords "1364-2005" // use IEEE Std 1364-2005 Verilog keywords
module m2 (sin ...);

input sin; // OK since sin is not a keyword in 1364-2005
...

endmodule
`end_keywords

The next example is the same code as the previous example, except that it explicitly specifies that the Ver-
ilog-AMS keywords should be used. This example shall result in an error because sin is reserved as a key-
word in this standard.

`begin_keywords "VAMS-2.3" // use Verilog-AMS LRM2.3 keywords
module m2 (sin, ...); // ERROR: "sin" is a keyword in Verilog-AMS

input sin;
...

endmodule
`end_keywords

The following example uses several Verilog-AMS constructs, and designates that the Verilog-AMS version
2.3 set of keywords should be used. Note that the word “logic” is not a keyword in Verilog-AMS 2.3, where
as it is a keyword in the IEEE Std 1800-2012 SystemVerilog.

`begin_keywords "VAMS-2.3"
discipline logic;

domain discrete;
enddiscipline
module a2d(dnet, anet);

input dnet;
wire dnet;
logic dnet;
output anet;
electrical anet;
real avar;
analog begin

if (dnet === 1'b1)
avar = 5;

else if (dnet === 1'bx)
avar = avar; // hold value

else if (dnet === 1'b0)
avar = 0;

else if (dnet === 1'bz)
avar = 2.5; // high impedance - float value

V(anet) <+ avar;
end

endmodule
`end_keywords
267 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11. Using VPI routines

11.1 Overview

Clause 11 and Clause 12 specify the Verilog Procedural Interface (VPI) for the Verilog-AMS HDL. This
clause describes how the VPI routines are used and Clause 12 defines each of the routines in alphabetical
order.

11.2 The VPI interface

The VPI interface provides routines which allow Verilog-AMS product users to access information con-
tained in a Verilog-AMS design and allow facilities to interact dynamically with a software product. Appli-
cations of the VPI interface can include delay calculators and annotators, connecting a Verilog-AMS
simulator with other simulation and CAE systems, and customized debugging tasks.

The functions of the VPI interface can be grouped into two main areas:
— Dynamic software product interaction using VPI callbacks
— Access to Verilog-AMS HDL objects and simulation specific objects

11.2.1 VPI callbacks

Dynamic software product interaction shall be accomplished with a registered callback mechanism. VPI
callbacks shall allow a user to request a Verilog-AMS HDL software product, such as a logic simulator, call
a user-defined application when a specific activity occurs. For example, the user can request the user appli-
cation my_monitor() be called when a particular net changes value or my_cleanup() be called when the
software product execution has completed.

The VPI callback facility shall provide the user with the means to interact dynamically with a software prod-
uct, detecting the occurrence of value changes, advancement of time, end of simulation, etc. This feature
allows applications such as integration with other simulation systems, specialized timing checks, complex
debugging features, etc. to be used.

The reasons for providing callbacks can be separated into four categories:
— Simulation event (e.g., a value change on a net or a behavioral statement execution)
— Simulation time (e.g., the end of a time queue or after certain amount of time)
— Simulator action/feature (e.g., the end of compile, end of simulation, restart, or enter interactive

mode)
— User-defined system task or function execution

VPI callbacks shall be registered by the user with the functions vpi_register_cb(),
vpi_register_systf() and vpi_register_analog_systf(). These routines indicate the spe-
cific reason for the callback, the application to be called, and what system and user data shall be passed to
the callback application when the callback occurs. A facility is also provided to call the callback functions
when a Verilog-AMS HDL product is first invoked. A primary use of this facility shall be for the registration
of user-defined system tasks and functions.

11.2.2 VPI access to Verilog-AMS HDL objects and simulation objects

Accessible Verilog-AMS HDL objects and simulation objects and their relationships and properties are
described using data model diagrams. These diagrams are presented in 11.6. The data diagrams indicate the
Copyright © 2014 Accellera Systems Initiative. 268

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
routines and constants which are required to access and manipulate objects within an application environ-
ment. An associated set of routines to access these objects is defined in Clause 12.

The VPI interface also includes a set of utility routines for functions such as handle comparison, file han-
dling, and redirected printing, which are described in Clause 12.

VPI routines provide access to objects in an instantiated Verilog-AMS design. An instantiated design is one
where each instance of an object is uniquely accessible. For instance, if a module m contains wire w and is
instantiated twice as m1 and m2, then m1.w and m2.w are two distinct objects, each with its own set of related
objects and properties.

The VPI interface is designed as a simulation interface, with access to both Verilog-AMS HDL objects and
specific simulation objects. This simulation interface is different from a hierarchical language interface,
which would provide access to HDL information but would not provide information about simulation
objects.

11.2.3 Error handling

To determine if an error occurred, the routine vpi_chk_error() shall be provided. The
vpi_chk_error() routine shall return a nonzero value if an error occurred in the previously called VPI
routine. Callbacks can be set up for when an error occurs as well. The vpi_chk_error() routine can
provide detailed information about the error.

11.3 VPI object classifications

VPI objects are classified with data model diagrams. These diagrams provide a graphical representation of
those objects within a Verilog-AMS design to which the VPI routines shall provide access. The diagrams
shall show the relationships between objects and the properties of each object. Objects with sufficient com-
monality are placed in groups. Group relationships and properties apply to all the objects in the group.

As an example, the simplified diagram in Figure 11-1 shows there is a one-to-many relationships from
objects of type module to objects of type net and a one-to-one relationship from objects of type net to
objects of type module. Objects of type net have properties vpiName, vpiVector, and vpiSize, with
the C data types string, Boolean, and integer respectively.

Figure 11-1: Object relationships

The VPI object data diagrams are presented in 11.6.

module net
-> name

str: vpiName
str: vpiFullName

-> vector
bool: vpiVector

-> size
int: vpiSize
269 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.3.1 Accessing object relationships and properties

The VPI interface defines the C data type of vpiHandle. All objects are manipulated via a vpiHandle
variable. Object handles can be accessed from a relationship with another object, or from a hierarchical
name, as the following example demonstrates.

Examples:

vpiHandle net;
net = vpi_handle_by_name("top.m1.w1", NULL);

This example call retrieves a handle to wire top.m1.w1 and assigns it to the vpiHandle variable net. The
NULL second argument directs the routine to search for the name from the top level of the design.

The VPI interface provides generic functions for tasks, such as traversing relationships and determining
property values. One-to-one relationships are traversed with routine vpi_handle().

In the following example, the module containing net is derived from a handle to that net:

vpiHandle net, mod;
net = vpi_handle_by_name("top.m1.w1", NULL);
mod = vpi_handle(vpiModule, net);

The call to vpi_handle() in the above example shall return a handle to module top.m1.

Properties of objects shall be derived with routines in the vpi_get family. The routine vpi_get()
returns integer and Boolean properties. The routine vpi_get_str() accesses string properties.

To retrieve a pointer to the full hierarchical name of the object referenced by handle mod, the following call
would be made:

char *name = vpi_get_str(vpiFullName, mod);

In the above example, character pointer name shall now point to the string top.m1.

One-to-many relationships are traversed with an iteration mechanism. The routine vpi_iterate() cre-
ates an object of type vpiIterator, which is then passed to the routine vpi_scan() to traverse the desired
objects.

In the following example, each net in module top.m1 is displayed:

vpiHandle itr;
itr = vpi_iterate(vpiNet,mod);
while (net = vpi_scan(itr))

vpi_printf("\t%s\n", vpi_get_str(vpiFullName, net));

As the above examples illustrate, the routine naming convention is a vpi prefix with ‘_’ word delimiters
(with the exception of callback-related defined values, which use the cb prefix). Macro-defined types and
properties have the vpi prefix and they use capitalization for word delimiters.

The routines for traversing Verilog-AMS HDL structures and accessing objects are described in IEEE Std
1364-2005 Verilog HDL, section 22.
Copyright © 2014 Accellera Systems Initiative. 270

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.3.2 Delays and values

Properties are of type integer, boolean, real or string. Delay and logic value properties, however, are more
complex and require specialized routines and associated structures. The routines vpi_get_delays()
and vpi_put_delays() use structure pointers, where the structure contains the pertinent information
about delays. Similarly, simulation values are also handled with the routines vpi_get_value() and
vpi_put_value(), along with an associated set of structures. For analog tasks and functions,
vpi_handle_multi() and vpi_put_value() support declaration and assignment of derivatives for
the task arguments and function return values.

The routines and C structures for handling delays, derivatives, and logic values are presented in IEEE Std
1364-2005 Verilog HDL, section 22.

11.4 List of VPI routines by functional category

The VPI routines can be divided into groups based on primary functionality.
— VPI routines for simulation-related callbacks
— VPI routines for system task/function callbacks
— VPI routines for traversing Verilog-AMS HDL hierarchy
— VPI routines for accessing properties of objects
— VPI routines for accessing objects from properties
— VPI routines for delay processing
— VPI routines for logic and strength value processing
— VPI routines for task parameters derivatives processing
— VPI routines for analysis and simulation time processing
— VPI routines for miscellaneous utilities

Table 11-1 through Table 11-9 list the VPI routines by major category. IEEE Std 1364-2005 Verilog HDL,
Section 22 defines each of the VPI routines, listed in alphabetical order.

Table 11-1—VPI routines for simulation related callbacks

To Use

Register a simulation-related callback vpi_register_cb()

Remove a simulation-related callback vpi_remove_cb()

Get information about a simulation-related callback vpi_get_cb_info()

Table 11-2—VPI routines for system task/function callbacks

To Use

Register a system task/function callback vpi_register_systf()

Get information about a system task/function callback vpi_get_systf_info()
271 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

Table 11-3—VPI routines for analog system task/function callbacks

To Use

Register a analog system task/function callback vpi_register_analog_systf()

Get information about a analog system task/function callback vpi_get_analog_systf_info()

Table 11-4—VPI routines for traversing Verilog-AMS HDL hierarchy

To Use

Obtain a handle for an object with a one-to-one relationship vpi_handle()

Obtain handles for objects in a one-to-many relationship vpi_iterate()
vpi_scan()

Obtain a handles for an object in a many-to-one relationship vpi_handle_multi()

Table 11-5—VPI routines for accessing properties of objects

To Use

Get the value of objects with types of int or bool vpi_get()

Get the value of objects with types of string vpi_get_str()

Get the value of objects with types of real vpi_get_real()

Table 11-6—VPI routines for accessing objects from properties

To Use

Obtain a handle for a named object vpi_handle_by_name()

Obtain a handle for an indexed object vpi_handle_by_index()

Table 11-7—VPI routines for delay processing

To Use

Retrieve delays or timing limits of an object vpi_get_delays()

Write delays or timing limits to an object vpi_put_delays()
Copyright © 2014 Accellera Systems Initiative. 272

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

11.5 Key to object model diagrams

This clause contains the keys to the symbols used in the object model diagrams. Keys are provided for
objects and classes, traversing relationships, and accessing properties.

Table 11-8—VPI routines for logic, real, strength and analog value processing

To Use

Retrieve logic value or strength value of an object vpi_get_value()

Write logic value or strength value to an object vpi_put_value()

Retrieve values of an analog object vpi_get_analog_value()

Table 11-9—VPI routines for analysis and simulation time processing

To Use

Find the current simulation time or the scheduled time of future events vpi_get_time()

Find the current simulation time value in the continuous domain. vpi_get_analog_time()

Find the current simulation time delta value in continuous domain. vpi_get_analog_delta()

Find the current simulation frequency in the small-signal domain. vpi_get_analog_freq()

Table 11-10—VPI routines for miscellaneous utilities

To Use

Write to stdout and the current log file vpi_printf()

Open a file for writing vpi_mcd_open()

Close one or more files vpi_mcd_close()

Write to one or more files vpi_mcd_printf()

Retrieve the name of an open file vpi_mcd_name()

Retrieve data about product invocation options vpi_get_vlog_info()

See if two handles refer to the same object vpi_compare_objects()

Obtain error status and error information about the previous call to a
VPI routine

vpi_chk_error()

Free memory allocated by VPI routines vpi_free_object()
273 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.5.1 Diagram key for objects and classes

11.5.2 Diagram key for accessing properties

class defn

obj defn
class

object

obj defn

object

class

obj1
obj2

Object Definition:

Bold letters in a solid enclosure indicate an object definition. The
properties of the object are defined in this location.

Unnamed Class:

A dotted enclosure with no name is an unnamed class. It is sometimes
convenient to group objects although they shall not be referenced as a
group elsewhere, so a name is not indicated.

Object Reference:

Normal letters in a solid enclosure indicate an object reference.

Class Definition:

Bold italic letters in a dotted enclosure indicate a class definition,
where the class groups other objects and classes. Properties of the
class are defined in this location. The class definition can contain an
object definition.

Class Reference:

Italic letters in a dotted enclosure indicate a class reference.

obj

obj

object

String properties are accessed with routine vpi_get_str().

Example:

char name[nameSize];
vpi_get_str(vpiName, obj_h);

Integer and Boolean properties are accessed with the routine
vpi_get().

Example: Given a vpiHandle obj_h to an object of type vpiObj, get
the size of the object.

bool vect_flag = vpi_get(vpivector, obj_h);
int size = vpi_get_size(vpiSize, obj_h);

Complex properties for time and logic value are accessed with the
indicated routines. See the descriptions of the routines for usage.

-> vector
bool: vpiVector

-> size
int: vpiSize

-> complex
func1()
func2()

-> name
str: vpiName
str: vpiFullName
Copyright © 2014 Accellera Systems Initiative. 274

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.5.3 Diagram key for traversing relationships

ref

obj

ref

obj
vpiTag

ref

obj

ref

obj
vpiTag

obj

obj

A single arrow indicates a one-to-one relationship accessed
with the routine vpi_handle().

Example: Given vpiHandle variable ref_h of type ref, access
obj_h of type vpiObj:

obj_h = vpi_handle(vpiObj, ref_h);

A tagged one-to-one relationship is traversed similarly, using
vpiTag instead of vpiObj:

Example:

obj_h = vpi_handle(vpiTag, ref_h);

A top-level one-to-one relationship is traversed similarly, using
NULL instead of ref_h:

Example:

obj_h = vpi_handle(vpiObj, NULL);

A double arrow indicates a one-to-many relationship accessed
with the routine vpi_scan().

Example: Given vpiHandle variable ref_h of type ref, scan
objects of type vpiObj:

itr = vpi_iterate(vpiObj, ref_h);
while (obj_h = vpi_scan(itr))

/* process ‘obj_h’ */

A tagged one-to-many relationship is traversed similarly, using
vpiTag instead of vpiObj:

Example:

itr = vpi_iterate(vpiTag, ref_h);
while (obj_h = vpi_scan(itr))

/* process ‘obj_h’ */

A top-level one-to-many relationship is traversed similarly,
using NULL instead of ref_h:

Example:

itr = vpi_iterate(vpiObj, NULL);
while (obj_h = vpi_scan(itr))

/* process ‘obj_h’ */
275 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6 Object data model diagrams

Subclauses in 11.6.1 through 11.6.25 contain the data model diagrams that define the accessible objects and
groups of objects, along with their relationships and properties.
Copyright © 2014 Accellera Systems Initiative. 276

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.1 Module

NOTES

1—Top-level modules shall be accessed using vpi_iterate() with a NULL reference object.

2—Passing a NULL handle to vpi_get() with types vpiTimePrecision or vpiTimeUnit shall return the smallest time
precision of all modules in the instantiated design.

net
reg

variables

mod path
tchk

memory

scope

process

module
 cont assign

port
module

io decl

vpiInternalScope

def param
param assign

primitive

parameter
spec param

-> cell
bool: vpiCellInstance

-> decay time
int: vpiDefDecayTime

-> default net type
int: vpiDefNetType

-> definition location
int: vpiDefLineNo
str: vpiDefFile

-> definition name
str: vpiDefName

-> delay mode
int: vpiDefDelayMode

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> protected
bool: vpiProtected

-> timeprecision
int: vpiTimePrecision

-> timeunit
int: vpiTimeUnit

-> top module
bool: vpiTopModule

-> unconnected drive
int: vpiUnconnDrive

named event

branches

nodes
277 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.2 Nature, discipline

discipline param assign

vpiPotentialNature

vpiFlowNature

nature

nature

nature param assign

nature
vpiParent

-> name
str: vpiName
str: vpiFullName

-> name
str: vpiName
str: vpiFullName

discipline

nature
vpiChild
Copyright © 2014 Accellera Systems Initiative. 278

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.3 Scope, task, function, IO declaration

scope

module

named event

variables

memory

taskfunc

scope

def param

taskfunc

task

function
expr

io decl

vpiInternalScope

reg

named begin

named fork
stmt

expr

vpiRightRange

vpiLeftRange

udp defn

module

reg
net

variables
vpiExpr

-> name
str: vpiName
str: vpiFullName

-> location
int: vpiLineNo
str: vpiFile

-> direction
int: vpiDirection

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> vector
bool: vpiVector

parameter

NOTE—A Verilog-AMS HDL function shall contain an object with the same name, size, and type as the function.
279 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.4 Ports

vpiHighConn

vpiBit

vpiParent
vpiLowConnport

port bit

ports

NOTES

1—vpiHighConn shall indicate the hierarchically higher (closer to the top module) port connection.

2—vpiLowConn shall indicate the lower (further from the top module) port connection.

3—Properties scalar and vector shall indicate if the port is 1 bit or more than 1 bit. They shall not indicate anything
about what is connected to the port.

4—Properties index and name shall not apply for port bits.

5—If a port is explicitly named, then the explicit name shall be returned. If not, and a name exists, that name shall be
returned. Otherwise, NULL shall be returned.

6—vpiPortIndex can be used to determine the port order.

expr

expr

-> connected by name
bool: vpiConnByName

-> delay (mipd)
vpi_get_delays()
vpi_put_delays()

-> direction
int: vpiDirection

-> explicitly named
bool: vpiExplicitName

-> index
int: vpiPortIndex

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> vector
bool: vpiVector

nodes

module
Copyright © 2014 Accellera Systems Initiative. 280

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.5 Nodes

vpiLeftRange

vpiBit

vpiParent
vpiRightRangenode

node bit

nodes

NOTES

1—Properties scalar and vector shall indicate if the node is 1 bit or more than 1 bit.

expr

expr

-> implicitly declared
bool: vpiImplicitDecl

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> vector
bool: vpiVector

branches

nets

vpiIndex
expr

module

discipline
281 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.6 Branches

vpiLeftRange

vpiBit

vpiParent
vpiRightRangebranch

branch

branches

NOTE—Properties scalar and vector shall indicate if the branch is 1 bit or more than 1 bit.

expr

expr

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> vector
bool: vpiVector

nodes

nodes
vpiIndex

Quantity

module

vpiPosNode

vpiNegNode expr

Quantity

Discipline

vpiFlow

vpiPotential
Copyright © 2014 Accellera Systems Initiative. 282

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.7 Quantities

vpiLeftRange

vpiBit

vpiParent
vpiRightRangeQuantity

Quantity

Quantities
expr

expr

-> implicitly declared
bool: vpiImplicitDecl

-> real value
vpi_get_analog_value()

-> imaginary value
vpi_get_analog_value()

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> vector
bool: vpiVector

-> source
bool: vpiSource

-> equation target
bool: vpiEquationTarget

Branches

vpiIndex

vpiBranch

expr

Nature

Contribs
283 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.8 Nets

NOTES

1—For vectors, net bits shall be available regardless of vector expansion.

2—Continuous assignments and primitive terminals shall be accessed regardless of hierarchical boundaries.

3—Continuous assignments and primitive terminals shall only be accessed from scalar nets or bit selects.

4—For vpiPortInst and vpiPort, if the reference handle is a bit or the entire vector, the relationships shall return a
handle to either a port bit or the entire port, respectively.

5—For implicit nets, vpiLineNo shall return 0, and vpiFile shall return the filename where the implicit net is first
referenced.

6—Only active forces and assign statements shall be returned for vpiLoad.

7—Only active forces shall be returned for vpiDriver.

8—vpiDriver shall also return ports which are driven by objects other than nets and net bits.

vpiBit

vpiParent

nets

net

net bit

module

vpiPortInst

vpiHighConn

ports

vpiLowConn

prim term

path term

tchk term

vpiDriver

vpiLoad

vpiDelay

vpiLeftRange

vpiRightRange

vpiIndex

cont assign

expr

expr

expr

expr

ports

ports

force

assign stmt

-> delay
vpi_get_delays()

-> expanded
bool: vpiExpanded

-> implicitly declared
bool: vpiImplicitDecl

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> net decl assign
bool: vpiNetDeclAssign

-> net type
int: vpiNetType

-> scalar
bool: vpiScalar

-> scalared declaration
bool: vpiExplicitScalared

-> size
int: vpiSize

-> domain
int vpiDomain

-> strength
int: vpiStrength0
int: vpiStrength1
int: vpiChargeStrength

-> value
vpi_get_value()
vpi_put_value()

-> vector
bool: vpiVector

-> vectored declaration
bool: vpiExplicitVectored

discipline

node
Copyright © 2014 Accellera Systems Initiative. 284

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.9 Regs

vpiBit

vpiParent

regs

reg

reg bit

scope

vpiPortInst
ports

vpiHighConnvpiLowConn

NOTES

1—Continuous assignments and primitive terminals shall be accessed regardless of hierarchical boundaries.

2—Continuous assignments and primitive terminals shall only be accessed from scalar regs and bit selects.

3—Only active forces and assign statements shall be returned for vpiLoad and vpiDriver.

vpiLeftRange

vpiRightRange

vpiIndex

expr

ports

prim term

cont assign

force
assign stmt

vpiLoad

vpiDriver

expr

expr

tchk term

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

-> vector
bool: vpiVector
285 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.10 Variables, named event

vpiParent

variables

integer var

var select

real var

time var

scope

vpiPortInst
ports

vpiHighConnvpiLowConn

vpiParent

scope named event

expr

expr

vpiLeftRange

vpiRightRange

expr
vpiIndex

ports

NOTE—vpiLeftRange and vpiRightRange shall be invalid for reals, since there can not be arrays of reals.

-> array
bool: vpiArray

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

-> domain
int: vpiDomain

-> location
int: vpiLineNo
str: vpiFile

-> value
vpi_get_value()
vpi_put_value()

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName
Copyright © 2014 Accellera Systems Initiative. 286

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.11 Memory

NOTES

1—vpiSize for a memory shall return the number of words in the memory.

2—vpiSize for a memory word shall return the number of bits in the word.

scope

memory
vpiParent

memory word

vpiLeftRange

vpiRightRange

vpiLeftRange

vpiRightRange

expr

expr

expr

expr

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

expr
vpiIndex
287 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.12 Parameter, specparam

module

parameterscope

def parammodule

param assignmodule

vpiRhs
expr

vpiLhs
parameter

spec param

vpiRhs
expr

vpiLhs
parameter

expr

expr

NOTES

1—Obtaining the value from the object parameter shall return the final value of the parameter after all module
instantiation overrides and defparams have been resolved.

2—vpiLhs from a param assign object shall return a handle to the overridden parameter.

-> constant type
int: vpiConstType

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> value
vpi_get_value()

-> constant type
int: vpiConstType

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> value
vpi_get_value()

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile
Copyright © 2014 Accellera Systems Initiative. 288

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.13 Primitive, prim term

prim term

module

primitive

gate

switch

udpudp defn

vpiDelay

expr

expr

-> definition name
str: vpiDefName

-> delay
vpi_get_delays()
vpi_put_delays()

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> primitive type
int: vpiPrimType

-> number of inputs
int: vpiSize

->strength
int: vpiStrength0
int: vpiStrength1

-> value
vpi_get_value()
vpi_put_value()

-> domain
int: vpiDomain

-> direction
int: vpiDirection

-> index
int: vpiTermIndex

-> location
int: vpiLineNo
str: vpiFile

-> value
vpi_get_value()

NOTES

1—vpiSize shall return the number of inputs.

2—For primitives, vpi_put_value() shall only be used with sequential UDP primitives.

device
289 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.14 UDP

udp defn

udp

table entry

initial

NOTE—Only string (decompilation) and vector (ASCII values) shall be obtained for table entry objects using
vpi_get_value(). Refer to the definition of vpi_get_value() for additional details.

io decl
-> definition name

str: vpiDefName
-> location

int: vpiLineNo
str: vpiFile

-> number of inputs
int: vpiSize

-> protected
bool: vpiProtected

-> type
int: vpiPrimType

-> location
int: vpiLineNo
str: vpiFile

-> number of symbol entries
int: vpiSize

-> value
vpi_get_value()
Copyright © 2014 Accellera Systems Initiative. 290

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.15 Module path, timing check, intermodule path

NOTES

1—The vpiTchkRefTerm is the first terminal for all tchks except $setup, where vpiTchkDataTerm is the first
terminal and vpiTchkRefTerm is the second terminal.

2—To get to an intermodule path, vpi_handle_multi(vpiInterModPath, port1, port2) can be used.

path term
vpiModPathIn
vpiModPathOut

module
expr

expr

vpiModDataPathIn

mod path

module

tchk tchk term
vpiTchkRefTerm

vpiTchkNotifier

regs

expr

vpiConditionexpr

vpiTchkDataTerm

exprvpiDelay

exprvpiDelay

-> delay
vpi_get_delays()
vpi_put_delays()

-> location
int: vpiLineNo
str: vpiFile

-> path type
int: vpiPathType

-> polarity
int: vpiPolarity
int: vpiDataPolarity

-> hasIfNone
bool: vpiModPathHasIfNone

-> direction
int: vpiDirection

-> edge
int: vpiEdge

-> location
int: vpiLineNo
str: vpiFile

-> limit
vpi_get_delays()
vpi_put_delays()

-> location
int: vpiLineNo
str: vpiFile

-> tchk type
int: vpiTchkType

-> edge
int: vpiEdge

-> location
int: vpiLineNo
str: vpiFile

inter mod path ports
-> delay

vpi_get_delay()
vpi_put_delay()

vpiCondition
291 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.16 Task and function call

tf call

sys task call

sys func call

task call

func call

expr

task

function

vpiArgument

user systf

NOTES

1—The system task or function which invoked an application shall be accessed with vpi_handle(vpiSysTfCall,
NULL)

2—vpi_get_value() shall return the current value of the system function.

3—If the vpiUserDefn property of a system task or function call is true, then the properties of the corresponding systf
object shall be obtained via vpi_get_systf_info().

4—All user-defined system tasks or functions shall be retrieved using vpi_iterate(), with vpiUserSystf as the type
argument, and a NULL reference argument.

vpiSysTfCall

-> tf name
str: vpiName

-> location
int: vpiLineNo
str: vpiFile

-> systf info
p_vpi_systf_data:
 vpi_get_systf_info()-> user-defined

bool: vpiUserDefn
-> value

vpi_put_value()
vpi_get_value()

-> sys func type
int: vpiSysFuncType
Copyright © 2014 Accellera Systems Initiative. 292

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.17 Continuous assignment

cont assign
vpiRhs

expr

vpiLhs
exprmodule

expr
vpiDelay

-> delay
vpi_get_delays()

-> location
int: vpiLineNo
str: vpiFile

-> net decl assign
bool: vpiNetDeclAssign

-> strength
int: vpiStrength0
int: vpiStrength1
293 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.18 Simple expressions

simple expr

variables

expr

nets

regs

memory word

var select

vpiUse prim term

stmt

port

path term

tchk term

NOTES

1—For vectors, the vpiUse relationship shall access any use of the vector or part-selects or bit-selects thereof.

2—For bit-selects, the vpiUse relationship shall access any specific use of that bit, any use of the parent vector, and
any part-select which contains that bit.

cont assign

vpiIndex

parameter

-> name
str: vpiName
str: vpiFullName

memory
Copyright © 2014 Accellera Systems Initiative. 294

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.19 Expressions

expr

operation

constant

simple expr

part select

vpiParent

vpiOperand

func call

sys func call

expr

expr

vpiLeftRange

vpiRightRange

expr

NOTE—For an operator whose type is vpiMultiConcat, the first operand shall be the multiplier expression.

-> location
int: vpiLineNo
str: vpiFile

-> size
int: vpiSize

-> value
vpi_get_value()

-> operation type
int: vpiOpType

-> location
int: vpiLineNo
str: vpiFile

-> constant type
int:
vpiConstType

-> location
int: vpiLineNo

accessfunc

analog oper discipline

branches
295 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.20 Contribs

contribs

potential

ind flow

flow
vpiRhs

expr

expr

vpiLhs

vpiRhs

expr

-> value
vpi_get_value()

-> direct
bool:vpiDirect

-> flow
bool: vpiFlow

ind potential

branches
Copyright © 2014 Accellera Systems Initiative. 296

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.21 Process, block, statement, event statement

module

initial

process

always

block

stmt

atomic stmt

block stmt

atomic stmt

assignment

deassign

case
for

delay control
event control

event stmt

assign stmt

if
if else
while

repeat
wait

tf call
disable

force
release
null stmt

forever

begin

fork

named begin

named fork

scope

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

event stmt ‘->’ named event
-> location

int: vpiLineNo
str: vpiFile

analog

contribs
297 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.22 Assignment, delay control, event control, repeat control

assignment
vpiRhs

expr

vpiLhs
expr

delay control

event control

repeat control

delay control ‘#’ stmt

vpiCondition

expr

stmt

event control ‘@’

named event

expr
vpiDelay

NOTE—For delay control and event control associated with assignment, the statement shall always be NULL.

repeat control expr

event control

-> location
int: vpiLineNo
str: vpiFile

-> blocking
bool: vpiBlocking

-> location
int: vpiLineNo
str: vpiFile

-> delay
vpi_get_delays()

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile
Copyright © 2014 Accellera Systems Initiative. 298

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
While, repeat, wait, for, forever

vpiCondition
expr

stmt

while

repeat

wait

stmt

for
vpiForInitStmt

stmt

vpiCondition
expr

vpiForIncStmt
stmt

forever stmt
-> location

int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile
299 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.23 If, if-else, case

vpiElseStmt
stmt

if

if else

vpiCondition
expr

stmt

case
vpiCondition

expr

case item expr

vpiStmt
stmt

NOTES

1—The case item shall group all case conditions which branch to the same statement.

2—vpi_iterate() shall return NULL for the default case item since there is no expression with the default case.

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

-> case type
int: vpiCaseType

-> location
int: vpiLineNo
str: vpiFile
Copyright © 2014 Accellera Systems Initiative. 300

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
11.6.24 Assign statement, deassign, force, release, disable

deassign
vpiLhs

expr

vpiRhs
expr

vpiLhs
expr

function

task

named fork

disable
vpiScope

named begin

release

force

assign stmt

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile
301 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
11.6.25 Callback, time queue

callback

prim term

time queue
vpiParent

NOTES

1—To get information about the callback object, the routine vpi_get_cb_info() can be used.

2—To get callback objects not related to the above objects, the second argument to vpi_iterate() shall be NULL.

3—The time queue objects shall be returned in increasing order of simulation time.

4—vpi_iterate() shall return NULL if there is nothing left in the simulation queue.

5—If any events after read only sync remain in the current queue, then it shall not be returned as part of the iteration.

stmt

expr
-> cb info

p_cb_data:
 vpi_get_cb_info()

time queue
-> time

vpi_get_time()
Copyright © 2014 Accellera Systems Initiative. 302

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

S

S

12. VPI routine definitions

12.1 Overview

This clause describes the Verilog Procedural Interface (VPI) routines, explaining their function, syntax, and
usage. The routines are listed in alphabetical order. The following conventions are used in the definitions of
the VPI routines.

Synopsis: A brief description of the PLI routine functionality, intended to be used as a quick reference when
searching for PLI routines to perform specific tasks.

Syntax: The exact name of the PLI routine and the order of the arguments passed to the routine.

Returns: The definition of the value returned when the PLI routine is called, along with a brief description
of what the value represents. The return definition contains the fields

Type: The data type of the C value which is returned. The data type is either a standard ANSI C type or a
special type defined within the PLI.

— Description: A brief description of what the value represents.

Arguments: The definition of the arguments passed with a call to the PLI routine. The argument definition
contains the fields

— Type: The data type of the C values which are passed as arguments. The data type is either a stan-
dard ANSI C type or a special type defined within the PLI.

— Name: The name of the argument used in the Syntax definition.
— Description: A brief description of what the value represents.

All arguments shall be considered mandatory unless specifically noted in the definition of the PLI routine.
Two tags are used to indicate arguments that might not be required:

— Conditional: Arguments tagged as conditional shall be required only if a previous argument is set to
a specific value or if a call to another PLI routine has configured the PLI to require the arguments.
The PLI routine definition explains when conditional arguments are required.

— Optional: Arguments tagged as optional can have default values within the PLI, but they can be
required if a previous argument is set to a specific value, or if a call to another PLI routine has con-
figured the PLI to require the arguments. The PLI routine definition explains the default values and
when optional arguments are required.

Related routines: A list of PLI routines which are typically used with, or provide similar functionality to,
the PLI routine being defined. This list is provided as a convenience to facilitate finding information in this
standard. It is not intended to be all-inclusive and it does not imply the related routines have to be used.

12.2 vpi_chk_error()

vpi_chk_error()

ynopsis: Retrieve information about VPI routine errors.

yntax: vpi_chk_error(error_info_p)

Type Description
303 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

R

A

S

S

The VPI routine vpi_chk_error() shall return an integer constant representing an error
severity level if the previous call to a VPI routine resulted in an error. The error constants are shown in
Table 12-1. If the previous call to a VPI routine did not result in an error, then vpi_chk_error() shall
return FALSE. The error status shall be reset by any VPI routine call except vpi_chk_error(). Calling
vpi_chk_error() shall have no effect on the error status.

If an error occurred, the s_vpi_error_info structure shall contain information about the error. If the error
information is not needed, a NULL can be passed to the routine. The s_vpi_error_info structure used by
vpi_chk_error() is defined in vpi_user.h and is listed in Figure 12-1.

Figure 12-1: The s_vpi_error_info structure definition

12.3 vpi_compare_objects()

eturns: int returns the error severity level if the previous VPI routine
call resulted in an error and FALSE if no error occurred

Type Name Description

rguments: p_vpi_error_info error_info_p Pointer to a structure containing error information

Table 12-1—Return error constants for vpi_chk_error()

Error constant Severity level

vpiNotice lowest severity

vpiWarning

vpiError

vpiSystem

vpiInternal highest severity

vpi_compare_objects()

ynopsis: Compare two handles to determine if they reference the same object.

yntax: vpi_compare_objects(obj1, obj2)

Type Description

vpi_chk_error()

typedef struct t_vpi_error_info {
int state; /* vpi[Compile,PLI,Run] */
int level; /* vpi[Notice, Warning, Error, System, Internal] */
char *message;
char *product;
char *code;
char *file;
int line;

} s_vpi_error_info, *p_vpi_error_info;
Copyright © 2014 Accellera Systems Initiative. 304

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

R

A

S

S

R

A

S

S

R

A

The VPI routine vpi_compare_objects() shall return TRUE if the two handles refer to the same
object. Otherwise, FALSE shall be returned. Handle equivalence can not be determined with a C ‘==’ com-
parison.

12.4 vpi_free_object()

The VPI routine vpi_free_object() shall free memory allocated for objects. It shall generally be used
to free memory created for iterator objects. The iterator object shall automatically be freed when
vpi_scan() returns NULL either because it has completed an object traversal or encountered an error con-
dition. If neither of these conditions occur (which can happen if the code breaks out of an iteration loop
before it has scanned every object), vpi_free_object() needs to be called to free any memory allo-
cated for the iterator. This routine can also optionally be used for implementations which have to allocate
memory for objects. The routine shall return TRUE on success and FALSE on failure.

12.5 vpi_get()

eturns: bool true if the two handles refer to the same object. Otherwise, false

Type Name Description

rguments: vpiHandle obj1 Handle to an object

vpiHandle obj2 Handle to an object

vpi_free_object()

ynopsis: Free memory allocated by VPI routines.

yntax: vpi_free_object(obj)

Type Description

eturns: bool true on success and false on failure

Type Name Description

rguments: vpiHandle obj Handle of an object

vpi_get()

ynopsis: Get the value of an integer or Boolean property of an object.

yntax: vpi_get(prop, obj)

Type Description

eturns: int Value of an integer or Boolean property

Type Name Description

rguments: int prop An integer constant representing the property of an object
for which to obtain a value

vpi_compare_objects()
305 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

R
r

S

S

R

A

R
r

The VPI routine vpi_get() shall return the value of object properties, for properties of type int and bool
(bool shall be defined to int). Object properties of type bool shall return 1 for TRUE and 0 for FALSE. For
object properties of type int such as vpiSize, any integer shall be returned. For object properties of type
int which return a defined value, refer to Annex C of the IEEE Std 1364-2005 Verilog HDLspecification for
the value that shall be returned. Note for object property vpiTimeUnit or vpiTimePrecision, if the
object is NULL, then the simulation time unit shall be returned. Should an error occur, vpi_get() shall
return vpiUndefined.

12.6 vpi_get_cb_info()

The VPI routine vpi_get_cb_info() shall return information about a simulation-related callback in an
s_cb_data structure. The memory for this structure shall be allocated by the user.

The s_cb_data structure used by vpi_get_cb_info() is defined in vpi_user.h and is listed in
Figure 12-2.

Figure 12-2: The s_cb_data structure definition

vpiHandle obj Handle to an object

elated
outines:

Use vpi_get_str() to get string properties

vpi_get_cb_info()

ynopsis: Retrieve information about a simulation-related callback.

yntax: vpi_get_cb_info(obj, cb_data_p)

Type Description

eturns: void

Type Name Description

rguments: vpiHandle obj Handle to a simulation-related callback

p_cb_data cb_data_p Pointer to a structure containing callback information

elated
outines:

Use vpi_get_systf_info() to retrieve information about a system task/function callback

vpi_get()

typedef struct t_cb_data {
int reason;
int (*cb_rtn)();
vpiHandle obj;
p_vpi_time time; /* structure with simulation time info */
p_vpi_value value;/* structure with simulation value info */
char *user_data; /* user data to be passed to callback function */

} s_cb_data, *p_cb_data;
Copyright © 2014 Accellera Systems Initiative. 306

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

S

S

R

A

S

S

R

A

S

S

R

A

12.7 vpi_get_analog_delta()

The VPI routine vpi_get_analog_delta() shall be used determine the size of the analog time step
being attempted. It returns the elapsed time between the latest converged and accepted solution and the solu-
tion being calculated. The function shall return zero (0) during DC or the time zero transient solution.

12.8 vpi_get_analog_freq()

The VPI routine vpi_get_analog_freq() shall be used determine the current frequency used in the
small-signal analysis. The function shall return zero (0) during DC or transient analysis.

12.9 vpi_get_analog_time()

vpi_get_analog_delta()

ynopsis: Get the time elapsed since the previous solution.

yntax: vpi_get_analog_delta()

Type true on success and false on failureDescription

eturns: double time elapsed between the solution being calculated and the last converged solution

Type Name Description

rguments: NONE this function accepts no arguments

vpi_get_analog_freq()

ynopsis: Get the frequency for the current small-signal analysis.

yntax: vpi_get_analog_freq()

Type true on success and false on failureDescription

eturns: double time elapsed between the solution being calculated and the last converged solution

Type Name Description

rguments: NONE this function accepts no arguments

vpi_get_analog_time()

ynopsis: Get the time of the current solution.

yntax: vpi_get_analog_time()

Type true on success and false on failureDescription

eturns: double time associated with the current solution

Type Name Description

rguments: NONE this function accepts no arguments
307 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

R
r

The VPI routine vpi_get_analog_time() shall be used determine the time of the solution attempted
or of the latest converged and accepted solution otherwise. The function shall return zero (0) during DC or
the time zero transient solution.

12.10 vpi_get_analog_value()

The VPI routine vpi_get_analog_value() shall retrieve the simulation value of VPI analog vpi-
Flow or vpiPotential (node or branch) quantity objects. The value shall be placed in an
s_vpi_analog_value structure, which has been allocated by the user. The format of the value shall be set
by the format field of the structure.

The buffer this routine uses for string values shall be different from the buffer which vpi_get_str()
shall use. The string buffer used by vpi_get_analog_value() is overwritten with each call. If the
value is needed, it needs to be saved by the application.

The s_vpi_analog_value structure used by vpi_get_analog_value() is defined in vpi_user.h
and listed in Figure 12-3.

Figure 12-3: The s_vpi_analog_value structure definition

vpi_get_analog_value()

ynopsis: Retrieve the simulation value of an analog quantity object.

yntax: vpi_get_analog_value(obj, value_p)

Type Description

eturns: void

Type Name Description

rguments: vpiHandle obj Handle to an analog quantity object

p_vpi_value value_p Pointer to a structure containing value information

elated
outines:

Use vpi_get_value() to get simulation values of digital objects.
Use vpi_put_value() to set the value of an object

typedef struct t_vpi_analog_value {
int format; /* vpiRealVal,vpiExpStrVal,vpiDecStrVal,vpiStringVal

*/
union {

char *str;
double real;
char *misc;

} real;
union {

char *str;
double real;
char *misc;

} imaginary;
} s_vpi_analog_value, *p_vpi_analog_value;
Copyright © 2014 Accellera Systems Initiative. 308

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

S

S

R

A

R
r

The memory for the union members str and misc of the value for real and imaginary unions in the
s_vpi_analog_value structure shall be provided by the routine vpi_get_analog_value(). This
memory shall only be valid until the next call to vpi_get_analog_value().

NOTE—The user shall provide the memory for these members when calling vpi_put_value().

12.11 vpi_get_delays()

The VPI routine vpi_get_delays() shall retrieve the delays or pulse limits of an object and place them
in an s_vpi_delay structure which has been allocated by the user. The format of the delay information
shall be controlled by the time_type flag in the s_vpi_delay structure. This routine shall ignore the value
of the type flag in the s_vpi_time structure.

The s_vpi_delay and s_vpi_time structures used by both vpi_get_delays() and
vpi_put_delays() are defined in vpi_user.h and are listed in Figure 12-4 and Figure 12-5.

Table 12-2—Return value field of the s_vpi_analog_value structure union

Format Union members Return description

vpiDecStrVal str Real and imaginary values of object are returned as
strings of decimal char(s) [0–9]

vpExpStrVal str Real and imaginary values of object are returned as
strings formatted like printf %e.

vpiRealVal real Real and imaginary values of the object are returned as
doubles.

vpiStringVal str Real and imaginary parts are returned as strings for-
matted like printf %g. The call shall reset the format
field to vpiExpStrVal or vpiDecStrVal to the selected
format.

vpi_get_delays()

ynopsis: Retrieve the delays or pulse limits of an object.

yntax: vpi_get_delays(obj, delay_p)

Type Description

eturns: void

Type Name Description

rguments: vpiHandle obj Handle to an object

p_vpi_delay delay_p Pointer to a structure containing delay information

elated
outines:

Use vpi_put_delays() to set the delays or timing limits of an object
309 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

Figure 12-4: The s_vpi_delay structure definition

Figure 12-5: The s_vpi_time structure definition

The da field of the s_vpi_delay structure shall be a user-allocated array of s_vpi_time structures. This
array shall store delay values returned by vpi_get_delays(). The number of elements in this array
shall be determined by

— The number of delays to be retrieved
— The mtm_flag setting
— The pulsere_flag setting

The number of delays to be retrieved shall be set in the no_of_delays field of the s_vpi_delay structure.
Legal values for the number of delays shall be determined by the type of object.

— For primitive objects, the no_of_delays value shall be 2 or 3.
— For path delay objects, the no_of_delays value shall be 1, 2, 3, 6, or 12.
— For timing check objects, the no_of_delays value shall match the number of limits existing in the

timing check.
— For inter-module path objects, the no_of_delays value shall be 2 or 3.

The user-allocated s_vpi_delay array shall contain delays in the same order in which they occur in the
Verilog-AMS HDL description. The number of elements for each delay shall be determined by the flags
mtm_flag and pulsere_flag, as shown in Table 12-3.

typedef struct t_vpi_delay {
struct t_vpi_time *da; /* ptr to user allocated array of delay

values */
int no_of_delays; /* number of delays */
int time_type; /* [vpiScaledRealTime, vpiSimTime] */
bool mtm_flag; /* true for mtm */
bool append_flag; /* true for append, false for replace */
bool pulsere_flag; /* true for pulsere values */

} s_vpi_delay, *p_vpi_delay;

typedef struct t_vpi_time
{

int type; /* [vpiScaledRealTime, vpiSimTime] */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;
Copyright © 2014 Accellera Systems Initiative. 310

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

The delay structure has to be allocated before passing a pointer to vpi_get_delays().

In the following example, a static structure, prim_da, is allocated for use by each call to the
vpi_get_delays() function.

display_prim_delays(prim)
vpiHandle prim;t2

{
static s_vpi_time prim_da[3];
static s_vpi_delay delay_s = {NULL, 3, vpiScaledRealTime};
static p_vpi_delay delay_p = &delay_s;

delay_s.da = &prim_da;
vpi_get_delays(prim, delay_p);
vpi_printf("Delays for primitive %s: %6.2f %6.2f %6.2f\n",
vpi_get_str(vpiFullName, prim)
delay_p->da[0].real, delay_p->da[1].real, delay_p->da[2].real);

}

Table 12-3—Size of the s_vpi_delay->da array

Flag values Number of s_vpi_time array elements
required for s_vpi_delay->da

Order in which delay elements
shall be filled

mtm_flag = false
pulsere_flag = false no_of_delays

1st delay: da[0] -> 1st delay
2nd delay: da[1] -> 2nd delay
...

mtm_flag = true
pulsere_flag = false 3 * no_of_delays

1st delay: da[0] -> min delay
 da[1] -> typ delay
 da[2] -> max delay
2nd delay: ...

mtm_flag = false
pulsere_flag = true 3 * no_of_delays

1st delay: da[0] -> delay
 da[1] -> reject limit
 da[2] -> error limit
2nd delay element: ...

mtm_flag = true
pulsere_flag = true 9 * no_of_delays

1st delay: da[0] -> min delay
 da[1] -> typ delay
 da[2] -> max delay
 da[3] -> min reject
 da[4] -> typ reject
 da[5] -> max reject
 da[6] -> min error
 da[7] -> typ error
 da[8] -> max error
2nd delay: ...
311 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

R
r

S

S

R

A

R
r

12.12 vpi_get_str()

The VPI routine vpi_get_str() shall return string property values. The string shall be placed in a tem-
porary buffer which shall be used by every call to this routine. If the string is to be used after a subsequent
call, the string needs to be copied to another location. A different string buffer shall be used for string values
returned through the s_vpi_value structure.

The following example illustrates the usage of vpi_get_str().

char *str;
vpiHandle mod = vpi_handle_by_name("top.mod1",NULL);
vpi_printf ("Module top.mod1 is an instance of %s\n",

vpi_get_str(vpiDefName, mod));

12.13 vpi_get_analog_systf_info()

vpi_get_str()

ynopsis: Get the value of a string property of an object.

yntax: vpi_get_str(prop, obj)

Type Description

eturns: char * Pointer to a character string containing the property value

Type Name Description

rguments: int prop An integer constant representing the property of an object
for which to obtain a value

vpiHandle obj Handle to an object

elated
outines:

Use vpi_get() to get integer and Boolean properties

vpi_get_analog_systf_info()

ynopsis: Retrieve information about a user-defined analog system task/function-related callback.

yntax: vpi_get_analog_systf_info(obj, systf_data_p)

Type Description

eturns: void

Type Name Description

rguments: vpiHandle obj Handle to a system task/function-related callback

p_vpi_analog_sy
stf_data

systf_data_p Pointer to a structure containing callback information

elated
outines:

Use vpi_get_cb_info() to retrieve information about a simulation-related callback
Copyright © 2014 Accellera Systems Initiative. 312

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

S

S

R

A

R
r

The VPI routine vpi_get_analog_systf_info() shall return information about a user-defined ana-
log system task or function callback in an s_vpi_analog_systf_data structure. The memory for this
structure shall be allocated by the user.

The s_vpi_systf_data structure used by vpi_get_analog_systf_info() is defined in
vpi_user.h and is listed in Figure 12-6.

Figure 12-6: The s_vpi_systf_data structure definition

12.14 vpi_get_systf_info()

The VPI routine vpi_get_systf_info() shall return information about a user-defined system task or
function callback in an s_vpi_systf_data structure. The memory for this structure shall be allocated by
the user.

The s_vpi_systf_data structure used by vpi_get_systf_info() is defined in vpi_user.h and is
listed in Figure 12-7.

vpi_get_systf_info()

ynopsis: Retrieve information about a user-defined system task/function-related callback.

yntax: vpi_get_systf_info(obj, systf_data_p)

Type Description

eturns: void

Type Name Description

rguments: vpiHandle obj Handle to a system task/function-related callback

p_vpi_systf_data systf_data_p Pointer to a structure containing callback information

elated
outines:

Use vpi_get_cb_info() to retrieve information about a simulation-related callback

typedef struct t_vpi_analog_systf_data {
int type; /* vpiSys[Task,Function] */
int sysfunctype; /* vpi[IntFunc,RealFunc,TimeFunc,SizedFunc] */
char *tfname; /* first character shall be “$” */
int (*calltf)();
int (*compiletf)();
int (*sizetf)(); /* for vpiSizedFunc system functions only */
p_vpi_stf_partials (*derivtf)(); /* for partial derivatives */
char *user_data;

} s_vpi_analog_systf_data, *p_vpi_analog_systf_data;
313 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

R
r

Figure 12-7: The s_vpi_systf_data structure definition

12.15 vpi_get_time()

The VPI routine vpi_get_time() shall retrieve the current simulation time, using the time scale of the
object. If obj is NULL, the simulation time is retrieved using the simulation time unit. The time_p->type field
shall be set to indicate if scaled real, analog, or simulation time is desired. The memory for the time_p struc-
ture shall be allocated by the user.

The s_vpi_time structure used by vpi_get_time() is defined in vpi_user.h and is listed in
Figure 12-8 (this is the same time structure as used by vpi_put_value()).

Figure 12-8: The s_vpi_time structure definition

vpi_get_time()

ynopsis: Retrieve the current simulation.

yntax: vpi_get_time(obj, time_p)

Type Description

eturns: void

Type Name Description

rguments: vpiHandle obj Handle to an object

p_vpi_time time_p Pointer to a structure containing time information

elated
outines:

typedef struct t_vpi_systf_data {
int type; /* vpiSys[Task,Function] */
int sysfunctype; /* vpi[IntFunc,RealFunc,TimeFunc,SizedFunc] */
char *tfname; /* first character shall be “$” */
int (*calltf)();
int (*compiletf)();
int (*sizetf)(); /* for vpiSizedFunc system functions only */
char *user_data;

} s_vpi_systf_data, *p_vpi_systf_data;

typedef struct t_vpi_time {
int type; /* for vpiScaledRealTime, vpiSimTime,

vpiAnalogTime */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;
Copyright © 2014 Accellera Systems Initiative. 314

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

S

S

R

A

R
r

12.16 vpi_get_value()

The VPI routine vpi_get_value() shall retrieve the simulation value of VPI objects (use
vpi_get_analog_value() for the simulation value of VPI analog quantity objects). The value shall
be placed in an s_vpi_value structure, which has been allocated by the user. The format of the value shall
be set by the format field of the structure.

When the format field is vpiObjTypeVal, the routine shall fill in the value and change the format field
based on the object type, as follows:

— For an integer, vpiIntVal
— For a real, vpiRealVal
— For a scalar, either vpiScalar or vpiStrength
— For a time variable, vpiTimeVal with vpiSimTime
— For a vector, vpiVectorVal

The buffer this routine uses for string values shall be different from the buffer which vpi_get_str()
shall use. The string buffer used by vpi_get_value() is overwritten with each call. If the value is needed,
it needs to be saved by the application.

The s_vpi_value, s_vpi_vecval and s_vpi_strengthval structures used by vpi_get_value()
are defined in vpi_user.h and are listed in Figure 12-9, Figure 12-10, and Figure 12-11.

vpi_get_value()

ynopsis: Retrieve the simulation value of an object.

yntax: vpi_get_value(obj, value_p)

Type Description

eturns: void

Type Name Description

rguments: vpiHandle obj Handle to an expression

p_vpi_value value_p Pointer to a structure containing value information

elated
outines:

Use vpi_get_analog_value() for simulation value of quantity objects.
Use vpi_put_value() to set the value of an object
315 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

Figure 12-9: The s_vpi_value structure definition

Figure 12-10: The s_vpi_vecval structure definition

Figure 12-11: The s_vpi_strengthval structure definition

For vectors, the p_vpi_vecval field shall point to an array of s_vpi_vecval structures. The size of this
array shall be determined by the size of the vector, where array_size = ((vector_size-1)/32 + 1). The lsb of
the vector shall be represented by the lsb of the 0-indexed element of s_vpi_vecval array. The 33rd bit of
the vector shall be represented by the lsb of the 1-indexed element of the array, and so on. The memory for
the union members str, time, vector, strength, and misc of the value union in the s_vpi_value structure
shall be provided by the routine vpi_get_value(). This memory shall only be valid until the next call
to vpi_get_value(). (The user shall provide the memory for these members when calling
vpi_put_value()). When a value change callback occurs for a value type of vpiVectorVal, the sys-
tem shall create the associated memory (an array of s_vpi_vecval structures) and free the memory upon
the return of the callback.

typedef struct t_vpi_value {
int format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar,Int,Real,String,

Time,Vector,Strength,ObjType]Val*/
union {

char *str;
int scalar; /* vpi[0,1,X,Z] */
int integer;
double real;
struct t_vpi_time *time;
struct t_vpi_vecval *vector;
struct t_vpi_strengthval *strength;
char *misc;

} value;
} s_vpi_value, *p_vpi_value;

typedef struct t_vpi_vecval {
int aval, bval; /* bit encoding: ab: 00=0, 10=1, 11=X, 01=Z */

} s_vpi_vecval, *p_vpi_vecval;

typedef struct t_vpi_strengthval {
int logic; /* vpi[0,1,X,Z] */
int s0, s1; /* refer to strength coding in the LRM */

} s_vpi_strengthval, *p_vpi_strengthval;
Copyright © 2014 Accellera Systems Initiative. 316

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
To get the ASCII values of UDP table entries (as explained in 8.1.6, Table 8-1 of IEEE Std 1364-2005 Ver-
ilog HDL), the p_vpi_vecval field shall point to an array of s_vpi_vecval structures. The size of this array
shall be determined by the size of the table entry (no. of symbols per table entry), where
array_size = ((table_entry_size-1)/4 + 1). Each symbol shall require a byte; the ordering of the symbols
within s_vpi_vecval shall be the most significant byte of abit first, then the least significant byte of abit,
then the most significant byte of bbit, and then the least significant byte of bbit. Each symbol can be either
one or two characters; when it is a single character, the second half of the byte shall be an ASCII “\0”.

The misc field in the s_vpi_value structure shall provide for alternative value types, which can be imple-
mentation specific. If this field is utilized, one or more corresponding format types shall also be provided.

In the following example, the binary value of each net which is contained in a particular module and whose
name begins with a particular string is displayed. (This function makes use of the strcmp() facility nor-
mally declared in a string.h C library.)

void display_certain_net_values(mod, target)
vpiHandle mod;
char *target;
{

Table 12-4—Return value field of the s_vpi_value structure union

Format Union member Return description

vpiBinStrVal str String of binary char(s) [1, 0, x, z]

vpiOctStrVal str String of octal char(s) [0–7, x, X, z, Z]
xWhen all the bits are x
XWhen some of the bits are x
zWhen all the bits are z
ZWhen some of the bits are z

vpiDecStrVal str String of decimal char(s) [0–9]

vpiHexStrVal str String of hex char(s) [0–f, x, X, z, Z]
xWhen all the bits are x
XWhen some of the bits are x
zWhen all the bits are z
ZWhen some of the bits are z

vpiScalarVal scalar vpi1, vpi0, vpiX, vpiZ, vpiH, vpiL

vpiIntVal integer Integer value of the handle. Any bits x or z in the value
of the object are mapped to a 0

vpiRealVal real Value of the handle as a double

vpiStringVal str A string where each 8-bit group of the value of the
object is assumed to represent an ASCII character

vpiTimeVal time Integer value of the handle using two integers

vpiVectorVal vector aval/bval representation of the value of the object

vpiStrengthVal strength Value plus strength information of a scalar object only

vpiObjectVal — Return a value in the closest format of the object

NOTE—If the object has a real value, it shall be converted to an integer using the rounding defined by the Verilog-
AMS HDL before being returned in a format other than vpiRealVal.
317 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
static s_vpi_value value_s = {vpiBinStrVal};
static p_vpi_value value_p = &value_s;
vpiHandle net, itr;

itr = vpi_iterate(vpiNet, mod);
while (net = vpi_scan(itr))
{

char *net_name = vpi_get_str(vpiName, net);
if (strcmp(target, net_name) == 0)
{

vpi_get_value(net, value_p);
vpi_printf("Value of net %s: %s\n",

vpi_get_str(vpiFullName, net),value_p->value.str);
}

}
}

The following example illustrates the use of vpi_get_value() to access UDP table entries. Two sample
outputs from this example are provided after the example.

/*
* hUDP shall be a handle to a UDP definition
*/

static void dumpUDPTableEntries(vpiHandle hUDP)

{
vpiHandle hEntry, hEntryIter;
 s_vpi_value value;
 int numb;
 int udpType;
 int item;
 int entryVal;
 int *abItem;
 int cnt, cnt2;
 numb = vpi_get(vpiSize, hUDP);
 udpType = vpi_get(vpiPrimType, hUDP);
 if (udpType == vpiSeqPrim)

 numb++; /* There is one more table entry for state */
 numb++; /* There is a table entry for the output */
 hEntryIter = vpi_iterate(vpiTableEntry, hUDP);
 if (!hEntryIter)

return;
 value.format = vpiVectorVal;
 while(hEntry = vpi_scan(hEntryIter))
{

vpi_printf("\n");
/* Show the entry as a string */
value.format = vpiStringVal;
vpi_get_value(hEntry, &value);
vpi_printf("%s\n", value.value.str);
/* Decode the vector value format */
value.format = vpiVectorVal;
vpi_get_value(hEntry, &value);
abItem = (int *)value.value.vector;
for(cnt=((numb-1)/2+1);cnt>0;cnt--)
{

entryVal = *abItem;
abItem++;
Copyright © 2014 Accellera Systems Initiative. 318

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
/* Rip out 4 characters */
for (cnt2=0;cnt2<4;cnt2++)
{

item = entryVal&0xff;
if (item)

vpi_printf("%c", item);
else

vpi_printf("_");
entryVal = entryVal>>8;

}
}

}
vpi_printf("\n");

}

For a UDP table of

1 0 :?:1;
0 (01) :?:-;
(10) 0 :0:1;

The output from the preceding example is

10:1
_0_1___1
01:0
_1_0___0
00:1
_0_0___1

For a UDP table entry of

1 0 :?:1;
0 (01) :?:-;
(10) 0 :0:1;

The output from the preceding example is

10:?:1
_0_1_1_?
0(01):?:-
10_0_-_?
(10)0:0:1
001_1_0
319 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

12.17 vpi_get_vlog_info()

The VPI routine vpi_get_vlog_info() shall obtain the following information about Verilog-AMS
product execution:

— The number of invocation options (argc)
— Invocation option values (argv)
— Product and version strings

The information shall be contained in an s_vpi_vlog_info structure. The routine shall return TRUE on
success and FALSE on failure.

The s_vpi_vlog_info structure used by vpi_get_vlog_info() is defined in vpi_user.h and is
listed in Figure 12-12.

Figure 12-12: The s_vpi_vlog_info structure definition

vpi_get_vlog_info()

ynopsis: Retrieve information about Verilog-AMS simulation execution.

yntax: vpi_get_vlog_info(vlog_info_p)

Type Description

eturns: bool true on success and false on failure

Type Name Description

rguments: p_vpi_vlog_info vlog_info_p Pointer to a structure containing simulation information

typedef struct t_vpi_vlog_info {
int argc;
char **argv;
char *product;
char *version;

} s_vpi_vlog_info, *p_vpi_vlog_info;
Copyright © 2014 Accellera Systems Initiative. 320

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

S

S

R

A

S

S

R

A

R
r

12.18 vpi_get_real()

The VPI routine vpi_get_real() shall return the value of object properties, for properties of type real.
Note for object properties shown below, if the object is NULL, then the corresponding value shall be
returned.

— vpiStartTime for beginning of transient analysis time
— vpiEndTime for end of transient analysis time
— vpiTransientMaxStep for maximum analog time step
— vpiStartFrequency for the start frequency of AC analysis
— vpiEndFrequency for the end frequency of AC analysis

This function is available to analog tasks and functions only. Should an error occur, vpi_get_real()
shall return vpiUndefined.

12.19 vpi_handle()

vpi_get_real()

ynopsis: Fetch a real property value associated with an object.

yntax: vpi_get_real(prop,obj)

Type Description

eturns: double value of a real property

Type Name Description

rguments: int prop An integer constant representing the property of an object
for which to obtain a value

vpiHandle obj Handle to an object

vpi_handle()

ynopsis: Obtain a handle to an object with a one-to-one relationship.

yntax: vpi_handle(type, ref)

Type Description

eturns: vpiHandle Handle to an object

Type Name Description

rguments: int type An integer constant representing the type of object for
which to obtain a handle

vpiHandle ref Handle to a reference object

elated
outines:

Use vpi_iterate() and vpi_scan() to obtain handles to objects with a one-to-many relationship
Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship
321 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

The VPI routine vpi_handle() shall return the object of type type associated with object ref. The one-to-
one relationships which are traversed with this routine are indicated as single arrows in the data model dia-
grams.

The following example application displays each primitive that an input net drives.

void display_driven_primitives(net)
vpiHandle net;
{

vpiHandle load, prim, itr;
vpi_printf("Net %s drives terminals of the primitives: \n",

vpi_get_str(vpiFullName, net));
itr = vpi_iterate(vpiLoad, net);
if (!itr)

return;
while (load = vpi_scan(itr))
{

switch(vpi_get(vpiType, load))
{

case vpiGate:
case vpiSwitch:
case vpiUdp:

prim = vpi_handle(vpiPrimitive, load);
vpi_printf("\t%s\n", vpi_get_str(vpiFullName, prim));

}
}

}

12.20 vpi_handle_by_index()

The VPI routine vpi_handle_by_index() shall return a handle to an object based on the index num-
ber of the object within a parent object. This function can be used to access all objects which can access an
expression using vpiIndex. Argument obj shall represent the parent of the indexed object. For example, to
access a net-bit, obj is the associated net, while for a memory word, obj is the associated memory.

vpi_handle_by_index()

ynopsis: Get a handle to an object using its index number within a parent object.

yntax: vpi_handle_by_index(obj, index)

Type Description

eturns: vpiHandle Handle to an object

Type Name Description

rguments: vpiHandle obj Handle to an object

int index Index number of the object for which to obtain a handle
Copyright © 2014 Accellera Systems Initiative. 322

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

S

S

R

A

S

S

R

A

R
r

12.21 vpi_handle_by_name()

The VPI routine vpi_handle_by_name() shall return a handle to an object with a specific name. This
function can be applied to all objects with a fullname property. The name can be hierarchical or simple. If
scope is NULL, then name shall be searched for from the top level of hierarchy. Otherwise, name shall be
searched for from scope using the scope search rules defined by the Verilog-AMS HDL.

12.22 vpi_handle_multi()

The VPI routine vpi_handle_multi() shall return a handle to objects of type vpiInterModPath
associated with a list of output port and input port reference objects. The ports shall be of the same size and
can be at different levels of the hierarchy. This routine performs a many-to-one operation instead of the
usual one-to-one or one-to-many.

12.22.1 Derivatives for analog system task/functions

The VPI routine vpi_handle_multi() is used to access the derivative handles associated with analog
system task/functions (see also: vpi_register_analog_systf()). The first argument is the type
vpiDerivative. The second is the handle for the task/function argument for which a partial derivative is

vpi_handle_by_name()

ynopsis: Get a handle to an object with a specific name.

yntax: vpi_handle_by_name(name, scope)

Type Description

eturns: vpiHandle Handle to an object

Type Name Description

rguments: char * name A character string or pointer to a string containing the name
of an object

vpiHandle scope Handle to a Verilog-AMS HDL scope

vpi_handle_multi()

ynopsis: Obtain a handle to inter-module paths with a many-to-one relationship.

yntax: vpi_handle_multi(type, ref1, ref2, ...)

Type Description

eturns: vpiHandle Handle to an object

Type Name Description

rguments: int type An integer constant representing the type of object for
which to obtain a handle

vpiHandle ref1, ref2, ... Handles to two or more reference objects

elated
outines:

Use vpi_iterate() and vpi_scan() to obtain handles to objects with a one-to-many relationship
Use vpi_handle() to obtain handles to objects with a one-to-one relationship
323 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
to be declared. The third argument indicates the value with respect to which the derivative being declared
shall be calculated. For example, assuming argHandle2 and argHandle3 are handles to the second and
third arguments of an analog system task, then vpi_handle_multi(vpiDerivative, argHandle2,
argHandle3) indicates the partial derivative of the returned value with respect to the third argument. For
vpiDerivative, the vpi_handle_multi() function can only be called for those derivatives allo-
cated during the derivtf phase of execution.

12.22.2 Examples

The following example illustrates the declaration and use of derivative handles in a analog task $resis-
tor(), which implements a conductance relationship. The task can be used as follows:

module resistor(p, n);
electrical p, n;
parameter real r = 1k;
real curr;
analog begin

$resistor(curr, V(p, n), r);
I(p, n) <+ curr;

end
endmodule

The implementation of the analog task can be performed by the resistor_compile_tf() and
resistor_call_tf() routines shown below:

#include "vpiutils.h"

/* compiletf() */
static int resistor_compiletf(p_cb_data cb_data) {

vpiHandle funcHandle, i_handle, v_handle, r_handle, didv_handle;
int type;
s_vpi_value value;
double g;
p_resistor_data res;

/* Retrieve handle to current function */
funcHandle = vpi_handle(vpiSysTfCall, NULL);

/* Get the handle on the first function argument*/
i_handle = vpi_handle_by_index(funcHandle, 1);

/* Check that argument exists */
if (!i_handle) {

vpi_error("Not enough arguments for $resistor function.");
}

/* Check that argument #1 is a real variable */
type = vpi_get(vpiType, v_handle);
if (type != vpiRealVar) {

vpi_error("Arg #1 of $resistor should be a real variable");
return 1;

}

/* Get the handle on the second function argument*/
v_handle = vpi_handle_by_index(funcHandle, 2);

/* Check that argument exists */
Copyright © 2014 Accellera Systems Initiative. 324

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
if (!v_handle) {
vpi_error("Not enough arguments for $resistor function.");
return 1;

}

/* Check that argument #1 is a real valued */
type = vpi_get(vpiType, v_handle);
if (type != vpiRealVar && type != vpiRealVal) {

vpi_error("Arg #2 of $resistor should be a real variable");
return 1;

}
/* Get the handle on the third function argument*/
r_handle = vpi_handle_by_index(funcHandle, 3);

/* Check that argument exists */
if (!v_handle) {

vpi_error("Not enough arguments for $resistor function.");
return 1;

}

/* Check that argument #3 is real valued */
type = vpi_get(vpiType, r_handle);
if (type != vpiRealVar && type != vpiRealVal) {

vpi_error("Arg #3 of $resistor should be a real variable");
return 1;

}

return 0;
}

/* derivtf() */
static p_vpi_stf_partials resistor_derivtf(p_cb_data cb_data) {

static t_vpi_stf_partials derivs;
static int deriv_of[] = { 1 };
static int deriv_to[] = { 2 };

derivs.count = 1;
derivs.derivative_of = deriv_of;
derivs.derivative_to = deriv_to;

return &derivs;
}

/* load() */
static int resistor_calltf(int data, int reason) {

vpiHandle funcHandle, i_handle, v_handle, didv_handle;
double g;
s_vpi_value value;

/* Retrieve handle to current function */
funcHandle = vpi_handle(vpiSysTfCall, NULL);
i_handle = vpi_handle_by_index(funcHandle, 1);
v_handle = vpi_handle_by_index(funcHandle, 2);
didv_handle = vpi_handle_multi(vpiDerivative, i_handle, v_handle);

/* Get resistance value, compute conductance and store it as */
/* derivative */
value.format = vpiRealVal;
vpi_get_value(r_handle, &value);
325 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

R
r

g = 1.0 / value.value.real;

value.value.real = g;
vpi_put_value(didv_handle, &value, NULL, vpiNoDelay);

/* Get voltage value, compute current and store it into "I"*/
vpi_get_value(v_handle, &value);
value.value.real *= g;
vpi_put_value(i_handle, &value, NULL, vpiNoDelay);
return 0;

}

/*
* Public structure declaring the task
*/

static s_vpi_analog_systf_data resistor_systf = {
vpiSysAnalogTask, /* type: function / task */
0, /* returned type */
"$resistor", /* name */
resistor_calltf, /* calltf callback */
resistor_compiletf, /* compiletf callback */
0, /* unused: sizetf callback */
resistor_derivtf, /* derivtf callback */
0 /* user_data: nothing */

};

12.23 vpi_iterate()

The VPI routine vpi_iterate() shall be used to traverse one-to-many relationships, which are indicated
as double arrows in the data model diagrams. The vpi_iterate() routine shall return a handle to an iter-
ator, whose type shall be vpiIterator, which can used by vpi_scan() to traverse all objects of type
type associated with object ref. To get the reference object from the iterator object use vpi_handle(vpi-
Use, iterator_handle). If there are no objects of type type associated with the reference handle ref,
then the vpi_iterate() routine shall return NULL.

vpi_iterate()

ynopsis: Obtain an iterator handle to objects with a one-to-many relationship.

yntax: vpi_iterate(type, ref)

Type Description

eturns: vpiHandle Handle to an iterator for an object

Type Name Description

rguments: int type An integer constant representing the type of object for
which to obtain iterator handles

vpiHandle ref Handle to a reference object

elated
outines:

Use vpi_scan() to traverse the HDL hierarchy using the iterator handle returned from vpi_iterate()
Use vpi_handle() to obtain handles to object with a one-to-one relationship
Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship
Copyright © 2014 Accellera Systems Initiative. 326

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

S

S

R

A

R
r

The following example application uses vpi_iterate() and vpi_scan() to display each net (includ-
ing the size for vectors) declared in the module. The example assumes it shall be passed a valid module han-
dle.

void display_nets(mod)
vpiHandle mod;
{

vpiHandle net;
vpiHandle itr;

vpi_printf("Nets declared in module %s\n",
vpi_get_str(vpiFullName, mod));

itr = vpi_iterate(vpiNet, mod);
while (net = vpi_scan(itr))
{

vpi_printf("\t%s", vpi_get_str(vpiName, net));
if (vpi_get(vpiVector, net))
{

vpi_printf(" of size %d\n", vpi_get(vpiSize, net));
}
else vpi_printf("\n");

}
}

12.24 vpi_mcd_close()

The VPI routine vpi_mcd_close() shall close the file(s) specified by a multichannel descriptor, mcd.
Several channels can be closed simultaneously, since channels are represented by discrete bits in the integer
mcd. On success this routine returns a zero (0); on error it returns the mcd value of the unclosed channels.

The following descriptors are predefined and can not be closed using vpi_mcd_close():
— descriptor 1 is stdout
— descriptor 2 is stderr
— descriptor 3 is the current log file

vpi_mcd_close()

ynopsis: Close one or more files opened by vpi_mcd_open().

yntax: vpi_mcd_close(mcd)

Type Description

eturns: unsigned int 0 if successful, the mcd of unclosed channels if unsuccessful

Type Name Description

rguments: unsigned int mcd A multichannel descriptor representing the files to close

elated
outines:

Use vpi_mcd_open() to open a file
Use vpi_mcd_printf() to write to an opened file
Use vpi_mcd_name() to get the name of a file represented by a channel descriptor
327 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

R
r

S

S

R

A

R
r

12.25 vpi_mcd_name()

The VPI routine vpi_mcd_name() shall return the name of a file represented by a single-channel descrip-
tor, cd. On error, the routine shall return NULL. This routine shall overwrite the returned value on subsequent
calls. If the application needs to retain the string, it shall copy it.

12.26 vpi_mcd_open()

The VPI routine vpi_mcd_open() shall open a file for writing and return a corresponding multichannel
descriptor number (mcd). The following channel descriptors are predefined and shall be automatically
opened by the system:

— Descriptor 1 is stdout
— Descriptor 2 is stderr
— Descriptor 3 is the current log file

The vpi_mcd_open() routine shall return a zero (0) on error. If the file is already opened,
vpi_mcd_open() shall return the descriptor number.

vpi_mcd_name()

ynopsis: Get the name of a file represented by a channel descriptor.

yntax: vpi_mcd_name(cd)

Type Description

eturns: char * Pointer to a character string containing the name of a file

Type Name Description

rguments: unsigned int cd A single-channel descriptor representing a file

elated
outines:

Use vpi_mcd_open() to open a file
Use vpi_mcd_close() to close files
Use vpi_mcd_printf() to write to an opened file

vpi_mcd_open()

ynopsis: Open a file for writing.

yntax: vpi_mcd_open(file)

Type Description

eturns: unsigned int A multichannel descriptor representing the file which was opened

Type Name Description

rguments: char * file A character string or pointer to a string containing the file
name to be opened

elated
outines:

Use vpi_mcd_close() to close a file
Use vpi_mcd_printf() to write to an opened file
Use vpi_mcd_name() to get the name of a file represented by a channel descriptor
Copyright © 2014 Accellera Systems Initiative. 328

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

S

S

R

A

R
r

S

S

R

A

R
r

12.27 vpi_mcd_printf()

The VPI routine vpi_mcd_printf() shall write to one or more channels (up to 32) determined by the
mcd. An mcd of 1 (bit 0 set) corresponds to Channel 1, a mcd of 2 (bit 1 set) corresponds to Channel 2, a
mcd of 4 (bit 2 set) corresponds to Channel 3, and so on. Channel 1 is stdout, channel 2 is stderr, and chan-
nel 3 is the current log file. Several channels can be written to simultaneously, since channels are repre-
sented by discrete bits in the integer mcd. The format strings shall use the same format as the C
fprintf() routine.The routine shall return the number of characters printed or EOF if an error occurred.

12.28 vpi_printf()

The VPI routine vpi_printf() shall write to both stdout and the current product log file. The format
string shall use the same format as the C printf() routine. The routine shall return the number of charac-
ters printed or EOF if an error occurred.

vpi_mcd_printf()

ynopsis: Write to one or more files opened with vpi_mcd_open().

yntax: vpi_mcd_printf(mcd, format, ...)

Type Description

eturns: int The number of characters written

Type Name Description

rguments: unsigned int mcd A multichannel descriptor representing the files to which to
write

char * format A format string using the C fprintf() format

elated
outines:

Use vpi_mcd_open() to open a file
Use vpi_mcd_close() to close a file
Use vpi_mcd_name() to get the name of a file represented by a channel descriptor

vpi_printf()

ynopsis: Write to stdout and the current product log file.

yntax: vpi_printf(format, ...)

Type Description

eturns: int The number of characters written

Type Name Description

rguments: char * format A format string using the C printf() format

elated
outines:

Use vpi_mcd_printf() to write to an opened file
329 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

R
r

12.29 vpi_put_delays()

The VPI routine vpi_put_delays() shall set the delays or timing limits of an object as indicated in the
delay_p structure. The same ordering of delays shall be used as described in the vpi_get_delays()
function. If only the delay changes, and not the pulse limits, the pulse limits shall retain the values they had
before the delays where altered.

The s_vpi_delay and s_vpi_time structures used by both vpi_get_delays() and
vpi_put_delays() are defined in vpi_user.h and are listed in Figure 12-13 and Figure 12-14.

Figure 12-13: The s_vpi_delay structure definition

Figure 12-14: The s_vpi_time structure definition

The da field of the s_vpi_delay structure shall be a user-allocated array of s_vpi_time structures. This
array shall store the delay values to be written by vpi_put_delays(). The number of elements in this
array shall be determined by:

vpi_put_delays()

ynopsis: Set the delays or timing limits of an object.

yntax: vpi_put_delays(obj, delay_p)

Type Description

eturns: void

Type Name Description

rguments: vpiHandle obj Handle to an object

p_vpi_delay delay_p Pointer to a structure containing delay information

elated
outines:

Use vpi_get_delays() to retrieve delays or timing limits of an object

typedef struct t_vpi_delay {
struct t_vpi_time *da; /* ptr to user allocated array of delay

values */
int no_of_delays; /* number of delays */
int time_type; /* [vpiScaledRealTime, vpiSimTime] */
bool mtm_flag; /* true for mtm */
bool append_flag; /* true for append, false for replace */
bool pulsere_flag; /* true for pulsere values */

} s_vpi_delay, *p_vpi_delay;

typedef struct t_vpi_time
{

int type; /* [vpiScaledRealTime, vpiSimTime] */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;
Copyright © 2014 Accellera Systems Initiative. 330

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
— The number of delays to be retrieved
— The mtm_flag setting
— The pulsere_flag setting

The number of delays to be retrieved shall be set in the no_of_delays field of the s_vpi_delay structure.
Legal values for the number of delays shall be determined by the type of object.

— For primitive objects, the no_of_delays value shall be 2 or 3.
— For path delay objects, the no_of_delays value shall be 1, 2, 3, 6, or 12.
— For timing check objects, the no_of_delays value shall match the number of limits existing in the

timing check.
— For inter-module path objects, the no_of_delays value shall be 2 or 3.

The user-allocated s_vpi_delay array shall contain delays in the same order in which they occur in the
Verilog-AMS HDL description. The number of elements for each delay shall be determined by the flags
mtm_flag and pulsere_flag, as shown in Table 12-5.

The following example application accepts a module path handle, rise and fall delays, and replaces the
delays of the indicated path.

void set_path_rise_fall_delays(path, rise, fall)
vpiHandle path;
double rise, fall;
{

static s_vpi_time path_da[2];
static s_vpi_delay delay_s = {NULL, 2, vpiScaledRealTime};
static p_vpi_delay delay_p = &delay_s;

Table 12-5—Size of the s_vpi_delay->da array

Flag values Number of s_vpi_time array elements
required for s_vpi_delay->da

Order in which delay elements
shall be filled

mtm_flag = false
pulsere_flag = false no_of_delays

1st delay: da[0] -> 1st delay
2nd delay: da[1] -> 2nd delay
...

mtm_flag = true
pulsere_flag = false 3 * no_of_delays

1st delay: da[0] -> min delay
 da[1] -> typ delay
 da[2] -> max delay
2nd delay: ...

mtm_flag = false
pulsere_flag = true 3 * no_of_delays

1st delay: da[0] -> delay
 da[1] -> reject limit
 da[2] -> error limit
2nd delay element: ...

mtm_flag = true
pulsere_flag = true 9 * no_of_delays

1st delay: da[0] -> min delay
 da[1] -> typ delay
 da[2] -> max delay
 da[3] -> min reject
 da[4] -> typ reject
 da[5] -> max reject
 da[6] -> min error
 da[7] -> typ error
 da[8] -> max error
2nd delay: ...
331 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

R
r

delay_s.da = &path_da;
path_da[0].real = rise;
path_da[1].real = fall;

vpi_put_delays(path, delay_p);
}

12.30 vpi_put_value()

The VPI routine vpi_put_value() shall set simulation logic values on an object. The value to be set
shall be stored in an s_vpi_value structure which has been allocated. The delay time before the value is
set shall be stored in an s_vpi_time structure which has been allocated. The routine can be applied to nets,
regs, variables, memory words, system function calls, sequential UDPs, and schedule events. The flags argu-
ment shall be used to direct the routine to use one of the following delay modes:

vpiInertialDelay All scheduled events on the object shall be removed before this event is
scheduled.

vpiTransportDelay All events on the object scheduled for times later than this event shall be
removed (modified transport delay).

vpiPureTransportDelayNo events on the object shall be removed (transport delay).
vpiNoDelay The object shall be set to the passed value with no delay. Argument

time_p shall be ignored and can be set to NULL.
vpiForceFlag The object shall be forced to the passed value with no delay (same as the

Verilog-AMS HDL procedural force). Argument time_p shall be
ignored and can be set to NULL.

vpiReleaseFlag The object shall be released from a forced value (same as the Verilog-
AMS HDL procedural release). Argument time_p shall be ignored
and can be set to NULL. The value_p shall contain the current value of the
object.

vpiCancelEvent A previously scheduled event shall be canceled. The object passed to
vpi_put_value() shall be a handle to an object of type vpiSch-
edEvent.

vpi_put_value()

ynopsis: Set a value on an object.

yntax: vpi_put_value(obj, value_p, time_p, flags)

Type Description

eturns: vpiHandle Handle to the scheduled event caused by vpi_put_value()

Type Name Description

rguments: vpiHandle obj Handle to an object

p_vpi_value value_p Pointer to a structure with value information

p_vpi_time time_p Pointer to a structure with delay information

int flags Integer constants which set the delay mode

elated
outines:

Use vpi_get_value() to retrieve the value of an expression
Copyright © 2014 Accellera Systems Initiative. 332

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
If the flags argument also has the bit mask vpiReturnEvent, vpi_put_value() shall return a handle
of type vpiSchedEvent to the newly scheduled event, provided there is some form of a delay and an
event is scheduled. If the bit mask is not used, or if no delay is used, or if an event is not scheduled, the
return value shall be NULL.

The handle to the event can be canceled by calling vpi_put_value() with the flag set to vpiCan-
celEvent. It shall not be an error to cancel an event which has already occurred. The scheduled event can
be tested by calling vpi_get() with the flag vpiScheduled. If an event is canceled, it shall simply be
removed from the event queue. Any effects which were caused by scheduling the event shall remain in
effect (e.g., events which were canceled due to inertial delay).

Calling vpi_free_object() on the handle shall free the handle but shall not effect the event.

Sequential UDPs shall be set to the indicated value with no delay regardless of any delay on the primitive
instance.

NOTE—vpi_put_value() shall only return a function value in a calltf application, when the call to the
function is active. The action of vpi_put_value() to a function shall be ignored when the function is not active.

The s_vpi_value and s_vpi_time structures used by vpi_put_value() are defined in vpi_user.h
and are listed in Figure 12-15 and Figure 12-16.

Figure 12-15: The s_vpi_value structure definition

Figure 12-16: The s_vpi_time structure definition

For vpiScaledRealTime, the indicated time shall be in the timescale associated with the object.

typedef struct t_vpi_value {
int format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar,Int,Real,String,

Time,Vector,Strength,ObjType]Val*/
union {

char *str;
int scalar; /* vpi[0,1,X,Z] */
int integer;
double real;
struct t_vpi_time *time;
struct t_vpi_vecval *vector;
struct t_vpi_strengthval *strength;
char *misc;

} value;
} s_vpi_value, *p_vpi_value;

typedef struct t_vpi_time {
int type; /* for vpiScaledRealTime, vpiSimTime */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;
333 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

R
r

12.31 vpi_register_cb()

The VPI routine vpi_register_cb() is used for registration of simulation-related callbacks to a user-
provided application for a variety of reasons during a simulation. The reasons for which a callback can occur
are divided into three categories:

— Simulation event
— Simulation time
— Simulation action or feature

How callbacks are registered for each of these categories is explained in the following paragraphs.

The cb_data_p argument shall point to a s_cb_data structure, which is defined in vpi_user.h and given
in Figure 12-17.

Figure 12-17: The s_cb_data structure definition

For all callbacks, the reason field of the s_cb_data structure shall be set to a predefined constant, such as
cbValueChange, cbAtStartOfSimTime, cbEndOfCompile, etc. The reason constant shall deter-
mine when the user application shall be called back. Refer to the vpi_user.h file listing in Annex G of the
IEEE Std 1364-2005 Verilog HDL specification for a list of all callback reason constants.

The cb_rtn field of the s_cb_data structure shall be set to the application routine name, which shall be
invoked when the simulator executes the callback. The use of the remaining fields are detailed in the follow-
ing sub clauses.

vpi_register_cb()

ynopsis: Register simulation-related callbacks.

yntax: vpi_register_cb(cb_data_p)

Type Description

eturns: vpiHandle Handle to the callback object

Type Name Description

rguments: p_cb_data cb_data_p Pointer to a structure with data about when callbacks
should occur and the data to be passed

elated
outines:

Use vpi_register_systf() to register callbacks for user-defined system tasks and functions
Use vpi_remove_cb() to remove callbacks registered with vpi_register_cb()

typedef struct t_cb_data {
int reason;
int (*cb_rtn)();
vpiHandle obj;
p_vpi_time time; /* structure defined in vpi_user.h */
p_vpi_value value; /* structure defined in vpi_user.h */
int index; /* index of memory word or var select which changed */
char *user_data; /* user data to be passed to callback function */

} s_cb_data, *p_cb_data;
Copyright © 2014 Accellera Systems Initiative. 334

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
12.31.1 Simulation-event-related callbacks

The vpi_register_cb() callback mechanism can be registered for callbacks to occur for simulation
events, such as value changes on an expression or terminal, or the execution of a behavioral statement.
When the cb_data_p->reason field is set to one of the following, the callback shall occur as described
below:

cbValueChange After value change on an expression or terminal
cbStmt Before execution of a behavioral statement
cbForce/cbRelease After a force or release has occurred
cbAssign/cbDeassign After a procedural assign or deassign statement has been executed
cbDisable After a named block or task containing a system task or function has

been disabled

The following fields shall need to be initialized before passing the s_cb_data structure to
vpi_register_cb():

cb_data_p->obj This field shall be assigned a handle to an expression, terminal, or state-
ment for which the callback shall occur. For force and release callbacks,
if this is set to NULL, every force and release shall generate a callback.

cb_data_p->time->type This field shall be set to either vpiScaledRealTime or vpiSim-
Time, depending on what time information the user application requires
during the callback. If simulation time information is not needed during
the callback, this field can be set to vpiSuppressTime.

cb_data_p->value->format This field shall be set to one of the value formats indicated in Table 12-6.
If value information is not needed during the callback, this field can be
set to vpiSuppressVal. For cbStmt callbacks, value information is
not passed to the callback routine, so this field shall be ignored.

When a simulation event callback occurs, the user application shall be passed a single argument, which is a
pointer to an s_cb_data structure (this is not a pointer to the same structure which was passed to

Table 12-6—Value format field of cb_data_p->value->format

Format Registers a callback to return

vpiBinStrVal String of binary char(s) [1, 0, x, z]

vpiOctStrVal String of octal char(s) [0–7, x, X, z, Z]

vpiDecStrVal String of decimal char(s) [0–9]

vpiHexStrVal String of hex char(s) [0–f, x, X, z, Z]

vpiScalarVal vpi1, vpi0, vpiX, vpiZ, vpiH, vpiL

vpiIntVal Integer value of the handle

vpiRealVal Value of the handle as a double

vpiStringVal An ASCII string

vpiTimeVal Integer value of the handle using two integers

vpiVectorVal aval/bval representation of the value of the object

vpiStrengthVal Value plus strength information of a scalar object only

vpiObjectVal Return a value in the closest format of the object
335 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
vpi_register_cb()). The time and value information shall be set as directed by the time type and
value format fields in the call to vpi_register_cb(). The user_data field shall be equivalent to the
user_data field passed to vpi_register_cb(). The user application can use the information in the
passed structure and information retrieved from other VPI interface routines to perform the desired callback
processing.

For a cbValueChange callback, if the obj is a memory word or a variable array, the value in the
s_cb_data structure shall be the value of the memory word or variable select which changed value. The
index field shall contain the index of the memory word or variable select which changed value.

For cbForce, cbRelease, cbAssign, and cbDeassign callbacks, the object returned in the obj field
shall be a handle to the force, release, assign or deassign statement. The value field shall contain the resul-
tant value of the LHS expression. In the case of a release, the value field shall contain the value after the
release has occurred.

The following example shows an implementation of a simple monitor functionality for scalar nets, using a
simulation-event-related callback.

setup_monitor(net)
vpiHandle net;
{

static s_vpi_time time_s = {vpiScaledRealTime};
static s_vpi_value value_s = {vpiBinStrVal};
static s_cb_data cb_data_s =

{cbValueChange, my_monitor, NULL, &time_s, &value_s};
char *net_name = vpi_get_str(vpiFullName, net);
cb_data_s.obj = net;
cb_data_s.user_data = malloc(strlen(net_name)+1);
strcpy(cb_data_s.user_data, net_name);
vpi_register_cb(&cb_data_s);

}

my_monitor(cb_data_p)
p_cb_data cb_data_p; {

vpi_printf("%d %d: %s = %s\n",
cb_data_p->time->high, cb_data_p->time->low,
cb_data_p->user_data,
cb_data_p->value->value.str);

}

12.31.2 Simulation-time-related callbacks

The vpi_register_cb() can register callbacks to occur for simulation time reasons, include callbacks
at the beginning or end of the execution of a particular time queue. The following time-related callback rea-
sons are defined:

cbAtStartOfSimTime Callback shall occur before execution of events in a specified time
queue. A callback can be set for any time, even if no event is present.

cbReadWriteSynch Callback shall occur after execution of events for a specified time.
cbReadOnlySynch Same as cbReadWriteSynch, except writing values or scheduling

events before the next scheduled event is not allowed.
cbNextSimTime Callback shall occur before execution of events in the next event queue.
cbAfterDelay Callback shall occur after a specified amount of time, before execution of

events in a specified time queue. A callback can be set for anytime, even
if no event is present.
Copyright © 2014 Accellera Systems Initiative. 336

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The following fields shall need to be set before passing the s_cb_data structure to
vpi_register_cb():

cb_data_p->time->type This field shall be set to either vpiScaledRealTime or vpiSim-
Time, depending on what time information the user application requires
during the callback.

cb_data_p->[time->low,time->high,time->real]
These fields shall contain the requested time of the callback or the delay
before the callback.

The value fields are ignored for all reasons with simulation-time-related callbacks.

When the cb_data_p->time->type is set to vpiScaledRealTime, the cb_data_p->obj field shall be used
as the object for determining the time scaling.

For reason cbNextSimTime, the time structure is ignored.

When a simulation-time-related callback occurs, the user callback application shall be passed a single argu-
ment, which is a pointer to an s_cb_data structure (this is not a pointer to the same structure which was
passed to vpi_register_cb()). The time structure shall contain the current simulation time. The
user_data field shall be equivalent to the user_data field passed to vpi_register_cb().

The callback application can use the information in the passed structure and information retrieved from
other interface routines to perform the desired callback processing.

12.31.3 Simulator analog and related callbacks

The vpi_register_cb() callback mechanism can be registered for callbacks to occur for analog simu-
lation events, such as acceptance of the initial or final analog solution. When the cb_data_p->reason field is
set to one of the following, the callback shall occur as described below:

acbInitialStep Upon acceptance of the first analog solution
acbFinalStep Upon acceptance of the last analog solution
acbAbsTime Upon acceptance of the analog solution for the given time (this callback

shall force a solution at that time)
acbElapsedTime Upon acceptance of the solution advanced from the current solution by

the given interval (this callback shall force a solution at that time)
acbConvergenceTest Prior acceptance of the analog solution for the given time (this callback

allows rejection of the analog solution at that time and backup to an ear-
lier time)

acbAcceptedPoint Upon acceptance of the solution at the given time

12.31.4 Simulator action and feature related callbacks

The vpi_register_cb() can register callbacks to occur for simulator action reasons or simulator fea-
ture reasons. Simulator action reasons are callbacks such as the end of compilation or end of simulation.
Simulator feature reasons are software-product-specific features, such as restarting from a saved simulation
state or entering an interactive mode. Actions are differentiated from features in that actions shall occur in
all VPI-compliant products, whereas features might not exist in all VPI-compliant products.

The following action-related callbacks shall be defined:
cbEndOfCompile End of simulation data structure compilation or build
cbStartOfSimulation Start of simulation (beginning of time 0 simulation cycle)
337 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
cbEndOfSimulation End of simulation (e.g., $finish system task executed)
cbError Simulation run-time error occurred
cbPLIError Simulation run-time error occurred in a PLI function call
cbTchkViolation Timing check error occurred

Examples of possible feature related callbacks are
cbStartOfSave Simulation save state command invoked
cbEndOfSave Simulation save state command completed
cbStartOfRestart Simulation restart from saved state command invoked
cbEndOfRestart Simulation restart command completed
cbEnterInteractive Simulation entering interactive debug mode (e.g., $stop system task

executed)
cbExitInteractive Simulation exiting interactive mode
cbInteractiveScopeChangeSimulation command to change interactive scope executed
cbUnresolvedSystf Unknown user-defined system task or function encountered

The only fields in the s_cb_data structure which need to be setup for simulation action/feature callbacks
are the reason, cb_rtn, and user_data (if desired) fields.

When a simulation action/feature callback occurs, the user routine shall be passed a pointer to an
s_cb_data structure. The reason field shall contain the reason for the callback. For cbTchkViolation
callbacks, the obj field shall be a handle to the timing check. For cbInteractiveScopeChange, obj
shall be a handle to the new scope. For cbUnresolvedSystf, user_data shall point to the name of the
unresolved task or function. On a cbError callback, the routine vpi_chk_error() can be called to
retrieve error information.

The following example shows a callback application which reports cpu usage at the end of a simulation. If
the user routine setup_report_cpu() is placed in the vlog_startup_routines list, it shall be called
just after the simulator is invoked.

static int initial_cputime_g;

void report_cpu()
{

int total = get_current_cputime() - initial_cputime_g;
vpi_printf("Simulation complete. CPU time used: %d\n", total);

}

void setup_report_cpu()
{

static s_cb_data cb_data_s = {cbEndOfSimulation, report_cpu};
initial_cputime_g = get_current_cputime();
vpi_register_cb(&cb_data_s);

}

Copyright © 2014 Accellera Systems Initiative. 338

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

S

S

R

A

R
r

12.32 vpi_register_analog_systf()

The VPI routine vpi_register_analog_systf() shall register callbacks for user-defined analog
system tasks or functions. Callbacks can be registered to occur when a user-defined system task or function
is encountered during compilation or execution of analog Verilog-AMS HDL source code. Tasks or func-
tions can be registered with either the analog or digital domain. The registration function
(vpi_register_analog_systf() or vpi_register_systf()) with which the task or function
is registered shall determine the context or contexts from which the task or function can be invoked and how
and when the call backs associated with the function shall be called. The task or function name shall be
unique in the domain in which it is registered. That is, the same name can be shared by two sets of callbacks,
provided that one set is registered in the digital domain and the other is registered in the analog.

The systf_analog_data_p argument shall point to a s_vpi_systf_analog_data structure, which is
defined in vpi_user.h and listed in Figure 12-18.

Figure 12-18: The s_vpi_analog_systf_data structure definition

12.32.1 System task and function callbacks

User-defined Verilog-AMS system tasks and functions which use VPI routines can be registered with
vpi_register_systf() or vpi_register_analog_systf(). The calltf, compiletf, and sizetf
system task/function-related callbacks are defined in vpi_register_systf().

vpi_register_analog_systf()

ynopsis: Register user-defined system task/function-related callbacks.

yntax: vpi_register_analog_systf(systf_data_p)

Type Description

eturns: vpiHandle Handle to the callback object

Type Name Description

rguments: p_vpi_analog_sy
stf_data

systf_analog_data_p Pointer to a structure with data about when callbacks
should occur and the data to be passed

elated
outines:

Use vpi_register_systf() to register digital domain system tasks/functions.
Use vpi_register_cb() to register callbacks for simulation-related events

typedef struct t_vpi_systf_analog_data {
int type; /* vpiAnalogSysTask,vpiAnalogSysFunc */
int sysfunctype; /* vpi[IntFunc,RealFunc] */
char *tfname; /* first character shall be “$” */
int (*calltf)();
int (*compiletf)();
int (*sizetf)(); /* for vpiSizedFunc system functions only */
p_vpi_stf_partials (*derivtf)(); /* for partial derivatives */
char *user_data;

} s_vpi_analog_systf_data, *p_vpi_analog_systf_data;
339 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
The type field of the s_vpi_systf_data structure shall register the user application to be a system task or
a system function. The type field value shall be an integer constant of vpiAnalogSysTask or vpiAna-
logSysFunction.

The sysfunctype field of the s_vpi_analog_systf_data structure shall define the type of value which a
system function shall return. The sysfunctype field shall be an integer constant of vpiIntFunc of vpiRe-
alFunc. This field shall only be used when the type field is set to vpiAnalogSysFunction.

The compiletf, calltf, sizetf, and derivtf fields of the s_vpi_analog_systf_data structure shall be point-
ers to the user-provided applications which are to be invoked by the system task/function callback mecha-
nism. One or more of the compiletf, calltf, sizetf, and derivtf fields can be set to NULL if they are not needed.
Callbacks to the applications pointed to by the compiletf and sizetf fields shall occur when the simulation
data structure is compiled or built (or for the first invocation if the system task or function is invoked from
an interactive mode). Callbacks to the applications pointed to by the derivtf fields shall occur when register-
ing partial derivatives for the analog system task/function arguments or return value. Callbacks to the appli-
cation pointed to by the calltf routine shall occur each time the system task or function is invoked during
simulation execution.

The user_data field of the s_vpi_analog_systf_data structure shall specify a user-defined value, which
shall be passed back to the compiletf, sizetf, derivtf, and calltf applications when a callback occurs.

The usage of the compiletf, sizetf, and calltf routines for the analog system task/function are identical to
those of digital system task/functions registered with vpi_register_systf(). Refer to the description
of vpi_register_systf() for more information.

12.32.2 Declaring derivatives for analog system task/functions

Analog system tasks and functions require partial derivatives of the outputs (arguments for system tasks and
the return value for system functions). Thus it is possible (though not necessary) to have a partial derivative
of the returned value with respect to any or all of the arguments and a partial derivative of any particular
argument with respect to any or all of the other arguments.

The derivtf field of the t_vpi_analog_systf_data structure can be called during the build process (sim-
ilar to sizetf) and returns a pointer to a t_vpi_stf_partials data structure containing the required infor-
mation. The purpose of this function is declarative only, it does not assign any value to the derivative being
declared. Having declared a partial derivative using this function in the derivtf callback, values can then be
contributed to the derivative using the vpi_put_value function in the calltf call back.

The t_vpi_stf_partials data structure is defined:

typedef struct t_vpi_stf_partials {
int count;
int *derivative_of; /* 0 = returned value, 1 = 1st arg, etc. */
int *derivative_wrt; /* 1 = 1st arg, 2 = 2nd arg, etc. */

} s_vpi_stf_partials, *p_vpi_stf_partials;

This data structure declares the derivative objects for the associated analog task/function. During the call_tf
phase, their handles can be retrieved via calls to vpi_handl_multi().

12.32.3 Examples

The following example illustrates the declaration and use of callbacks in an analog function $sampler()
which implements a sample and hold. The task is used as follows:
Copyright © 2014 Accellera Systems Initiative. 340

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
module sampnhold(out, in);
electrical out, in;
parameter real period = 1e-3;
analog begin
 V(out) <+ $sampler(V(in), period);
end

endmodule

The VPI implementation of the sampler is as follows:

typedef struct {
vpiHandle returnHandle; /* Arg #0 (returned value) */
vpiHandle exprHandle; /* Arg #1 (sampled expression) */
double period; /* Arg #2 (static period expression) */
s_cb_data cb_data; /* callback structure */
s_vpi_value value;

/* value structure (holds the expression value) */
} s_sampler_data, *p_sampler_data;

/* Forward declarations */
static int sampler_callback(p_cb_data data);
static void schedule_callback(p_sampler_data sampler, double currTime);

/* compiletf() */
static int sampler_compiletf(p_cb_data task_cb_data) {

vpiHandle functionHandle, returnHandle, exprHandle, periodHandle;
s_cb_data cb_data;
int type;
p_sampler_data sampler;
s_vpi_value value;

/* Retrieve handle to current function */
functionHandle = vpi_handle(vpiSysTfCall, NULL);

/* Get the handle on the expression argument*/
exprHandle = vpi_handle_by_index(functionHandle, 1);
/* Check that expression argument exists */
if (!exprHandle) {

vpi_error("Not enough arguments for $sampler function.");
}

/* Check that expression argument is of real value */
type = vpi_get(vpiType, exprHandle);
if (type != vpiRealVal && type != vpiRealVar) {

vpi_error("Arg #1 of $sampler should be real valued.");
return 1;

}

/* Get the handle on the period argument */
periodHandle = vpi_handle_by_index(functionHandle, 2);

/* Check that period argument exists */
if (!periodHandle) {

vpi_error("Not enough arguments for $sampler function.");
}

/* Check that period argument has a real value */
type = vpi_get(vpiType, periodHandle);
341 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
if (type != vpiRealVal && type != vpiRealVar) {
vpi_error("Arg #2 of $sampler should be real valued");
return 1;

}

/* Schedule callback for time = 0 */
sampler->cb_data.reason = cbEndOfCompile;
sampler->cb_data.cb_rtn = sampler_postcompile_cb;
sampler->cb_data.time.type = 0;
sampler->cb_data.user_data = (char *) functionHandle;
sampler->cb_data.time.real = 0.0;
schedule_callback(sampler, 0.0);

vpi_register_cb(&sampler->cb_data);

return 0;
}

/* calltf */
static int sampler_calltf(int data, int reason) {

vpiHandle funcHandle;
p_sampler_data sampler = (p_sampler_data) data;
s_vpi_value value;

/* Retrieve handle to current function */
funcHandle = vpi_handle(vpiSysTfCall, NULL);

/* Set returned value to held value */
vpi_set_value(sampler->returnHandle, &sampler->value, NULL,

vpiNoDelay);
return 0;

}

/* initialization callback after compile */
static int sampler_postcompile_cb(p_cb_data data) {

vpiHandle functionHandle = (vpiHandle) data;
p_sampler_data sampler;
s_vpi_value value;

/* Allocate the instance data and initialize it */
sampler = (p_sampler_data)malloc(sizeof(s_sampler_data));

/*Get the handle to the returned value, no need to check that one */
sampler->returnHandle = vpi_handle_by_index(functionHandle, 0);
sampler->exprHandle = vpi_handle_by_index(functionHandle, 1);
sampler->periodHandle = vpi_handle_by_index(functionHandle, 2);

/* Get the period value, it is assumed to be constant */
/* (but not necessary) */
sampler->value.format = vpiRealVal;
vpi_get_value(periodHandle, &value);
sampler->period = value.value.real;

/* Schedule callback for time = period */
sampler->cb_data.reason = acbElapsedTime;
sampler->cb_data.cb_rtn = sampler_update_cb;
sampler->cb_data.time.type = vpiScaledTme;
sampler->cb_data.user_data = (char *) sampler;
sampler->cb_data.time.real = sampler->period;
Copyright © 2014 Accellera Systems Initiative. 342

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
schedule_callback(sampler, 0.0);

vpi_register_cb(&sampler->cb_data);

return 0;
}

/* timer callback */
static int sampler_update_cb(p_cb_data data) {

p_sampler_data sampler = (p_sampler_data)data->user_data;
s_vpi_value value;

/* Hold expression value */
vpi_get_value(sampler->exprHandle, &value);

/* Schedule next callback */
sampler->cb_data.reason = acbAbsTime;
sampler->cb_data.cb_rtn = sampler_update_cb;
sampler->cb_data.time.type = vpiScaledTime;
sampler->cb_data.user_data = (char *) sampler;
sampler->cb_data.time.real =

vpi_get_analog_time() + sampler->period;
register_callback(&sampler->cb_data);
return 0;

}

/*
* Public structure declaring the function

*/
static s_vpi_systf_data sampler_systf = {

vpiSysFunc, /* type: function / function */
vpiRealFunc, /* returned type */
"$sampler", /* name */
sampler_calltf, /* calltf callback */
sampler_compiletf, /* compiletf callback */
0, /* unused: sizetf callback */
0, /* unused: derivtf callback */
0 /* user_data: nothing */

};
343 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

R
r

12.33 vpi_register_systf()

The VPI routine vpi_register_systf() shall register callbacks for user-defined system tasks or func-
tions. Callbacks can be registered to occur when a user-defined system task or function is encountered dur-
ing compilation or execution of Verilog-AMS HDL source code.

The systf_data_p argument shall point to a s_vpi_systf_data structure, which is defined in vpi_user.h
and listed in Figure 12-19.

Figure 12-19: The s_vpi_systf_data structure definition

12.33.1 System task and function callbacks

User-defined Verilog-AMS system tasks and functions which use VPI routines can be registered with
vpi_register_systf(). The following system task/function-related callbacks are defined.

The type field of the s_vpi_systf_data structure shall register the user application to be a system task or
a system function. The type field value shall be an integer constant of vpiSysTask or vpiSysFunc-
tion. vpiSysTask shall register a task with the digital domain. vpiSysFunction shall register a
function with the digital domain.

The sysfunctype field of the s_vpi_systf_data structure shall define the type of value the system function
returns. The sysfunctype field shall be an integer constant of vpiIntFunc, vpiRealFunc, vpiTime-
Func, or vpiSizedFunc. This field shall only be used when the type field is set to vpiSysFunction.

vpi_register_systf()

ynopsis: Register user-defined system task/function-related callbacks.

yntax: vpi_register_systf(systf_data_p)

Type Description

eturns: vpiHandle Handle to the callback object

Type Name Description

rguments: p_vpi_systf_data systf_data_p Pointer to a structure with data about when callbacks
should occur and the data to be passed

elated
outines:

Use vpi_register_analog_systf() to register analog system task/functions.
Use vpi_register_cb() to register callbacks for simulation-related events

typedef struct t_vpi_systf_data {
int type; /* vpiSys[Task,TaskA,Function,FunctionA] */
int sysfunctype; /* vpi[IntFunc,RealFunc,TimeFunc,SizedFunc] */
char *tfname; /* first character shall be “$” */
int (*calltf)();
int (*compiletf)();
int (*sizetf)(); /* for vpiSizedFunc system functions only */
char *user_data;

} s_vpi_systf_data, *p_vpi_systf_data;
Copyright © 2014 Accellera Systems Initiative. 344

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
The compiletf, calltf, and sizetf fields of the s_vpi_systf_data structure shall be pointers to the user-pro-
vided applications which are to be invoked by the system task/function callback mechanism. One or more of
the compiletf, calltf, and sizetf fields can be set to NULL if they are not needed. Callbacks to the applications
pointed to by the compiletf and sizetf fields shall occur when the simulation data structure is compiled or
built (or for the first invocation if the system task or function is invoked from an interactive mode). Call-
backs to the application pointed to by the calltf routine shall occur each time the system task or function is
invoked during simulation execution.

The sizetf application shall only called if the PLI application type is vpiSysFunction and the sysfunc-
type is vpiSizedFunc. If no sizetf is provided, a user-defined system function of vpiSizedFunc shall
return 32-bits.

The user_data field of the s_vpi_systf_data structure shall specify a user-defined value, which shall be
passed back to the compiletf, sizetf, and calltf applications when a callback occurs.

The following example application demonstrates dynamic linking of a VPI system task. The example uses
an imaginary routine, dlink(), which accepts a file name and a function name and then links that function
dynamically. This routine derives the target file and function names from the target systf name.

link_systf(target)
char *target;
{

char task_name[strSize];
char file_name[strSize];
char compiletf_name[strSize];
char calltf_name[strSize];
static s_vpi_systf_data task_data_s = {vpiSysTask};
static p_vpi_systf_data task_data_p = &task_data_s;

sprintf(task_name, "$%s", target);
sprintf(file_name, "%s.o", target);
sprintf(compiletf_name, "%s_compiletf", target);
sprintf(calltf_name, "%s_calltf", target);

task_data_p->tfname = task_name;
task_data_p->compiletf = (int (*)()) dlink(file_name, compiletf_name);
task_data_p->calltf = (int (*)()) dlink(file_name, calltf_name);
vpi_register_systf(task_data_p);

}

12.33.2 Initializing VPI system task/function callbacks

A means of initializing system task/function callbacks and performing any other desired task just after the
simulator is invoked shall be provided by placing routines in a NULL-terminated static array,
vlog_startup_routines. A C function using the array definition shall be provided as follows:

void (*vlog_startup_routines[]) ();

This C function shall be provided with a VPI-compliant product. Entries in the array shall be added by the
user. The location of vlog_startup_routines and the procedure for linking
vlog_startup_routines with a software product shall be defined by the product vendor. (Callbacks
can also be registered or removed at any time during an application routine, not just at startup time).

This array of C functions shall be for registering system tasks and functions. User tasks and functions which
appear in a compiled description shall generally be registered by a routine in this array.
345 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

R
r

The following example uses vlog_startup_routines to register system tasks and functions and to
run a user initialization routine.

/*In a vendor product file which contains vlog_startup_routines ...*/
extern void register_my_systfs();
extern void my_init();
void (*vlog_startup_routines[])() =
{

setup_report_cpu,/* user routine example in 23.24.3 */
register_my_systfs, /* user routine listed below */
0 /* shall be last entry in list */

}

/* In a user provided file... */
void register_my_systfs()
{

static s_vpi_systf_data systf_data_list[] = {
{vpiSysTask, 0 "$my_task", my_task_calltf, my_task_compiletf},
{vpiSysFunc, vpiIntFunc,"$my_func", my_func_calltf,

my_func_compiletf},
{vpiSysFunc, vpiRealFunc, "$my_real_func", my_rfunc_calltf,

my_rfunc_compiletf},
{0}

};

p_vpi_systf_data systf_data_p = &(systf_data_list[0]);
while (systf_data_p->type)

vpi_register_systf(systf_data_p++);
}

12.34 vpi_remove_cb()

The VPI routine vpi_remove_cb() shall remove callbacks which were registered with
vpi_register_cb(). The argument to this routine shall be a handle to the callback object. The routine
shall return a 1 (TRUE) if successful, and a 0 (FALSE) on a failure. After vpi_remove_cb() is called with
a handle to the callback, the handle is no longer valid.

vpi_remove_cb()

ynopsis: Remove a simulation callback registered with vpi_register_cb().

yntax: vpi_remove_cb(cb_obj)

Type Description

eturns: bool 1 (true) if successful; 0 (false) on a failure

Type Name Description

rguments: vpiHandle cb_obj Handle to the callback object

elated
outines:

Use vpi_register_cb() to register callbacks for simulation-related events
Copyright © 2014 Accellera Systems Initiative. 346

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

S

S

R

A

R
r

12.35 vpi_scan()

The VPI routine vpi_scan() shall traverse the instantiated Verilog-AMS HDL hierarchy and return han-
dles to objects as directed by the iterator itr. The iterator handle shall be obtained by calling
vpi_iterate() for a specific object type. Once vpi_scan() returns NULL, the iterator handle is no
longer valid and can not be used again.

The following example application uses vpi_iterate() and vpi_scan() to display each net (includ-
ing the size for vectors) declared in the module. The example assumes it shall be passed a valid module han-
dle.

void display_nets(mod)
vpiHandle mod;
{

vpiHandle net;
vpiHandle itr;

vpi_printf("Nets declared in module %s\n",
vpi_get_str(vpiFullName, mod));

itr = vpi_iterate(vpiNet, mod);
while (net = vpi_scan(itr))
{

vpi_printf("\t%s", vpi_get_str(vpiName, net));
if (vpi_get(vpiVector, net))
{

vpi_printf(" of size %d\n", vpi_get(vpiSize, net));
}
else vpi_printf("\n");

}
}

vpi_scan()

ynopsis: Scan the Verilog-AMS HDL hierarchy for objects with a one-to-many relationship.

yntax: vpi_scan(itr)

Type Description

eturns: vpiHandle Handle to an object

Type Name Description

rguments: vpiHandle itr Handle to an iterator object returned from vpi_iterate()

elated
outines:

Use vpi_iterate() to obtain an iterator handle
Use vpi_handle() to obtain handles to an object with a one-to-one relationship
Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship
347 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

S

S

R

A

R
r

12.36 vpi_sim_control()

The VPI routine vpi_sim_control shall be used to pass information from user code to Verilog simulator. All
standard compliant simulators must support the following three operations:

vpiStop — cause $stop built-in Verilog system task to be executed upon return of user function. This
operation shall be passed one additional diagnostic message level integer argument that is the same as the
argument passed to $stop (see 9.7.2).

vpiFinish — cause $finish built-in Verilog system task to be executed upon return of user function.
This operation shall be passed one additional diagnostic message level integer argument that is the same as
the argument passed to $finish (see 9.7.1).

vpiReset — cause $reset informative built-in Verilog system task to be executed upon return of user
VPI function. This operation shall be passed three integer value arguments: stop_value, reset_value,
diagnostic_level that are the same values passed to the $reset system task (see F.7 of IEEE Std
1364-2005 Verilog HDL).

vpiSetInteractiveScope — cause interactive scope to be immediately changed to new scope. This
operation shall be passed one argument that is a vpiHandle object with type vpiScope.

vpiRejectTransientStep — cause the current analog simulation timepoint to be rejected. This opera-
tion shall pass one argument which is the current timestep (delta).

vpiTransientFailConverge — cause the current analog simulation to continue iterating for a (valid)
solution.

Because there may be a need for user VPI applications to pass simulator specific information from back
from a user application to control simulation, additional operators and operation specific arguments may be
defined.

vpi_sim_control()

ynopsis: Provide software-specific simulation control.

yntax: vpi_sim_control(flag, ...)

Type Description

eturns: bool 1 (true) if successful; 0 (false) on a failure

Type Name Description

rguments: int flag Descriptor of the simulation control request

var args ... Variable number and type of arguments depending on flag

elated
outines:

NONE
Copyright © 2014 Accellera Systems Initiative. 348

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Annex A

(normative)

Formal syntax definition

The formal syntax of Verilog-AMS HDL is described using Backus-Naur Form (BNF). The syntax of Ver-
ilog-AMS HDL source is derived from the starting symbol source_text. The syntax of a library map file is
derived from the starting symbol library_text. The following grammar is designed as a presentation gram-
mar and should not be interpreted as an unambiguous production grammar. The compiler developer will be
required to implement the various semantic restrictions outlined throughout this reference manual to remove
any ambiguities.

A.1 Source text

A.1.1 Library source text

library_text ::= { library_description }
library_description ::=

library_declaration
| include_statement
| config_declaration

library_declaration ::=
library library_identifier file_path_spec [{ , file_path_spec }]
[-incdir file_path_spec { , file_path_spec }] ;

file_path_spec ::= file_path
include_statement ::= include file_path_spec ;

A.1.2 Verilog source text

source_text ::= { description }
description ::=

module_declaration
| udp_declaration
| config_declaration
| paramset_declaration
| nature_declaration
| discipline_declaration
| connectrules_declaration

module_declaration ::=
{ attribute_instance } module_keyword module_identifier [module_parameter_port_list]

list_of_ports ; { module_item }
endmodule

| { attribute_instance } module_keyword module_identifier [module_parameter_port_list]
[list_of_port_declarations] ; { non_port_module_item }

endmodule

module_keyword ::= module | macromodule | connectmodule
349 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
A.1.3 Module parameters and ports

module_parameter_port_list ::= # (parameter_declaration { , parameter_declaration })
list_of_ports ::= (port { , port })
list_of_port_declarations ::=

(port_declaration { , port_declaration })
| ()

port ::=
[port_expression]

| . port_identifier ([port_expression])
port_expression ::=

port_reference
| { port_reference { , port_reference } }

port_reference ::=
port_identifier [[constant_range_expression]]

port_declaration ::=
{attribute_instance} inout_declaration

| {attribute_instance} input_declaration
| {attribute_instance} output_declaration

A.1.4 Module items

module_item ::=
port_declaration ;

| non_port_module_item
module_or_generate_item ::=

{ attribute_instance } module_or_generate_item_declaration
| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } loop_generate_construct
| { attribute_instance } conditional_generate_construct
| { attribute_instance } analog_construct

module_or_generate_item_declaration ::=
net_declaration

| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration
| branch_declaration
| analog_function_declaration
Copyright © 2014 Accellera Systems Initiative. 350

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
non_port_module_item ::=
module_or_generate_item

| generate_region
| specify_block
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specparam_declaration
| aliasparam_declaration

parameter_override ::= defparam list_of_defparam_assignments ;

A.1.5 Configuration source text

config_declaration ::=
config config_identifier ;

design_statement
{config_rule_statement}

endconfig

design_statement ::= design { [library_identifier.]cell_identifier } ;
config_rule_statement ::=

default_clause liblist_clause ;
| inst_clause liblist_clause ;
| inst_clause use_clause ;
| cell_clause liblist_clause ;
| cell_clause use_clause ;

default_clause ::= default
inst_clause ::= instance inst_name
inst_name ::= topmodule_identifier{.instance_identifier}
cell_clause ::= cell [library_identifier.]cell_identifier
liblist_clause ::= liblist { library_identifier }
use_clause ::= use [library_identifier.]cell_identifier[:config]

A.1.6 Nature Declaration

nature_declaration ::=
nature nature_identifier [: parent_nature] [;]

{ nature_item }
endnature

parent_nature ::=
nature_identifier

| discipline_identifier . potential_or_flow
nature_item ::= nature_attribute
nature_attribute ::= nature_attribute_identifier = nature_attribute_expression ;

A.1.7 Discipline Declaration

discipline_declaration ::=
discipline discipline_identifier [;]

{ discipline_item }
enddiscipline

discipline_item ::=
351 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
nature_binding
| discipline_domain_binding
| nature_attribute_override

nature_binding ::= potential_or_flow nature_identifier ;
potential_or_flow ::= potential | flow
discipline_domain_binding ::= domain discrete_or_continuous ;
discrete_or_continuous ::= discrete | continuous
nature_attribute_override ::= potential_or_flow . nature_attribute

A.1.8 Connectrules Declaration

connectrules_declaration ::=
connectrules connectrules_identifier ;

{ connectrules_item }
endconnectrules

connectrules_item ::=
connect_insertion

| connect_resolution
connect_insertion ::= connect connectmodule_identifier [connect_mode]

[parameter_value_assignment] [connect_port_overrides] ;
connect_mode ::= merged | split
connect_port_overrides ::=

discipline_identifier , discipline_identifier
| input discipline_identifier , output discipline_identifier
| output discipline_identifier , input discipline_identifier
| inout discipline_identifier , inout discipline_identifier

connect_resolution ::= connect discipline_identifier { , discipline_identifier } resolveto
discipline_identifier_or_exclude ;

discipline_identifier_or_exclude ::=
discipline_identifier

| exclude

A.1.9 Paramset Declaration

paramset_declaration ::=
{ attribute_instance } paramset paramset_identifier module_or_paramset_identifier ;

paramset_item_declaration { paramset_item_declaration }
paramset_statement { paramset_statement }

endparamset
paramset_item_declaration ::=

{ attribute_instance } parameter_declaration ;
| { attribute_instance } local_parameter_declaration ;
| aliasparam_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } real_declaration

paramset_statement ::=
.module_parameter_identifier = paramset_constant_expression ;

| .module_output_variable_identifier = paramset_constant_expression;
| .system_parameter_identifier = paramset_constant_expression;
Copyright © 2014 Accellera Systems Initiative. 352

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
| analog_function_statement
paramset_constant_expression ::=

constant_primary
| hierarchical_parameter_identifier
| unary_operator { attribute_instance } constant_primary
| paramset_constant_expression binary_operator { attribute_instance } paramset_constant_expression
| paramset_constant_expression ? { attribute_instance } paramset_constant_expression :
paramset_constant_expression

A.2 Declarations

A.2.1 Declaration types

A.2.1.1 Module parameter declarations
local_parameter_declaration ::=

localparam [signed] [range] list_of_param_assignments
| localparam parameter_type list_of_param_assignments

parameter_declaration ::=
parameter [signed] [range] list_of_param_assignments

| parameter parameter_type list_of_param_assignments
specparam_declaration ::= specparam [range] list_of_specparam_assignments ;
parameter_type ::=

integer | real | realtime | time | string
aliasparam_declaration ::= aliasparam parameter_identifier = parameter_identifier ;

A.2.1.2 Port declarations
inout_declaration ::=

inout [discipline_identifier] [net_type | wreal] [signed] [range] list_of_port_identifiers
input_declaration ::=

input [discipline_identifier] [net_type | wreal] [signed] [range] list_of_port_identifiers
output_declaration ::=

output [discipline_identifier] [net_type | wreal] [signed] [range] list_of_port_identifiers
| output [discipline_identifier] reg [signed] [range] list_of_variable_port_identifiers
| output output_variable_type list_of_variable_port_identifiers

A.2.1.3 Type declarations
branch_declaration ::=

branch (branch_terminal [, branch_terminal]) list_of_branch_identifiers ;
| port_branch_declaration

port_branch_declaration ::=
branch (< port_identifier >) list_of_branch_identifiers ;

| branch (< hierarchical_port_identifier >) list_of_branch_identifiers ;
branch_terminal ::=

net_identifier
| net_identifier [constant_expression]
| net_identifier [constant_range_expression]
| hierarchical_net_identifier
| hierarchical_net_identifier [constant_expression]
| hierarchical_net_identifier [constant_range_expression]
353 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
event_declaration ::= event list_of_event_identifiers ;
integer_declaration ::= integer list_of_variable_identifiers ;
net_declaration ::=

net_type [discipline_identifier] [signed]
[delay3] list_of_net_identifiers ;

| net_type [discipline_identifier] [drive_strength] [signed]
[delay3] list_of_net_decl_assignments ;

| net_type [discipline_identifier] [vectored | scalared] [signed]
range [delay3] list_of_net_identifiers ;

| net_type [discipline_identifier] [drive_strength] [vectored | scalared] [signed]
range [delay3] list_of_net_decl_assignments ;

| trireg [discipline_identifier] [charge_strength] [signed]
[delay3] list_of_net_identifiers ;

| trireg [discipline_identifier] [drive_strength] [signed]
[delay3] list_of_net_decl_assignments ;

| trireg [discipline_identifier] [charge_strength] [vectored | scalared] [signed]
range [delay3] list_of_net_identifiers ;

| trireg [discipline_identifier] [drive_strength] [vectored | scalared] [signed]
range [delay3] list_of_net_decl_assignments ;

| discipline_identifier [range] list_of_net_identifiers ;
| discipline_identifier [range] list_of_net_decl_assignments ;
| wreal [discipline_identifier] [range] list_of_net_identifiers ;
| wreal [discipline_identifier] [range] list_of_net_decl_assignments ;
| ground [discipline_identifier] [range] list_of_net_identifiers ;

real_declaration ::= real list_of_real_identifiers ;
realtime_declaration ::= realtime list_of_real_identifiers ;
reg_declaration ::= reg [discipline_identifier] [signed] [range]

list_of_variable_identifiers ;
time_declaration ::= time list_of_variable_identifiers ;

A.2.2 Declaration data types

A.2.2.1 Net and variable types
net_type ::=

supply0 | supply1 |tri | triand | trior | tri0 | tri1 | uwire | wire | wand | wor
output_variable_type ::= integer | time
real_type ::=

real_identifier { dimension } [= constant_arrayinit]
| real_identifier = constant_expression

variable_type ::=
variable_identifier { dimension } [= constant_arrayinit]

| variable_identifier = constant_expression

A.2.2.2 Strengths
drive_strength ::=

(strength0 , strength1)
| (strength1 , strength0)
| (strength0 , highz1)
| (strength1 , highz0)
| (highz0 , strength1)
Copyright © 2014 Accellera Systems Initiative. 354

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
| (highz1 , strength0)
strength0 ::= supply0 | strong0 | pull0 | weak0
strength1 ::= supply1 | strong1 | pull1 | weak1
charge_strength ::= (small) | (medium) | (large)

A.2.2.3 Delays
delay3 ::=

delay_value
| # (mintypmax_expression [, mintypmax_expression [, mintypmax_expression]])

delay2 ::=
delay_value

| # (mintypmax_expression [, mintypmax_expression])
delay_value ::=

unsigned_number
| real_number
| identifier

A.2.3 Declaration lists

list_of_branch_identifiers ::= branch_identifier [range] { , branch_identifier [range] }
list_of_defparam_assignments ::= defparam_assignment { , defparam_assignment }
list_of_event_identifiers ::= event_identifier { dimension } { , event_identifier { dimension } }
list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment }
list_of_net_identifiers ::= ams_net_identifier { , ams_net_identifier }
list_of_param_assignments ::= param_assignment { , param_assignment }
list_of_port_identifiers ::= port_identifier { , port_identifier }
list_of_real_identifiers ::= real_type { , real_type }
list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment }
list_of_variable_identifiers ::= variable_type { , variable_type }
list_of_variable_port_identifiers ::= port_identifier [= constant_expression]

{ , port_identifier [= constant_expression] }

A.2.4 Declaration assignments

defparam_assignment ::= hierarchical_parameter_identifier = constant_mintypmax_expression
net_decl_assignment ::= ams_net_identifier = expression
param_assignment ::=

parameter_identifier = constant_mintypmax_expression { value_range }
| parameter_identifier range = constant_arrayinit { value_range }

specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression

| pulse_control_specparam
pulse_control_specparam ::=

PATHPULSE$ = (reject_limit_value [, error_limit_value])
| PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor

= (reject_limit_value [, error_limit_value])
error_limit_value ::= limit_value
355 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
reject_limit_value ::= limit_value
limit_value ::= constant_mintypmax_expression

A.2.5 Declaration ranges

dimension ::= [dimension_constant_expression : dimension_constant_expression]
range ::= [msb_constant_expression : lsb_constant_expression]
value_range ::=

value_range_type (value_range_expression : value_range_expression)
| value_range_type (value_range_expression : value_range_expression]
| value_range_type [value_range_expression : value_range_expression)
| value_range_type [value_range_expression : value_range_expression]
| value_range_type '{ string { , string } }
| exclude constant_expression

value_range_type :: = from | exclude
value_range_expression ::= constant_expression | -inf | inf

A.2.6 Function declarations

analog_function_declaration ::=
analog function [analog_function_type] analog_function_identifier ;

analog_function_item_declaration { analog_function_item_declaration }
analog_function_statement

endfunction

analog_function_type ::= integer | real
analog_function_item_declaration ::=

analog_block_item_declaration
| input_declaration ;
| output_declaration ;
| inout_declaration ;

function_declaration ::=
function [automatic] [function_range_or_type] function_identifier ;

function_item_declaration { function_item_declaration }
function_statement

endfunction
| function [automatic] [function_range_or_type] function_identifier (function_port_list) ;

{ block_item_declaration }
function_statement

endfunction

function_item_declaration ::=
block_item_declaration

| { attribute_instance } tf_input_declaration ;
function_port_list ::=

{ attribute_instance } tf_input_declaration { , { attribute_instance } tf_input_declaration }
function_range_or_type ::=

[signed] [range]
| integer
| real
| realtime
| time
Copyright © 2014 Accellera Systems Initiative. 356

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
A.2.7 Task declarations

task_declaration ::=
task [automatic] task_identifier ;

{ task_item_declaration }
statement_or_null

endtask
| task [automatic] task_identifier ([task_port_list]) ;

{ block_item_declaration }
statement_or_null

endtask
task_item_declaration ::=

block_item_declaration
| { attribute_instance } tf_input_declaration ;
| { attribute_instance } tf_output_declaration ;
| { attribute_instance } tf_inout_declaration ;

task_port_list ::= task_port_item { , task_port_item }
task_port_item ::=

{ attribute_instance } tf_input_declaration
| { attribute_instance } tf_output_declaration
| { attribute_instance } tf_inout_declaration

tf_input_declaration ::=
input [discipline_identifier] [reg] [signed] [range] list_of_port_identifiers

| input task_port_type list_of_port_identifiers
tf_output_declaration ::=

output [discipline_identifier] [reg] [signed] [range] list_of_port_identifiers
| output task_port_type list_of_port_identifiers

tf_inout_declaration ::=
inout [discipline_identifier] [reg] [signed] [range] list_of_port_identifiers

| inout task_port_type list_of_port_identifiers
task_port_type ::=

integer | real | realtime | time

A.2.8 Block item declarations

analog_block_item_declaration ::=
{ attribute_instance } parameter_declaration ;

| { attribute_instance } integer_declaration
| { attribute_instance } real_declaration

block_item_declaration ::=
{ attribute_instance } reg [discipline_identifier] [signed] [range]

list_of_block_variable_identifiers ;
| { attribute_instance } integer list_of_block_variable_identifiers ;
| { attribute_instance } time list_of_block_variable_identifiers ;
| { attribute_instance } real list_of_block_real_identifiers ;
| { attribute_instance } realtime list_of_block_real_identifiers ;
| { attribute_instance } event_declaration
| { attribute_instance } local_parameter_declaration ;
| { attribute_instance } parameter_declaration ;

list_of_block_variable_identifiers ::= block_variable_type { , block_variable_type }
list_of_block_real_identifiers ::= block_real_type { , block_real_type }
357 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
block_variable_type ::= variable_identifier { dimension }
block_real_type ::= real_identifier { dimension }

A.3 Primitive instances

A.3.1 Primitive instantiation and instances

gate_instantiation ::=
cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance } ;

| enable_gatetype [drive_strength] [delay3] enable_gate_instance { , enable_gate_instance } ;
| mos_switchtype [delay3] mos_switch_instance { , mos_switch_instance } ;
| n_input_gatetype [drive_strength] [delay2] n_input_gate_instance { , n_input_gate_instance } ;
| n_output_gatetype [drive_strength] [delay2] n_output_gate_instance { , n_output_gate_instance } ;
| pass_en_switchtype [delay2] pass_enable_switch_instance { , pass_enable_switch_instance } ;
| pass_switchtype pass_switch_instance { , pass_switch_instance } ;
| pulldown [pulldown_strength] pull_gate_instance { , pull_gate_instance } ;
| pullup [pullup_strength] pull_gate_instance { , pull_gate_instance } ;

cmos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal ,
ncontrol_terminal , pcontrol_terminal)

enable_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)
mos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)
n_input_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal

{ , input_terminal })
n_output_gate_instance ::= [name_of_gate_instance] (output_terminal { , output_terminal } ,

input_terminal)
pass_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal)
pass_enable_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal ,

enable_terminal)
pull_gate_instance ::= [name_of_gate_instance] (output_terminal)
name_of_gate_instance ::= gate_instance_identifier [range]

A.3.2 Primitive strengths

pulldown_strength ::=
(strength0 , strength1)

| (strength1 , strength0)
| (strength0)

pullup_strength ::=
(strength0 , strength1)

| (strength1 , strength0)
| (strength1)

A.3.3 Primitive terminals

enable_terminal ::= expression
inout_terminal ::= net_lvalue
input_terminal ::= expression
Copyright © 2014 Accellera Systems Initiative. 358

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
ncontrol_terminal ::= expression
output_terminal ::= net_lvalue
pcontrol_terminal ::= expression

A.3.4 Primitive gate and switch types

cmos_switchtype ::= cmos | rcmos
enable_gatetype ::= bufif0 | bufif1 | notif0 | notif1
mos_switchtype ::= nmos | pmos | rnmos | rpmos
n_input_gatetype ::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not
pass_en_switchtype ::= tranif0 | tranif1 | rtranif1 | rtranif0
pass_switchtype ::= tran | rtran

A.4 Module instantiation and generate construct

A.4.1 Module instantiation

module_instantiation ::=
module_or_paramset_identifier [parameter_value_assignment]

module_instance { , module_instance } ;
parameter_value_assignment ::= # (list_of_parameter_assignments)
list_of_parameter_assignments ::=

ordered_parameter_assignment { , ordered_parameter_assignment }
| named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::= expression
named_parameter_assignment ::=

. parameter_identifier ([mintypmax_expression])
| . system_parameter_identifier ([constant_expression])

module_instance ::= name_of_module_instance ([list_of_port_connections])
name_of_module_instance ::= module_instance_identifier [range]
list_of_port_connections ::=

ordered_port_connection { , ordered_port_connection }
| named_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance } [expression]
named_port_connection ::= { attribute_instance } . port_identifier ([expression])

A.4.2 Generate construct

generate_region ::=
generate { module_or_generate_item } endgenerate

genvar_declaration ::=
genvar list_of_genvar_identifiers ;

list_of_genvar_identifiers ::=
genvar_identifier { , genvar_identifier }

analog_loop_generate_statement ::=
359 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
for (genvar_initialization ; genvar_expression ; genvar_iteration)
analog_statement

loop_generate_construct ::=
for (genvar_initialization ; genvar_expression ; genvar_iteration)

generate_block
genvar_initialization ::=

genvar_identifier = constant_expression
genvar_expression ::=

genvar_primary
| unary_operator { attribute_instance } genvar_primary
| genvar_expression binary_operator { attribute_instance } genvar_expression
| genvar_expression ? { attribute_instance } genvar_expression : genvar_expression

genvar_iteration ::=
genvar_identifier = genvar_expression

genvar_primary ::=
constant_primary

| genvar_identifier
conditional_generate_construct ::=

if_generate_construct
| case_generate_construct

if_generate_construct ::=
if (constant_expression) generate_block_or_null
[else generate_block_or_null]

case_generate_construct ::=
case (constant_expression) case_generate_item { case_generate_item } endcase

case_generate_item ::=
constant_expression { , constant_expression } : generate_block_or_null

| default [:] generate_block_or_null
generate_block ::=

module_or_generate_item
| begin [: generate_block_identifier] { module_or_generate_item } end

generate_block_or_null ::=
generate_block

| ;

A.5 UDP declaration and instantiation

A.5.1 UDP declaration

udp_declaration ::=
{ attribute_instance } primitive udp_identifier (udp_port_list) ;

udp_port_declaration { udp_port_declaration }
udp_body

endprimitive
| { attribute_instance } primitive udp_identifier (udp_declaration_port_list) ;

udp_body
endprimitive

A.5.2 UDP ports
Copyright © 2014 Accellera Systems Initiative. 360

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }
udp_declaration_port_list ::=

udp_output_declaration , udp_input_declaration { , udp_input_declaration }
udp_port_declaration ::=

udp_output_declaration ;
| udp_input_declaration ;
| udp_reg_declaration ;

udp_output_declaration ::=
{ attribute_instance } output port_identifier

| { attribute_instance } output [discipline_identifier] reg port_identifier [= constant_expression]
udp_input_declaration ::= { attribute_instance } input list_of_port_identifiers
udp_reg_declaration ::= { attribute_instance } reg [discipline_identifier] variable_identifier

A.5.3 UDP body

udp_body ::= combinational_body | sequential_body
combinational_body ::= table combinational_entry { combinational_entry } endtable
combinational_entry ::= level_input_list : output_symbol ;
sequential_body ::= [udp_initial_statement] table sequential_entry { sequential_entry } endtable
udp_initial_statement ::= initial output_port_identifier = init_val ;
init_val ::= 1'b0 | 1'b1 | 1'bx | 1'bX | 1'B0 | 1'B1 | 1'Bx | 1'BX | 1 | 0
sequential_entry ::= seq_input_list : current_state : next_state ;
seq_input_list ::= level_input_list | edge_input_list
level_input_list ::= level_symbol { level_symbol }
edge_input_list ::= { level_symbol } edge_indicator { level_symbol }
edge_indicator ::= (level_symbol level_symbol) | edge_symbol
current_state ::= level_symbol
next_state ::= output_symbol | -
output_symbol ::= 0 | 1 | x | X
level_symbol ::= 0 | 1 | x | X | ? | b | B
edge_symbol ::= r | R | f | F | p | P | n | N | *

A.5.4 UDP instantiation

udp_instantiation ::= udp_identifier [drive_strength] [delay2] udp_instance { , udp_instance } ;
udp_instance ::= [name_of_udp_instance] (output_terminal , input_terminal { , input_terminal })
name_of_udp_instance ::= udp_instance_identifier [range]

A.6 Behavioral statements

A.6.1 Continuous assignment statements

continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;
list_of_net_assignments ::= net_assignment { , net_assignment }
net_assignment ::= net_lvalue = expression
361 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
A.6.2 Procedural blocks and assignments

analog_construct ::=
analog analog_statement

| analog initial analog_function_statement
analog_procedural_assignment ::= analog_variable_assignment ;
analog_variable_assignment ::=

scalar_analog_variable_assignment
| array_analog_variable_assignment

scalar_analog_variable_assignment ::= scalar_analog_variable_lvalue = analog_expression
initial_construct ::= initial statement
always_construct ::= always statement
blocking_assignment ::= variable_lvalue = [delay_or_event_control] expression
nonblocking_assignment ::= variable_lvalue <= [delay_or_event_control] expression
procedural_continuous_assignments ::=

assign variable_assignment
| deassign variable_lvalue
| force variable_assignment
| force net_assignment
| release variable_lvalue
| release net_lvalue

variable_assignment ::= variable_lvalue = expression

A.6.3 Parallel and sequential blocks

analog_seq_block ::= begin [: analog_block_identifier { analog_block_item_declaration }]
{ analog_statement } end

analog_event_seq_block ::=
begin [: analog_block_identifier { analog_block_item_declaration }]

{ analog_event_statement} end
analog_function_seq_block ::= begin [: analog_block_identifier { analog_block_item_declaration }]

{ analog_function_statement } end
par_block ::= fork [: block_identifier

{ block_item_declaration }] { statement } join
seq_block ::= begin [: block_identifier

{ block_item_declaration }] { statement } end

A.6.4 Statements

analog_statement ::=
{ attribute_instance } analog_loop_generate_statement

| { attribute_instance } analog_loop_statement
| { attribute_instance } analog_case_statement
| { attribute_instance } analog_conditional_statement
| { attribute_instance } analog_procedural_assignment
| { attribute_instance } analog_seq_block
| { attribute_instance } analog_system_task_enable
| { attribute_instance } contribution_statement
| { attribute_instance } indirect_contribution_statement
Copyright © 2014 Accellera Systems Initiative. 362

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
| { attribute_instance } analog_event_control_statement
analog_statement_or_null ::=

analog_statement
| { attribute_instance } ;

analog_event_statement ::=
{ attribute_instance } analog_loop_statement

| { attribute_instance } analog_case_statement
| { attribute_instance } analog_conditional_statement
| { attribute_instance } analog_procedural_assignment
| { attribute_instance } analog_event_seq_block
| { attribute_instance } analog_system_task_enable
| { attribute_instance } disable_statement
| { attribute_instance } event_trigger
| { attribute_instance } ;

analog_function_statement ::=
{ attribute_instance } analog_function_case_statement

| { attribute_instance } analog_function_conditional_statement
| { attribute_instance } analog_function_loop_statement
| { attribute_instance } analog_function_seq_block
| { attribute_instance } analog_procedural_assignment
| { attribute_instance } analog_system_task_enable

analog_function_statement_or_null ::=
analog_function_statement

| { attribute_instance } ;
statement ::=

{ attribute_instance } blocking_assignment ;
| { attribute_instance } case_statement
| { attribute_instance } conditional_statement
| { attribute_instance } disable_statement
| { attribute_instance } event_trigger
| { attribute_instance } loop_statement
| { attribute_instance } nonblocking_assignment ;
| { attribute_instance } par_block
| { attribute_instance } procedural_continuous_assignments ;
| { attribute_instance } procedural_timing_control_statement
| { attribute_instance } seq_block
| { attribute_instance } system_task_enable
| { attribute_instance } task_enable
| { attribute_instance } wait_statement

statement_or_null ::=
statement

| { attribute_instance } ;

function_statement1 ::= statement

A.6.5 Timing control statements

analog_event_control_statement ::= analog_event_control analog_event_statement
analog_event_control ::=

@ hierarchical_event_identifier
| @ (analog_event_expression)

analog_event_expression ::=
363 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
expression
| posedge expression
| negedge expression
| hierarchical_event_identifier
| initial_step [(" analysis_identifier "{ , " analysis_identifier " })]
| final_step [(" analysis_identifier " { , " analysis_identifier " })]
| analog_event_functions
| analog_event_expression or analog_event_expression
| analog_event_expression , analog_event_expression

analog_event_functions ::=
cross (analog_expression [, analog_expression_or_null

[, constant_expression_or_null [, constant_expression_or_null [, analog_expression]]]])
| above (analog_expression [, constant_expression_or_null

[, constant_expression_or_null [, analog_expression]]])
| timer (analog_expression [, analog_expression_or_null

[, constant_expression_or_null [, analog_expression]]])
| absdelta (analog_expression , analog_expression

[, constant_expression_or_null [, constant_expression_or_null [, analog_expression]]])
delay_control ::=

delay_value
| # (mintypmax_expression)

delay_or_event_control ::=
delay_control

| event_control
| repeat (expression) event_control

disable_statement ::=
disable hierarchical_task_identifier ;

| disable hierarchical_block_identifier ;
event_control ::=

@ hierarchical_event_identifier
| @ (event_expression)
| @*
| @ (*)

event_trigger ::=
-> hierarchical_event_identifier { [expression] } ;

event_expression ::=
expression

| posedge expression
| negedge expression
| hierarchical_event_identifier
| event_expression or event_expression
| event_expression , event_expression
| analog_event_functions
| driver_update expression
| analog_variable_lvalue

procedural_timing_control ::=
delay_control

| event_control
procedural_timing_control_statement ::=

procedural_timing_control statement_or_null
wait_statement ::=
Copyright © 2014 Accellera Systems Initiative. 364

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
wait (expression) statement_or_null

A.6.6 Conditional statements

analog_conditional_statement ::=
if (analog_expression) analog_statement_or_null
{ else if (analog_expression) analog_statement_or_null }
[else analog_statement_or_null]

analog_function_conditional_statement ::=
if (analog_expression) analog_function_statement_or_null
{ else if (analog_expression) analog_function_statement_or_null }
[else analog_function_statement_or_null]

conditional_statement ::=
if (expression)

statement_or_null
[else statement_or_null]

| if_else_if_statement
if_else_if_statement ::=

if (expression) statement_or_null
{ else if (expression) statement_or_null }
[else statement_or_null]

A.6.7 Case statements

analog_case_statement ::=
case (analog_expression) analog_case_item { analog_case_item } endcase

| casex (analog_expression) analog_case_item { analog_case_item } endcase
| casez (analog_expression) analog_case_item { analog_case_item } endcase

analog_case_item ::=
analog_expression { , analog_expression } : analog_statement_or_null

| default [:] analog_statement_or_null
analog_function_case_statement ::=

case (analog_expression) analog_function_case_item {analog_function_case_item} endcase
analog_function_case_item ::=

analog_expression { analog_expression } : analog_function_statement_or_null
| default [:] analog_function_statement_or_null

case_statement ::=
case (expression) case_item { case_item } endcase

| casez (expression) case_item { case_item } endcase
| casex (expression) case_item { case_item } endcase

case_item ::=
expression { , expression } : statement_or_null

| default [:] statement_or_null

A.6.8 Looping statements

analog_loop_statement ::=
repeat (analog_expression) analog_statement

| while (analog_expression) analog_statement
| for (analog_variable_assignment ; analog_expression ; analog_variable_assignment)
365 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
analog_statement
analog_function_loop_statement ::=

repeat (analog_expression) analog_function_statement
| while (analog_expression) analog_function_statement
| for (analog_variable_assignment ; analog_expression ; analog_variable_assignment)

analog_function_statement
loop_statement ::=

forever statement
| repeat (expression) statement
| while (expression) statement
| for (variable_assignment ; expression ; variable_assignment) statement

A.6.9 Task enable statements

analog_system_task_enable ::=
analog_system_task_identifier [([analog_expression] { , [analog_expression] })] ;

system_task_enable ::= system_task_identifier [([expression] { , [expression] })] ;
task_enable ::= hierarchical_task_identifier [(expression { , expression })] ;

A.6.10 Contribution statements

contribution_statement ::= branch_lvalue <+ analog_expression ;
indirect_contribution_statement ::= branch_lvalue : indirect_expression == analog_expression ;

A.7 Specify section

A.7.1 Specify block declaration

specify_block ::= specify { specify_item } endspecify
specify_item ::=

specparam_declaration
| pulsestyle_declaration
| showcancelled_declaration
| path_declaration
| system_timing_check

pulsestyle_declaration ::=
pulsestyle_onevent list_of_path_outputs ;

| pulsestyle_ondetect list_of_path_outputs ;
showcancelled_declaration ::=

showcancelled list_of_path_outputs ;
| noshowcancelled list_of_path_outputs ;

A.7.2 Specify path declarations

path_declaration ::=
simple_path_declaration ;

| edge_sensitive_path_declaration ;
| state_dependent_path_declaration ;
Copyright © 2014 Accellera Systems Initiative. 366

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
simple_path_declaration ::=
parallel_path_description = path_delay_value

| full_path_description = path_delay_value
parallel_path_description ::=

(specify_input_terminal_descriptor [polarity_operator] => specify_output_terminal_descriptor)
full_path_description ::=

(list_of_path_inputs [polarity_operator] *> list_of_path_outputs)
list_of_path_inputs ::=

specify_input_terminal_descriptor { , specify_input_terminal_descriptor }
list_of_path_outputs ::=

specify_output_terminal_descriptor { , specify_output_terminal_descriptor }

A.7.3 Specify block terminals

specify_input_terminal_descriptor ::=
input_identifier [[constant_range_expression]]

specify_output_terminal_descriptor ::=
output_identifier [[constant_range_expression]]

input_identifier ::= input_port_identifier | inout_port_identifier
output_identifier ::= output_port_identifier | inout_port_identifier

A.7.4 Specify path delays

path_delay_value ::=
list_of_path_delay_expressions

| (list_of_path_delay_expressions)
list_of_path_delay_expressions ::=

t_path_delay_expression
| trise_path_delay_expression , tfall_path_delay_expression
| trise_path_delay_expression , tfall_path_delay_expression , tz_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,

tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,

tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression ,
t0x_path_delay_expression , tx1_path_delay_expression , t1x_path_delay_expression ,
tx0_path_delay_expression , txz_path_delay_expression , tzx_path_delay_expression

t_path_delay_expression ::= path_delay_expression
trise_path_delay_expression ::= path_delay_expression
tfall_path_delay_expression ::= path_delay_expression
tz_path_delay_expression ::= path_delay_expression
t01_path_delay_expression ::= path_delay_expression
t10_path_delay_expression ::= path_delay_expression
t0z_path_delay_expression ::= path_delay_expression
tz1_path_delay_expression ::= path_delay_expression
t1z_path_delay_expression ::= path_delay_expression
tz0_path_delay_expression ::= path_delay_expression
t0x_path_delay_expression ::= path_delay_expression
tx1_path_delay_expression ::= path_delay_expression
367 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
t1x_path_delay_expression ::= path_delay_expression
tx0_path_delay_expression ::= path_delay_expression
txz_path_delay_expression ::= path_delay_expression
tzx_path_delay_expression ::= path_delay_expression
path_delay_expression ::= constant_mintypmax_expression
edge_sensitive_path_declaration ::=

parallel_edge_sensitive_path_description = path_delay_value
| full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=
([edge_identifier] specify_input_terminal_descriptor =>

(specify_output_terminal_descriptor [polarity_operator] : data_source_expression))
full_edge_sensitive_path_description ::=

([edge_identifier] list_of_path_inputs *>
(list_of_path_outputs [polarity_operator] : data_source_expression))

data_source_expression ::= expression
edge_identifier ::= posedge | negedge
state_dependent_path_declaration ::=

if (module_path_expression) simple_path_declaration
| if (module_path_expression) edge_sensitive_path_declaration
| ifnone simple_path_declaration

polarity_operator ::= + | -

A.7.5 System timing checks

A.7.5.1 System timing check commands
system_timing_check ::=

$setup_timing_check
| $hold_timing_check
| $setuphold_timing_check
| $recovery_timing_check
| $removal_timing_check
| $recrem_timing_check
| $skew_timing_check
| $timeskew_timing_check
| $fullskew_timing_check
| $period_timing_check
| $width_timing_check
| $nochange_timing_check

$setup_timing_check ::=
$setup (data_event , reference_event , timing_check_limit [, [notifier]]) ;

$hold_timing_check ::=
$hold (reference_event , data_event , timing_check_limit [, [notifier]]) ;

$setuphold_timing_check ::=
$setuphold (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notifier] [, [stamptime_condition] [, [checktime_condition]
[, [delayed_reference] [, [delayed_data]]]]]]) ;

$recovery_timing_check ::=
$recovery (reference_event , data_event , timing_check_limit [, [notifier]]) ;

$removal_timing_check ::=
Copyright © 2014 Accellera Systems Initiative. 368

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
$removal (reference_event , data_event , timing_check_limit [, [notifier]]) ;
$recrem_timing_check ::=

$recrem (reference_event , data_event , timing_check_limit , timing_check_limit
[, [notifier] [, [stamptime_condition] [, [checktime_condition]
[, [delayed_reference] [, [delayed_data]]]]]]) ;

$skew_timing_check ::=
$skew (reference_event , data_event , timing_check_limit [, [notifier]]) ;

$timeskew_timing_check ::=
$timeskew (reference_event , data_event , timing_check_limit

[, [notifier] [, [event_based_flag] [, [remain_active_flag]]]]) ;
$fullskew_timing_check ::=

$fullskew (reference_event , data_event , timing_check_limit , timing_check_limit
[, [notifier] [, [event_based_flag] [, [remain_active_flag]]]]) ;

$period_timing_check ::=
$period (controlled_reference_event , timing_check_limit [, [notifier]]) ;

$width_timing_check ::=
$width (controlled_reference_event , timing_check_limit [, threshold [, notifier]]) ;

$nochange_timing_check ::=
$nochange (reference_event , data_event , start_edge_offset ,

end_edge_offset [, [notifier]]) ;

A.7.5.2 System timing check command arguments
checktime_condition ::= mintypmax_expression
controlled_reference_event ::= controlled_timing_check_event
data_event ::= timing_check_event
delayed_data ::=

terminal_identifier
| terminal_identifier [constant_mintypmax_expression]

delayed_reference ::=
terminal_identifier

| terminal_identifier [constant_mintypmax_expression]
end_edge_offset ::= mintypmax_expression
event_based_flag ::= constant_expression
notifier ::= variable_identifier
reference_event ::= timing_check_event
remain_active_flag ::= constant_expression
stamptime_condition ::= mintypmax_expression
start_edge_offset ::= mintypmax_expression
threshold ::= constant_expression
timing_check_limit ::= expression

A.7.5.3 System timing check event definitions
timing_check_event ::=

[timing_check_event_control] specify_terminal_descriptor [&&& timing_check_condition]
controlled_timing_check_event ::=

timing_check_event_control specify_terminal_descriptor [&&& timing_check_condition]
timing_check_event_control ::=

posedge
369 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
| negedge
| edge_control_specifier

specify_terminal_descriptor ::=
specify_input_terminal_descriptor

| specify_output_terminal_descriptor
edge_control_specifier ::= edge [edge_descriptor { , edge_descriptor }]

edge_descriptor2 ::=
01

| 10
| z_or_x zero_or_one
| zero_or_one z_or_x

zero_or_one ::= 0 | 1
z_or_x ::= x | X | z | Z
timing_check_condition ::=

scalar_timing_check_condition
| (scalar_timing_check_condition)

scalar_timing_check_condition ::=
expression

| ~ expression
| expression == scalar_constant
| expression === scalar_constant
| expression != scalar_constant
| expression !== scalar_constant

scalar_constant ::=
1'b0 | 1'b1 | 1'B0 | 1'B1 | 'b0 | 'b1 | 'B0 | 'B1 | 1 | 0

A.8 Expressions

A.8.1 Concatenations and assignment patterns

analog_concatenation ::= { analog_expression { , analog_expression } }
analog_multiple_concatenation ::= { constant_expression analog_concatenation }
analog_filter_function_arg ::=

parameter_identifier
| parameter_identifier [msb_constant_expression : lsb_constant_expression]
| constant_optional_arrayinit

concatenation ::= { expression { , expression } }
constant_concatenation ::= { constant_expression { , constant_expression } }
constant_multiple_concatenation ::= { constant_expression constant_concatenation }
module_path_concatenation ::= { module_path_expression { , module_path_expression } }
module_path_multiple_concatenation ::= { constant_expression module_path_concatenation }
multiple_concatenation ::= { constant_expression concatenation }
assignment_pattern ::=

'{ expression { , expression } }
| '{ constant_expression { expression { , expression } } }

constant_assignment_pattern ::=
'{ constant_expression { , constant_expression } }
Copyright © 2014 Accellera Systems Initiative. 370

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
| '{ constant_expression { constant_expression { , constant_expression } } }

A.8.2 Function calls

analog_function_call ::=
analog_function_identifier { attribute_instance } (analog_expression { , analog_expression })

analog_system_function_call ::=
analog_system_function_identifier [([analog_expression] { , [analog_expression] })]

analog_built_in_function_call ::=
analog_built_in_function_name (analog_expression [, analog_expression])

analog_built_in_function_name ::=
ln | log | exp | sqrt | min | max | abs | pow | floor | ceil

| sin | cos | tan | asin | acos | atan | atan2
| hypot | sinh | cosh | tanh | asinh | acosh | atanh

analysis_function_call ::= analysis (" analysis_identifier " { , " analysis_identifier " })
analog_filter_function_call ::=

ddt (analog_expression [, abstol_expression])
| ddx (analog_expression , branch_probe_function_call)
| idt (analog_expression [, analog_expression [, analog_expression [, abstol_expression]]])
| idtmod (analog_expression [, analog_expression [, analog_expression [, analog_expression

[, abstol_expression]]]])
| absdelay (analog_expression , analog_expression [, constant_expression])
| transition (analog_expression [, analog_expression [, analog_expression

[, analog_expression [, constant_expression]]]])
| slew (analog_expression [, analog_expression [, analog_expression]])
| last_crossing (analog_expression [, analog_expression])
| limexp (analog_expression)
| laplace_filter_name (analog_expression , [analog_filter_function_arg] ,

[analog_filter_function_arg] [, constant_expression])
| zi_filter_name (analog_expression , [analog_filter_function_arg] ,

[analog_filter_function_arg] , constant_expression
[, analog_expression [, constant_expression]])

analog_small_signal_function_call ::=
ac_stim ([" analysis_identifier " [, analog_expression [, analog_expression]]])

| white_noise (analog_expression [, string])
| flicker_noise (analog_expression , analog_expression [, string])
| noise_table (noise_table_input_arg [, string])
| noise_table_log (noise_table_input_arg [, string])

noise_table_input_arg ::=
parameter_identifier

| parameter_identifier [msb_constant_expression : lsb_constant_expression]
| string
| constant_arrayinit

laplace_filter_name ::= laplace_zd | laplace_zp | laplace_np | laplace_nd
zi_filter_name ::= zi_zp | zi_zd | zi_np | zi_nd
nature_access_function ::=

nature_attribute_identifier
| potential
| flow

branch_probe_function_call ::=
371 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
nature_access_function (branch_reference)
| nature_access_function (analog_net_reference [, analog_net_reference])

port_probe_function_call ::= nature_attribute_identifier (< analog_port_reference >)
constant_analog_function_call ::=

analog_function_identifier { attribute_instance } (constant_expression { , constant_expression })
constant_function_call ::= function_identifier { attribute_instance }

(constant_expression { , constant_expression })
constant_system_function_call ::= system_function_identifier

(constant_expression { , constant_expression })
constant_analog_built_in_function_call ::=

analog_built_in_function_name (constant_expression [, constant_expression])
function_call ::= hierarchical_function_identifier{ attribute_instance }

(expression { , expression })
system_function_call ::= system_function_identifier

[(expression { , expression })]

A.8.3 Expressions

abstol_expression ::=
constant_expression

| nature_identifier
analog_conditional_expression ::=

analog_expression ? { attribute_instance } analog_expression : analog_expression
analog_range_expression ::=

analog_expression
| msb_constant_expression : lsb_constant_expression

analog_expression_or_null ::= [analog_expression]
analog_expression ::=

analog_primary
| unary_operator { attribute_instance } analog_primary
| analog_expression binary_operator { attribute_instance } analog_expression
| analog_conditional_expression
| string

base_expression ::= expression
conditional_expression ::= expression1 ? { attribute_instance } expression2 : expression3
constant_base_expression ::= constant_expression
constant_expression_or_null ::= [constant_expression]
constant_expression ::=

constant_primary
| unary_operator { attribute_instance } constant_primary
| constant_expression binary_operator { attribute_instance } constant_expression
| constant_expression ? { attribute_instance } constant_expression : constant_expression

analysis_or_constant_expression ::=
constant_primary

| analysis_function_call
| unary_operator { attribute_instance } analysis_or_constant_primary
| analysis_or_constant_expression binary_operator { attribute_instance }

analysis_constant_expression
| analysis_or_constant_expression ? { attribute_instance } analysis_or_constant_expression :
Copyright © 2014 Accellera Systems Initiative. 372

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
analysis_or_constant_expression
constant_mintypmax_expression ::=

constant_expression
| constant_expression : constant_expression : constant_expression

constant_range_expression ::=
constant_expression

| msb_constant_expression : lsb_constant_expression
| constant_base_expression +: width_constant_expression
| constant_base_expression -: width_constant_expression

dimension_constant_expression ::= constant_expression
expression ::=

primary
| unary_operator { attribute_instance } primary
| expression binary_operator { attribute_instance } expression
| conditional_expression

expression1 ::= expression
expression2 ::= expression
expression3 ::= expression
indirect_expression ::=

branch_probe_function_call
| port_probe_function_call
| ddt (branch_probe_function_call [, abstol_expression])
| ddt (port_probe_function_call [, abstol_expression])
| idt (branch_probe_function_call [, analog_expression

[, analog_expression [, abstol_expression]]])
| idt (port_probe_function_call [, analog_expression [, analog_expression

[, abstol_expression]]])
| idtmod (branch_probe_function_call [, analog_expression [, analog_expression

[, analog_expression [, abstol_expression]]]])
| idtmod (port_probe_function_call [, analog_expression [, analog_expression

[, analog_expression [, abstol_expression]]]])
lsb_constant_expression ::= constant_expression
mintypmax_expression ::=

expression
| expression : expression : expression

module_path_conditional_expression ::= module_path_expression ? { attribute_instance }
module_path_expression : module_path_expression

module_path_expression ::=
module_path_primary

| unary_module_path_operator { attribute_instance } module_path_primary
| module_path_expression binary_module_path_operator { attribute_instance }

module_path_expression
| module_path_conditional_expression

module_path_mintypmax_expression ::=
module_path_expression

| module_path_expression : module_path_expression : module_path_expression
msb_constant_expression ::= constant_expression
nature_attribute_expression ::=

constant_expression
| nature_identifier
373 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
| nature_access_identifier
range_expression ::=

expression
| msb_constant_expression : lsb_constant_expression
| base_expression +: width_constant_expression
| base_expression -: width_constant_expression

width_constant_expression ::= constant_expression

A.8.4 Primaries

analog_primary ::=
number

| analog_concatenation
| analog_multiple_concatenation
| variable_reference
| net_reference
| genvar_identifier
| parameter_reference
| nature_attribute_reference
| branch_probe_function_call
| port_probe_function_call
| analog_function_call
| analog_system_function_call
| analog_built_in_function_call
| analog_filter_function_call
| analog_small_signal_function_call
| analysis_function_call
| (analog_expression)

constant_primary ::=
number

| parameter_identifier [[constant_range_expression]]
| specparam_identifier [[constant_range_expression]]
| constant_concatenation
| constant_multiple_concatenation
| constant_function_call
| constant_system_function_call
| constant_analog_built_in_function_call
| (constant_mintypmax_expression)
| string
| system_parameter_identifier
| nature_attribute_reference
| constant_analog_function_call

module_path_primary ::=
number

| identifier
| module_path_concatenation
| module_path_multiple_concatenation
| function_call
| system_function_call
| (module_path_mintypmax_expression)

primary ::=
number
Copyright © 2014 Accellera Systems Initiative. 374

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
| hierarchical_identifier [{ [expression] } [range_expression]]
| concatenation
| multiple_concatenation
| function_call
| system_function_call
| (mintypmax_expression)
| string
| branch_probe_function_call
| port_probe_function_call
| nature_attribute_reference
| analog_function_call
| analog_built_in_function_call

A.8.5 Expression left-side values

analog_variable_lvalue ::=
variable_identifier

| variable_identifier [analog_expression] { [analog_expression] }
array_analog_variable_assignment ::= array_analog_variable_lvalue = array_analog_variable_rvalue ;
array_analog_variable_rvalue ::=

array_variable_identifier
| array_ variable_identifier [analog_expression] { [analog_expression] }
| assignment_pattern

branch_lvalue ::= branch_probe_function_call
net_lvalue ::=

hierarchical_net_identifier [{ [constant_expression] } [constant_range_expression]]
| { net_lvalue { , net_lvalue } }

variable_lvalue ::=
hierarchical_variable_identifier [{ [expression] } [range_expression]]

| { variable_lvalue { , variable_lvalue } }

A.8.6 Operators

unary_operator ::=
+ | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_operator ::=
+ | - | * | / | % | == | != | === | !== | && | || | **

| < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | << | >>> | <<<
unary_module_path_operator ::=

! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~
binary_module_path_operator ::=

== | != | && | || | & | | | ^ | ^~ | ~^

A.8.7 Numbers

number ::=
decimal_number

| octal_number
| binary_number
| hex_number
375 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
| real_number

real_number2 ::=
unsigned_number . unsigned_number

| unsigned_number [. unsigned_number] exp [sign] unsigned_number
| unsigned_number [. unsigned_number] scale_factor

exp ::= e | E
scale_factor ::= T | G | M | K | k | m | u | n | p | f | a
decimal_number ::=

unsigned_number
| [size] decimal_base unsigned_number
| [size] decimal_base x_digit { _ }
| [size] decimal_base z_digit { _ }

binary_number ::= [size] binary_base binary_value
octal_number ::= [size] octal_base octal_value
hex_number ::= [size] hex_base hex_value
sign ::= + | -
size ::= non_zero_unsigned_number

non_zero_unsigned_number2 ::= non_zero_decimal_digit { _ | decimal_digit}

unsigned_number2 ::= decimal_digit { _ | decimal_digit }

binary_value2 ::= binary_digit { _ | binary_digit }

octal_value2 ::= octal_digit { _ | octal_digit }

hex_value2 ::= hex_digit { _ | hex_digit }

decimal_base2 ::= '[s|S]d | '[s|S]D

binary_base2 ::= '[s|S]b | '[s|S]B

octal_base2 ::= '[s|S]o | '[s|S]O

hex_base2 ::= '[s|S]h | '[s|S]H
non_zero_decimal_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
binary_digit ::= x_digit | z_digit | 0 | 1
octal_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
hex_digit ::=

x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| a | b | c | d | e | f | A | B | C | D | E | F

x_digit ::= x | X
z_digit ::= z | Z | ?

A.8.8 Strings

string ::= " { Any_ASCII_Characters } "

A.8.9 Analog references

nature_attribute_reference ::= net_identifier . potential_or_flow . nature_attribute_identifier
analog_port_reference ::=
Copyright © 2014 Accellera Systems Initiative. 376

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
port_identifier
| port_identifier [constant_expression]
| hierarchical_port_identifier
| hierarchical_port_identifier [constant_expression]

analog_net_reference ::=
port_identifier

| port_identifier [constant_expression]
| net_identifier
| net_identifier [constant_expression]
| hierarchical_port_identifier
| hierarchical_port_identifier [constant_expression]
| hierarchical_net_identifier
| hierarchical_net_identifier [constant_expression]

branch_reference ::=
hierarchical_branch_identifier

| hierarchical_branch_identifier [constant_expression]
| hierarchical_unnamed_branch_reference

hierarchical_unnamed_branch_reference ::=
hierarchical_inst_identifier.branch (branch_terminal [, branch_terminal])

| hierarchical_inst_identifier.branch (< port_identifier >)
| hierarchical_inst_identifier.branch (< hierarchical_port_identifier >)

parameter_reference ::=
parameter_identifier

| parameter_identifier [analog_expression]
variable_reference ::=

variable_identifier
| variable_identifier [analog_expression] { [analog_expression] }
| real_identifier
| real_identifier [analog_expression] { [analog_expression] }

net_reference ::=
hierarchical_net_identifier

| hierarchical_net_identifier [analog_range_expression]
| hierarchical_port_identifier
| hierarchical_port_identifier [analog_range_expression]

A.9 General

A.9.1 Attributes

attribute_instance ::= (* attr_spec { , attr_spec } *)
attr_spec ::= attr_name [= constant_expression]
attr_name ::= identifier

A.9.2 Comments

comment ::=
one_line_comment

| block_comment
one_line_comment ::= // comment_text \n
377 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
block_comment ::= /* comment_text */
comment_text ::= { Any_ASCII_character }

A.9.3 Identifiers

ams_net_identifier ::=
net_identifier { dimension }

| hierarchical_net_identifier
analog_block_identifier ::= block_identifier
analog_function_identifier ::= identifier
analog_system_task_identifier ::= system_task_identifier
analog_system_function_identifier ::= system_function_identifier
analysis_identifier ::= identifier
block_identifier ::= identifier
branch_identifier ::= identifier
cell_identifier ::= identifier
config_identifier ::= identifier
connectmodule_identifier ::= module_identifier
connectrules_identifier ::= identifier
discipline_identifier ::= identifier
escaped_identifier ::= \ {Any_ASCII_character_except_white_space} white_space
event_identifier ::= identifier
function_identifier ::= identifier
gate_instance_identifier ::= identifier
generate_block_identifier ::= identifier
genvar_identifier ::= identifier
hierarchical_block_identifier ::= hierarchical_identifier
hierarchical_branch_identifier ::= hierarchical_identifier
hierarchical_event_identifier ::= hierarchical_identifier
hierarchical_function_identifier ::= hierarchical_identifier
hierarchical_identifier ::= [$root .] { identifier [[constant_expression]] . } identifier
hierarchical_inst_identifier ::= hierarchical_identifier
hierarchical_net_identifier ::= hierarchical_identifier
hierarchical_parameter_identifier ::= hierarchical_identifier
hierarchical_port_identifier ::= hierarchical_identifier
hierarchical_variable_identifier ::= hierarchical_identifier
hierarchical_task_identifier ::= hierarchical_identifier
identifier ::=

simple_identifier
| escaped_identifier

inout_port_identifier ::= identifier
input_port_identifier ::= identifier
instance_identifier ::= identifier
library_identifier ::= identifier
Copyright © 2014 Accellera Systems Initiative. 378

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
module_identifier ::= identifier
module_instance_identifier ::= identifier
module_or_paramset_identifier ::=

module_identifier
| paramset_identifier

module_output_variable_identifier ::= identifier
module_parameter_identifier ::= identifier
nature_identifier ::= identifier
nature_access_identifier ::= identifier
nature_attribute_identifier ::= abstol | access | ddt_nature | idt_nature | units | identifier
net_identifier ::= identifier
output_port_identifier ::= identifier
parameter_identifier ::= identifier
paramset_identifier ::= identifier
port_identifier ::= identifier
real_identifier ::= identifier

simple_identifier3 ::= [a-zA-Z_] { [a-zA-Z0-9_$] }
specparam_identifier ::= identifier

system_function_identifier4 ::= $ [a-zA-Z0-9_$] { [a-zA-Z0-9_$] }
system_parameter_identifier ::= $ [a-zA-Z0-9_$] { [a-zA-Z0-9_$] }

system_task_identifier4 ::= $ [a-zA-Z0-9_$] { [a-zA-Z0-9_$] }
task_identifier ::= identifier
terminal_identifier ::= identifier
text_macro_identifier ::=

identifier
| __VAMS_ENABLE__
| __VAMS_COMPACT_MODELING__

topmodule_identifier ::= identifier
udp_identifier ::= identifier
udp_instance_identifier ::= identifier
variable_identifier ::= identifier

A.9.4 White space

white_space ::= space | tab | newline | eof5

A.10 Details

1) Function statements are limited by the rules of 4.7.1.

2) Embedded spaces are illegal.

3) A simple_identifier shall start with an alpha or underscore (_) character, shall have at least one character, and shall
not have any spaces.
379 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
4) The $ character in a system_function_identifier or system_task_identifier shall not be followed by white_space. A
system_function_identifier or system_task_identifier shall not be escaped.

5) End of file.
Copyright © 2014 Accellera Systems Initiative. 380

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Annex B

(normative)

List of keywords

Keywords are predefined nonescaped identifiers that define Verilog-AMS language constructs. An escaped
identifier shall not be treated as a keyword. Verilog-AMS reserves the keywords listed in Table B.1.

Table B.1—Reserved keywords

above
abs
absdelay
absdelta
abstol
access
acos
acosh
ac_stim
aliasparam
always
analog
analysis
and
asin
asinh
assert
assign
atan
atan2
atanh
automatic
begin
branch
buf
bufif0
bufif1
case
casex
casez
ceil
cell
cmos
config
connect
connectmodule
connectrules
continuous
cos
cosh
cross
ddt
ddt_nature
ddx
deassign
default

defparam
design
disable
discipline
discrete
domain
driver_update
edge
else
end
endcase
endconfig
endconnectrules
enddiscipline
endfunction
endgenerate
endmodule
endnature
endparamset
endprimitive
endspecify
endtable
endtask
event
exclude
exp
final_step
flicker_noise
floor
flow
for
force
forever
fork
from
function
generate
genvar
ground
highz0
highz1
hypot
idt
idtmod
idt_nature
if

ifnone
incdir
include
inf
initial
initial_step
inout
input
instance
integer
join
laplace_nd
laplace_np
laplace_zd
laplace_zp
large
last_crossing
liblist
library
limexp
ln
localparam
log
macromodule
max
medium
merged
min
module
nand
nature
negedge
net_resolution
nmos
noise_table
noise_table_log
nor
noshowcancelled
not
notif0
notif1
or
output
parameter
paramset
pmos
381 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Table B.1—Reserved keywords (continued)

posedge
potential
pow
primitive
pull0
pull1
pulldown
pullup
pulsestyle_onevent
pulsestyle_ondetect
rcmos
real
realtime
reg
release
repeat
resolveto
rnmos
rpmos
rtran
rtranif0
rtranif1
scalared
sin
sinh
showcancelled
signed

slew
small
specify
specparam
split
sqrt
string
strong0
strong1
supply0
supply1
table
tan
tanh
task
time
timer
tran
tranif0
tranif1
transition
tri
tri0
tri1
triand
trior
trireg

units
unsigned
use
uwire
vectored
wait
wand
weak0
weak1
while
white_noise
wire
wor
wreal
xnor
xor
zi_nd
zi_np
zi_zd
zi_zp
Copyright © 2014 Accellera Systems Initiative. 382

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Annex C

(normative)

Analog language subset

This annex defines a working subset of Verilog-AMS HDL for analog-only products.

C.1 Verilog-A overview

This Verilog-A subset defines a behavioral language for analog only systems. Verilog-A is derived from the
IEEE Std 1364-2005 Verilog HDL specification using a minimum number of constructs for analog and
mixed-signal behavioral descriptions. This Annex is intended to cover the definition and semantics of Ver-
ilog-A.

The intent of Verilog-A is to let designers of analog systems and integrated circuits create and use modules
which encapsulate high-level behavioral descriptions of systems and components. The behavior of each
module can be described mathematically in terms of its terminals and external parameters applied to the
module. These behavioral descriptions can be used in many disciplines such as electrical, mechanical, fluid
dynamics, and thermodynamics.

Verilog-A has been defined to be applicable to both electrical and non-electrical systems description. It sup-
ports conservative and signal-flow descriptions by using the terminology for these descriptions using the
concepts of nodes, branches, and terminals. The solution of analog behaviors which obey the laws of conser-
vation fall within the generalized form of Kirchhoff’s Potential and Flow Laws (KPL and KFL). Both of
these are defined in terms of the quantities associated with the analog behaviors.

C.2 Verilog-A language features

The Verilog-A subset provides access to a salient set of features of the full modeling language that allow
analog designers the ability to model analog systems:

— Verilog-A modules are compatible with Verilog-AMS HDL.
— Analog behavioral modeling descriptions are contained in separate analog blocks.
— Branches can be named for easy selection and access.
— Parameters can be specified with valid range limits.
— Systems can be modeled by using expressions consisting of operators, variables, and signals:

— a full set of operators including trigonometric functions, integrals, and derivatives;
— a set of waveform filters to modify the waveform results for faster and more accurate simulation

like transition, slew, Laplace, and Z-domain;
— a set of events to control when certain code is simulated;
— selection of the simulation time step for simulation control;
— support for accessing SPICE primitives from within the language.
383 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
C.3 Lexical conventions

With the exception of certain keywords required for Verilog-AMS HDL, Clause 2 shall be applicable to
both Verilog-A and Verilog-AMS HDL. All Verilog-AMS HDL keywords shall be supported by Verilog-A
as reserved words, but IEEE Std 1364-2005 Verilog HDL and Verilog-AMS HDL specific keywords are not
used in Verilog-A. The following Verilog-AMS HDL keywords are not required to be supported for a fully
compliant Verilog-A subset:

From 2.6, Numbers: support for X and Z values is limited in the analog block to the mixed signal context, as
defined in 7.3.2. In the same paragraph, the use of the question mark character as an alternative for z is also
limited to the mixed signal context.

From 2.8.2, Keywords: certain keywords are not applicable in Verilog-A, as defined in Annex C.16.

C.4 Data types

The data types of Clause 3 are applicable to both Verilog-AMS HDL and Verilog-A with the following
exceptions:

— From 3.6.2.2, Domain binding: the domain binding type discrete shall be an error in Verilog-A.
— From 3.7, Real net declarations: the wreal data type is not supported in Verilog-A.
— From 3.8, Default discipline: the `default_discipline compiler directive is not supported in

Verilog-A. All Verilog-A modules shall have a discipline defined for each module.

This feature allows the use of digital modules in Verilog-AMS HDL without editing them to add a disci-
pline.

C.5 Expressions

The expressions defined in Clause 4 are applicable to both Verilog-AMS HDL and Verilog-A with the fol-
lowing exception:

The case equality operators (===, !==) are not supported in Verilog-A.

C.6 Analog signals

The signals defined in 5.4 are applicable to both Verilog-AMS HDL and Verilog-A.

C.7 Analog behavior

The analog behavior defined in Clause 5 are applicable to both Verilog-AMS HDL and Verilog-A with the
following exceptions:

— No digital behavior or events are supported in Verilog-A.
— casex and casez are not supported in Verilog-A.
Copyright © 2014 Accellera Systems Initiative. 384

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
C.8 Hierarchical structures

The hierarchical structure defined in Clause 6 is applicable to both Verilog-AMS HDL and Verilog-A,
except support for real value ports is only applicable to Verilog-AMS HDL and IEEE Std 1364-2005 Ver-
ilog HDL (see 6.5.3).

C.9 Mixed signal

Clause 7only applies to Verilog-AMS HDL.

C.10 Scheduling semantics

The analog simulation cycle is applicable to both Verilog-AMS HDL and Verilog-A. The mixed-signal sim-
ulation cycle from 8.2 is only applicable to Verilog-AMS HDL.

C.11 System tasks and functions

All system tasks and functions in Clause 9 that are applicable in the analog context are applicable to Ver-
ilog-A.

C.12 Compiler directives

The compiler directives of Clause 10 are applicable to both Verilog-AMS HDL and Verilog-A.

C.13 Using VPI routines

The analog behavior defined in Clause 11 is applicable to both Verilog-AMS HDL and Verilog-A.

C.14 VPI routine definitions

The analog behavior defined in Clause 12 is applicable to both Verilog-AMS HDL and Verilog-A.

C.15 Analog language subset

This annex (Annex C) defines the differences between Verilog-AMS HDL and Verilog-A. Annex A defines
the BNF for Verilog-AMS HDL.

C.16 List of keywords

The keywords in Annex B are the complete set of Verilog-AMS HDL keywords, including those from IEEE
Std 1364-2005 Verilog HDL. The following keywords as defined in this LRM are not used by Verilog-A:

connect
connectmodule
connectrules
385 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
driver_update
endconnectrules
merged
net_resolution
resolvedto
split
wreal

NOTE—All keywords of Verilog-AMS HDL are reserved words for Verilog-A.

C.17 Standard definitions

The definitions of Annex D are applicable to both Verilog-AMS HDL and Verilog-A, with the exception of
those disciplines with a domain of discrete. A Verilog-A implementation shall silently ignore any defi-
nition of a discipline with a domain of discrete.

C.18 SPICE compatibility

Annex E defines the SPICE compatibility for both Verilog-A and Verilog-AMS HDL.

C.19 Changes from previous Verilog-A LRM versions

Annex G describes the changes from previous LRM versions for both Verilog-A and Verilog-AMS HDL.

C.20 Obsolete functionality

Annex G also describes the statements that are no longer supported in the current version of Verilog-AMS
HDL as well as the analog language subset.
Copyright © 2014 Accellera Systems Initiative. 386

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Annex D

(normative)

Standard definitions

This annex contains the standard definition packages (disciplines.vams, constants.vams and
driver_access.vams) for Verilog-AMS HDL. The copyright for these three files differs from the rest of
the Verilog-AMS HDL language reference manual to reflect that verbatim copies of these three standard
definition files that make up this Annex may be used and distributed without restrictions.

D.1 The disciplines.vams file

// Copyright(c) 2009-2014 Accellera Systems Initiative Inc.
// 1370 Trancas Street #163, Napa, CA 94558, USA.
//
// The material in disciplines.vams is an essential part of the Accellera Systems
// Initiative ("Accellera") Verilog-AMS Language Standard. Verbatim copies of
// the material in this Annex may be used and distributed without restriction.
// All other uses require permission from Accellera IP Committee
// (ipr-chair@lists.accellera.org).
// All other rights reserved.
//
// Version 2.4.0

`ifdef DISCIPLINES_VAMS
`else
`define DISCIPLINES_VAMS 1

//
// Natures and Disciplines
//

discipline \logic ;
domain discrete;

enddiscipline

discipline ddiscrete;
domain discrete;

enddiscipline

/*
* Default absolute tolerances may be overridden by setting the
* appropriate _ABSTOL prior to including this file
*/

// Electrical

// Current in amperes
nature Current;

units = "A";
access = I;
idt_nature = Charge;

`ifdef CURRENT_ABSTOL
abstol = `CURRENT_ABSTOL;

`else
abstol = 1e-12;
387 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
`endif
endnature

// Charge in coulombs
nature Charge;

units = "coul";
access = Q;
ddt_nature = Current;

`ifdef CHARGE_ABSTOL
abstol = `CHARGE_ABSTOL;

`else
abstol = 1e-14;

`endif
endnature

// Potential in volts
nature Voltage;

units = "V";
access = V;
idt_nature = Flux;

`ifdef VOLTAGE_ABSTOL
abstol = `VOLTAGE_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Flux in Webers
nature Flux;

units = "Wb";
access = Phi;
ddt_nature = Voltage;

`ifdef FLUX_ABSTOL
abstol = `FLUX_ABSTOL;

`else
abstol = 1e-9;

`endif
endnature

// Conservative discipline
discipline electrical;

potential Voltage;
flow Current;

enddiscipline

// Signal flow disciplines
discipline voltage;

potential Voltage;
enddiscipline

discipline current;
flow Current;

enddiscipline

// Magnetic

// Magnetomotive force in Ampere-Turns.
nature Magneto_Motive_Force;

units = "A*turn";
access = MMF;

`ifdef MAGNETO_MOTIVE_FORCE_ABSTOL
Copyright © 2014 Accellera Systems Initiative. 388

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
abstol = `MAGNETO_MOTIVE_FORCE_ABSTOL;
`else

abstol = 1e-12;
`endif
endnature

// Conservative discipline
discipline magnetic;

potential Magneto_Motive_Force;
flow Flux;

enddiscipline

// Thermal

// Temperature in Kelvin
nature Temperature;

units = "K";
access = Temp;

`ifdef TEMPERATURE_ABSTOL
abstol = `TEMPERATURE_ABSTOL;

`else
abstol = 1e-4;

`endif
endnature

// Power in Watts
nature Power;

units = "W";
access = Pwr;

`ifdef POWER_ABSTOL
abstol = `POWER_ABSTOL;

`else
abstol = 1e-9;

`endif
endnature

// Conservative discipline
discipline thermal;

potential Temperature;
flow Power;

enddiscipline

// Kinematic

// Position in meters
nature Position;

units = "m";
access = Pos;
ddt_nature = Velocity;

`ifdef POSITION_ABSTOL
abstol = `POSITION_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Velocity in meters per second
nature Velocity;

units = "m/s";
access = Vel;
ddt_nature = Acceleration;
389 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
idt_nature = Position;
`ifdef VELOCITY_ABSTOL

abstol = `VELOCITY_ABSTOL;
`else

abstol = 1e-6;
`endif
endnature

// Acceleration in meters per second squared
nature Acceleration;

units = "m/s^2";
access = Acc;
ddt_nature = Impulse;
idt_nature = Velocity;

`ifdef ACCELERATION_ABSTOL
abstol = `ACCELERATION_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Impulse in meters per second cubed
nature Impulse;

units = "m/s^3";
access = Imp;
idt_nature = Acceleration;

`ifdef IMPULSE_ABSTOL
abstol = `IMPULSE_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Force in Newtons
nature Force;

units = "N";
access = F;

`ifdef FORCE_ABSTOL
abstol = `FORCE_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Conservative disciplines
discipline kinematic;

potential Position;
flow Force;

enddiscipline

discipline kinematic_v;
potential Velocity;
flow Force;

enddiscipline

// Rotational

// Angle in radians
nature Angle;

units = "rads";
access = Theta;
Copyright © 2014 Accellera Systems Initiative. 390

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
ddt_nature = Angular_Velocity;
`ifdef ANGLE_ABSTOL

abstol = `ANGLE_ABSTOL;
`else

abstol = 1e-6;
`endif
endnature

// Angular Velocity in radians per second
nature Angular_Velocity;

units = "rads/s";
access = Omega;
ddt_nature = Angular_Acceleration;
idt_nature = Angle;

`ifdef ANGULAR_VELOCITY_ABSTOL
abstol = `ANGULAR_VELOCITY_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Angular acceleration in radians per second squared
nature Angular_Acceleration;

units = "rads/s^2";
access = Alpha;
idt_nature = Angular_Velocity;

`ifdef ANGULAR_ACCELERATION_ABSTOL
abstol = `ANGULAR_ACCELERATION_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Torque in Newtons
nature Angular_Force;

units = "N*m";
access = Tau;

`ifdef ANGULAR_FORCE_ABSTOL
abstol = `ANGULAR_FORCE_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature
// Conservative disciplines
discipline rotational;

potential Angle;
flow Angular_Force;

enddiscipline
discipline rotational_omega;

potential Angular_Velocity;
flow Angular_Force;

enddiscipline
`endif

D.2 The constants.vams file

// Copyright(c) 2009-2014 Accellera Systems Initiative Inc.
// 1370 Trancas Street #163, Napa, CA 94558, USA.
//
// The material in constants.vams is an essential part of the Accellera Systems
391 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
// Initiative ("Accellera") Verilog-AMS Language Standard. Verbatim copies of
// the material in this Annex may be used and distributed without restriction.
// All other uses require permission from Accellera IP Committee
// (ipr-chair@lists.accellera.org).
// All other rights reserved
//
// Version 2.4.0
//
// Mathematical and physical constants
`ifdef CONSTANTS_VAMS
`else
`define CONSTANTS_VAMS 1
// M_ is a mathematical constant
`define M_E 2.7182818284590452354
`define M_LOG2E 1.4426950408889634074
`define M_LOG10E 0.43429448190325182765
`define M_LN2 0.69314718055994530942
`define M_LN10 2.30258509299404568402
`define M_PI 3.14159265358979323846
`define M_TWO_PI 6.28318530717958647693
`define M_PI_2 1.57079632679489661923
`define M_PI_4 0.78539816339744830962
`define M_1_PI 0.31830988618379067154
`define M_2_PI 0.63661977236758134308
`define M_2_SQRTPI 1.12837916709551257390
`define M_SQRT2 1.41421356237309504880
`define M_SQRT1_2 0.70710678118654752440

// The following constants have been taken from http://physics.nist.gov
// P_ is a physical constant
// charge of electron in Coulombs
`define P_Q_SPICE 1.60219e-19
`define P_Q_OLD 1.6021918e-19
`define P_Q_NIST1998 1.602176462e-19
`define P_Q_NIST2010 1.602176565e-19
// speed of light in vacuum in meters/second
`define P_C 2.99792458e8
// Boltzmann's constant in Joules/Kelvin
`define P_K_SPICE 1.38062e-23
`define P_K_OLD 1.3806226e-23
`define P_K_NIST1998 1.3806503e-23
`define P_K_NIST2010 1.3806488e-23
// Planck's constant in Joules*second
`define P_H_SPICE 6.62620e-34
`define P_H_OLD 6.6260755e-34
`define P_H_NIST1998 6.62606876e-34
`define P_H_NIST2010 6.62606957e-34
// permittivity of vacuum in Farads/meter
`define P_EPS0_SPICE 8.854214871e-12
`define P_EPS0_OLD 8.85418792394420013968e-12
`define P_EPS0_NIST1998 8.854187817e-12
`define P_EPS0_NIST2010 8.854187817e-12
// permeability of vacuum in Henrys/meter
`define P_U0 (4.0e-7 * `M_PI)
// zero Celsius in Kelvin
`define P_CELSIUS0 273.15

`ifdef PHYSICAL_CONSTANTS_SPICE
// from UC Berkeley SPICE 3F5
`define P_Q `P_Q_SPICE
`define P_K `P_K_SPICE
Copyright © 2014 Accellera Systems Initiative. 392

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
`define P_H `P_H_SPICE
`define P_EPS0 `P_EPS0_SPICE

`else
`ifdef PHYSICAL_CONSTANTS_OLD
// from Verilog-A LRM 1.0 and Verilog-AMS LRM 2.0
`define P_Q `P_Q_OLD
`define P_K `P_K_OLD
`define P_H `P_H_OLD
`define P_EPS0 `P_EPS0_OLD

`else
`ifdef PHYSICAL_CONSTANTS_NIST2010
`define P_Q `P_Q_NIST2010
`define P_K `P_K_NIST2010
`define P_H `P_H_NIST2010
`define P_EPS0 `P_EPS0_NIST2010

`else
// use NIST1998 values as in LRM 2.2 - 2.3 for backwards-compatibility
`define P_Q `P_Q_NIST1998
`define P_K `P_K_NIST1998
`define P_H `P_H_NIST1998
`define P_EPS0 `P_EPS0_NIST1998
`endif
`endif
`endif

`endif

D.3 The driver_access.vams file

// Copyright(c) 2009-2014 Accellera Systems Initiative Inc.
// 1370 Trancas Street #163, Napa, CA 94558, USA.
//
// The material in driver_access.vams is an essential part of the Accellera Systems
// Initiative ("Accellera") Verilog-AMS Language Standard. Verbatim copies of
// the material in this Annex may be used and distributed without restriction.
// All other uses require permission from Accellera IP Committee
// (ipr-chair@lists.accellera.org).
// All other rights reserved.
//
// Version 2.4.0

`ifdef DRIVER_ACCESS_VAMS
`else
`define DRIVER_ACCESS_VAMS 1
`define DRIVER_UNKNOWN 32’b00000000000 // No information
`define DRIVER_DELAYED 32’b00000000001 // driver has fixed delay
`define DRIVER_GATE 32’b00000000010 // driver is a primitive
`define DRIVER_UDP 32’b00000000100 // driver is a user defined primitive
`define DRIVER_ASSIGN 32’b00000001000 // driver is a continuous assignment
`define DRIVER_BEHAVIORAL 32’b00000010000 // driver is a reg
`define DRIVER_SDF 32’b00000100000 // driver is from backannotated code
`define DRIVER_NODELETE 32’b00001000000 // events won’t be deleted
`define DRIVER_NOPREEMPT 32’b00010000000 // events won’t be preempted
`define DRIVER_KERNEL 32’b00100000000 // added by kernel (wor/wand)
`define DRIVER_WOR 32’b01000000000 // driver is on a wor net
`define DRIVER_WAND 32’b10000000000 // driver is on a wand net
`endif
393 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Copyright © 2014 Accellera Systems Initiative. 394

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Annex E

(normative)

SPICE compatibility

E.1 Introduction

Analog simulation has long been performed with SPICE and SPICE-like simulators. As such, there is a huge
legacy of SPICE netlists. In addition, SPICE provides a rich set of predefined models and it is considered nei-
ther practical nor desirable to convert these models into a Verilog-AMS HDL behavioral description. In
order for Verilog-AMS HDL to be embraced by the analog design community, it is important Verilog-AMS
HDL provide an appropriate degree of SPICE compatibility. This annex describes the degree of compatibility
which Verilog-AMS HDL provides and the approach taken to provide that compatibility.

E.1.1 Scope of compatibility

SPICE is not a single language, but rather is a family of related languages. The first widely used version of
SPICE was SPICE2g6 from the University of California at Berkeley. However, SPICE has been enhanced and
distributed by many different companies, each of which has added their own extensions to the language and
models. As a result, there is a great deal of incompatibility even among the SPICE languages themselves.

Verilog-AMS HDL makes no judgment as to which of the various SPICE languages should be supported.
Instead, it states if a simulator which supports Verilog-AMS HDL is also able to read SPICE netlists of a par-
ticular flavor, then certain objects defined in that flavor of SPICE netlist can be referenced from within a Ver-
ilog-AMS HDL structural description. In particular, SPICE models and subcircuits can be instantiated within
a Verilog-AMS HDL module. This is also true for any SPICE primitives which are built into the simulator. In
general, anything that can be instantiated in the particular flavor of SPICE can also be instantiated within a
Verilog-AMS HDL module.

E.1.2 Degree of incompatibility

There are four primary areas of incompatibility between versions of SPICE simulators.
1) The version of the SPICE language accepted by various simulators is different and to some degree

proprietary. This issue is not addressed by Verilog-AMS HDL. So whether a particular Verilog-
AMS simulator is SPICE compatible, and with which particular variant of SPICE it is compatible, is
solely determined by the authors of the simulator.

2) Not all SPICE simulators support the same set of component primitives. Thus, a particular SPICE
netlist can reference a primitive which is unsupported. Verilog-AMS HDL offers no alternative in
this case other than the possibility that if the model equations are known, the primitive can be rewrit-
ten as a module.

3) The names of the built-in SPICE primitives, their parameters, or their ports can differ from simulator
to simulator. This is particularly true because many primitives, parameters, and ports are unnamed in
SPICE. When instantiating SPICE primitives in Verilog-AMS HDL, the primitives shall, and parame-
ters and ports can, be named. Since there are no established standard names, there is a high likeli-
hood of incompatibility cropping up in these names. To reduce this, a list of what names shall be
used for the more common components is shown in Table E.1. However, it is not possible to antici-
pate all SPICE primitives and parameters which could be supported; so different implementations can
395 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
end up using different names. This level of incompatibility can be overcome by using wrapper mod-
ules to map names.

4) The mathematical description of the built-in primitives can differ. As with the netlist syntax, incom-
patible enhancements of the models have crept in through the years. Again, Verilog-AMS HDL
offers no solution in this case other than the possibility that if the model equations are known, the
primitive can be rewritten as a module.

E.2 Accessing SPICE objects from Verilog-AMS HDL

If an implementation of a Verilog-AMS tool supports Spice compatibility, it is expected to provide the basic
set of Spice primitives (see Annex E.3) and be able to read Spice netlists which contain models and subcir-
cuit statements.

SPICE primitives built into the simulator shall be treated in the same manner in Verilog-AMS HDL as built-
in primitives of gate- and switch-level modeling. However, while the Verilog-AMS HDL built-in primitives
are standardized, the SPICE primitives are not. All aspects of SPICE primitives are implementation dependent.

In addition to SPICE primitives, it shall also be possible to access subcircuits and models defined within
SPICE netlists. The subcircuits and models contained within the SPICE netlist are treated as module defini-
tions.

E.2.1 Case sensitivity

Some SPICE netlists are case insensitive, whereas Verilog-AMS HDL descriptions are case-sensitive. From
within Verilog-AMS HDL, a mixed-case name matches the same name with an identical case (if one is
defined in a Verilog-AMS HDL description). However, if no exact match is found, the mixed-case name
shall match the same name defined within SPICE regardless of the case.

E.2.2 Examples

This subsection shows some examples.

E.2.2.1 Accessing SPICE models

Consider the following SPICE model file being read by a Verilog-AMS HDL simulator.

.MODEL VERTNPN NPN BF=80 IS=1E-18 RB=100 VAF=50
+ CJE=3PF CJC=2PF CJS=2PF TF=0.3NS TR=6NS

This model can be instantiated in a Verilog-AMS HDL module as shown in Figure E.1.

Figure E.1—Instantiated module

e

c2c1
b1 b2
Copyright © 2014 Accellera Systems Initiative. 396

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
module diffPair (c1, b1, e, b2, c2);
electrical c1, b1, e, b2, c2;

vertNPN Q1 (c1, b1, e);
vertNPN Q2 (.c(c2), .b(b2), .e(e));

endmodule

Unlike with SPICE, the first letter of the instance name, in this case Q1 and Q2, is not constrained by the prim-
itive type. For example, they can just as easily be T1 and T2.

The ports and parameters of the bjt are determined by the bjt primitive itself and not by the model state-
ment for the bjt. See E.3 for more details. This bjt primitive has 3 mandatory ports (c, b, and e) and one
optional port (s). In the instantiation of Q1, the ports are passed by order. With Q2, the ports are passed by
name. In both cases, the optional substrate port s is defaulted by simply not giving it.

E.2.2.2 Accessing SPICE subcircuits

As an example of how a SPICE subcircuit is referenced from Verilog-AMS HDL, consider the following
SPICE subcircuit definition of an oscillator.

.SUBCKT ECPOSC (OUT GND)
VA VCC GND 5
IEE E GND 1MA
Q1 VCC B1 E VCC VERTNPN
Q2 OUT B2 E OUT VERTNPN
L1 VCC OUT 1UH
C1 VCC OUT 1P IC=1
C2 OUT B1 272.7PF
C3 B1 GND 3NF
R1 B1 GND 10K
C4 B2 GND 3NF
R2 B2 GND 10K

.ENDS ECPOSC

This oscillator can be referenced from Verilog-AMS HDL as:

module osc (out, gnd);
electrical out, gnd;
ecpOsc Osc1 (out, gnd);

endmodule

NOTE—In Verilog-AMS HDL the name of the subcircuit instance is not constrained to start with X as it is in SPICE.

E.2.2.3 Accessing SPICE primitives

To show how various SPICE primitives can be accessed from Verilog-AMS HDL, the subcircuit in E.2.2.2 is
translated to native Verilog-AMS HDL.

module ecpOsc (out, gnd);
electrical out, gnd;

vsine #(.dc(5)) Vcc (vcc, gnd);
isine #(.dc(1m)) Iee (e, gnd);
vertNPN Q1 (vcc, b1, e, vcc);
vertNPN Q2 (out, b2, e, out);
inductor #(.l(1u)) L1 (vcc, out);
capacitor #(.c(1p), .ic(1)) C1 (vcc, out);
397 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
capacitor #(.c(272.7p)) C2 (out, b1);
capacitor #(.c(3n)) C3 (b1, gnd);
resistor #(.r(10k)) R1 (b1, gnd);
capacitor #(.c(3n)) C4 (b2, gnd);
resistor #(.r(10k)) R2 (b2, gnd);

endmodule

E.3 Preferred primitive, parameter, and port names

Table E.1 shows the required names for primitives, parameters, and ports which are otherwise unnamed in
SPICE. For connection by order instead of by name, the ports and parameters shall be given in the order
listed. The default discipline of the ports for these primitives shall be electrical and their descriptions
shall be inout.

Table E.1—Names for primitives, parameters, and ports in SPICE

Primitive Port name Parameter name Behavior

resistor p, n r, tc1, tc2 V =

capacitor p, n c, ic V =

inductor p, n l, ic I =

iexp p, n dc, mag,
phase, val0,
val1, td0,
tau0, td1,
tau1

I =

with the value of I at time .

ipulse p, n dc, mag,
phase, val0,
val1, td,
rise, fall,
width, period

I =

with the following definitions (n is a non-negative integer):

I r 1 tc1 T⋅ tc2 T2⋅+ +()⋅ ⋅

1
c
--- I τd

0
t

∫⋅ ic+

l V τd
0
t

∫⋅ ic+

val0 t td0≤

val1 val1 dc–() e
td0 t–
tau0

⋅– td0 t td1≤<

val0 val0 Itd1–() e
td1 t–
tau1

⋅– td1 t<

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

Itd1 t td1=

val0 t t0≤

val0 val1 val0–() t t0–
rise
------------⋅+ t0 t< t1≤

val1 t1 t< t2≤

val1 val0 val1–() t t2–
fall

------------⋅+ t2 t< t3≤

val0 t3 t< t4≤⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

t0 td n period⋅+=
t1 rise td n period⋅+ +=
t2 width rise td n period⋅+ + +=
t3 fall width rise td n period⋅+ + + +=
t4 td n 1+() period⋅+=
Copyright © 2014 Accellera Systems Initiative. 398

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
ipwl p, n dc, mag,
phase, wave

I =

for and ,

I =

for

isine p, n dc, mag,
phase, off-
set, ampl,
freq, td,
damp, sineph-
ase, ammodin-
dex,
ammodfreq,
ammodphase,
fmmodindex,
fmmodfreq

I =

with = ammodindex, = ammodfreq, =

ammodphase, = fmmodindex, = fmmodfreq, and

 =sinephase.

vexp p, n dc, mag,
phase, val0,
val1, td0,
tau0, td1,
tau1

V =

with the value of V at time .

vpulse p, n dc, mag,
phase, val0,
val1, td,
rise, fall,
width, period

V =

with the following definitions (n is a non-negative integer):

Table E.1—Names for primitives, parameters, and ports in SPICE (continued)

Primitive Port name Parameter name Behavior

wave i 1+[]

wave i 3+[] wave i 1+[]–() t wave i[]–
wave i 2+[] wave i[]–
--⋅

+

wave i[] t≤ wave i 2+[]< 0 i≤ n< n len wave()=

wave n 1–[]

wave n 2–[] t<

offset ampl
1 FAM 2π fAM t td–()⋅ ⋅ ϕAM–()cos⋅–()
1 damp t td–()⋅–()

2π freq
1 FFM 2π fFM t td–()⋅ ⋅()cos⋅–() t td–()

⋅ ⋅
⋅ ϕSIN–

(
)

cos

⋅
⋅

⋅

+

FAM fAM ϕAM

FFM fAM

ϕSIN

dc t td0≤

val1 val1 dc–() e
td0 t–
tau0

⋅– td0 t td1≤<

val0 val0 Vtd1–() e
td1 t–
tau1

⋅– td1 t<

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

Vtd1 t td1=

val0 t t0≤

val0 val1 val0–() t t0–
rise
------------⋅+ t0 t< t1≤

val1 t1 t< t2≤

val1 val0 val1–() t t2–
fall

------------⋅+ t2 t< t3≤

val0 t3 t< t4≤⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

t0 td n period⋅+=
t1 rise td n period⋅+ +=
t2 width rise td n period⋅+ + +=
t3 fall width rise td n period⋅+ + + +=
t4 td n 1+() period⋅+=
399 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Although in a SPICE context the primitives for diode, bjt, mosfet, jfet, and mesfet can be used only
in a model definition, in Verilog-AMS they may be used directly in a paramset statement as described in 7.5.

vpwl p, n dc, mag,
phase, wave

V =

for and ,

I =

for .

vsine p, n dc, mag,
phase, off-
set, ampl,
freq, td,
damp, sineph-
ase, ammodin-
dex,
ammodfreq,
ammodphase,
fmmodindex,
fmmodfreq

V =

with = ammodindex, = ammodfreq, =

ammodphase, = fmmodindex, = fmmodfreq, and

 =sinephase.

tline t1, b1,
t2, b2

z0, td, f, nl

vccs sink, src,
ps, ns

gm I(sink, src) =

vcvs p, n,
ps, ns

gain V(p, n) =

diode a, c area

bjt c, b, e, s area

mosfet d, g, s, b w, l, ad, as,
pd, ps, nrd,
nrs

jfet d, g, s area

mesfet d, g, s area

Table E.1—Names for primitives, parameters, and ports in SPICE (continued)

Primitive Port name Parameter name Behavior

wave i 1+[]

wave i 3+[] wave i 1+[]–() t wave i[]–
wave i 2+[] wave i[]–
--⋅

+

wave i[] t≤ wave i 2+[]< 0 i≤ n< n len wave()=

wave n 1–[]

wave n 2–[] t<

offset ampl
1 FAM 2π fAM t td–()⋅ ⋅ ϕAM–()cos⋅–()
1 damp t td–()⋅–()

2π freq
1 FFM 2π fFM t td–()⋅ ⋅()cos⋅–() t td–()

⋅ ⋅
⋅ ϕSIN–

(
)

cos

⋅
⋅

⋅

+

FAM fAM ϕAM

FFM fAM

ϕSIN

gm V ps ns,()⋅

gain V ps ns,()⋅
Copyright © 2014 Accellera Systems Initiative. 400

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
E.3.1 Unsupported primitives

Verilog-AMS HDL does not support the concept of passing an instance name as a parameter. As such, the
following primitives are not supported: ccvs, cccs, and mutual inductors; however, these primitives can be
instantiated inside a SPICE subcircuit that itself is instantiated in Verilog-AMS.

E.3.2 Discipline of primitives

To afford the ability to use analog primitive in any design, including mixed disciplines, the default discipline
override is provided. The discipline of analog primitives will be resolved based on instance specific attri-
butes, the disciplines of other instances on the same net, or default to electrical if it cannot be determined.

The precedence for the discipline of analog primitives is as follows:
1) A port_discipline attribute on the analog primitive;
2) The resolution of the discipline;
3) The default analog primitive of electrical.

E.3.2.1 Setting the discipline of analog primitives

A new optional attribute shall be provided called port_discipline, which shall have as a value the desired dis-
cipline for the port of the analog primitive. It shall only apply to either the analog primitive itself or the port
to which it is attached. The value shall be of type string and the value must be a valid discipline of domain
continuous. This attribute shall only apply to analog primitives or the ports of analog primitives; for other
modules as well as the ports of all other modules it shall be ignored.

The following provides an example of this attribute applied to an analog primitive.

(* port_discipline="electrical" *) resistor #(.r(1k))
r1 (node1, node2); // not needed as default

(* port_discipline="rotational" *) resistor #(.r(1k))
r2 (node1, node2);

The following provides an example of this attribute applied to the ports of an analog primitive.

resistor #(.r(1k)) r3
((* port_discipline="rotational" *) node1,
 (* port_discipline="rotational" *) node2);

The use of these attributes can be combined to change the basic discipline of all ports for the analog primi-
tive, but overriding the discipline for specific ports. The following provides an example of this use

(* port_discipline="electrical" *) vcvs #(.gain(1.45e-3))
motor1 (n1, gnd_e,

(* port_discipline="rotational_omega" *) shaft1,
(* port_discipline="rotational_omega" *) gnd_rot);

The above model uses a voltage-controlled voltage source to model a motor as a converter from electrical
potential to rotational velocity.

Attributes are described in 2.9 of this document.

E.3.2.2 Resolving the disciplines of analog primitives
401 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
If no attribute exists on the instance of an analog primitive, then the discipline may be determined by the dis-
ciplines of other instances connected to the same net segment. The disciplines of the vpiLoConn of all other
instances on the net segment shall be evaluated to determine if they are of domain continuous and compati-
ble with each other. If they are, then the discipline of the analog primitive shall be set to the same discipline.
If they are not compatible, then an error will occur as defined in 3.11. If there are no continuous disciplines
defined on the net segment, then the discipline shall default to electrical.

E.3.3 Name scoping of SPICE primitives

In the resolution hierarchy of names during elaboration a module or paramset defined in the Verilog-AMS
will always be selected in favor of a SPICE primitive, model, or subcircuit using exactly the same name.

In case of a name match with differences in case, the module or paramset does not interfere with the SPICE
primitive, model, or subcircuit, but the resolution method described in E.2.1 shall apply.

In case of a SPICE primitive which is always available in the Verilog-AMS simulator, a Verilog-AMS mod-
ule or paramset whose name exactly matches that of the primitive will be used in module instantiations. The
Verilog-AMS simulator may issue a warning stating that the Verilog-AMS module or paramset is used
instead of the SPICE primitive. In case of a Verilog-AMS module or paramset whose name exactly matches
that of a SPICE model or subcircuit, the Verilog-AMS simulator shall issue an warning message stating that
the Verilog-AMS module or paramset is used instead of the SPICE model or subcircuit.

E.3.4 Limiting algorithms

Many SPICE simulators use limiting algorithms to improve convergence in Newton-Raphson iterations.
Table E.2 lists the preferred names for three functions that may be available in a simulator, their arguments,
and their intended uses. The function name, enclosed in quotation marks, can be used in the $limit() func-
tion of 9.17.3. This allows a Verilog-AMS module to use the same limiting algorithms available to built-in
SPICE primitives. The arguments are described in 9.17.3.

E.4 Other issues

This section highlights some other issues

E.4.1 Multiplicity factor on subcircuits

Some SPICE simulators support a multiplicity factor (M) parameter on subcircuits without the parameter
being explicitly being declared. This factor is typically used to indicate the subcircuit should be modeled as
if there are a specified number of copies in parallel. In previous versions of Verilog-AMS HDL, subcircuits
defined as modules could not support automatic M factors.

Table E.2—SPICE limiting functions

Function name Arguments Meant for limiting:

fetlim vth gate-to-source voltage of field-effect transistors

pnjlim vte, vcrit voltage across diodes and pn junctions in other devices

vdslim (none) drain-to-source voltage of field-effect transistors
Copyright © 2014 Accellera Systems Initiative. 402

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Starting with LRM Version 2.2, the multiplicity factor is supported for subcircuits defined as modules in
Verilog-AMS using the hierarchical system parameter $mfactor, as described in 6.3.6.

E.4.2 Binning and libraries

Some SPICE netlists provide mechanisms for mapping an instance to a group of models, with the final deter-
mination of which model to use being based on rules encapsulated in the SPICE netlist. Examples include
model binning or corners support. From within an instance statement, it appears as if the instance is refer-
encing a simple SPICE model; supporting these additional capabilities in Verilog-AMS HDL is supported via
the instance line by default. Support of SPICE model cards is implementation specific (including those using
these mechanisms).

Similar functionality for Verilog-AMS is supported through use of the paramset, as described in 6.4. Instead
of referencing a specific module, and instance may refer to a paramset identifier, and there may be several
paramsets with the same identifier (name). The final determination of which paramset to use is made accord-
ing to rules specified in 6.4.2.
403 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
Annex F

(normative)

Discipline resolution methods

F.1 Discipline resolution

Discipline resolution is described in 7.4; it provides the semantics for two methods of resolving the disci-
pline of undeclared interconnect. This annex provides a possible algorithm for achieving the semantics of
each method. It is also possible to develop and use other algorithms to match the semantics.

F.2 Resolution of mixed signals

The following algorithms for discipline resolution of undeclared nets provide users with the ability to con-
trol the auto-insertion of connection modules. The undeclared nets are resolved at each level of the hierarchy
in which continuous (analog) has precedence over discrete (digital). In both algorithms, the continuous
domain is passed up the hierarchy from lower levels to the top level.

The algorithms traverse the hierarchy of a signal composed of nets (also known as net segments of the sig-
nal) in order to determine the discipline of all nets of undeclared discipline. See 7.2.3 for a description of
how a signal consists of a set of net segments.

A net segment of a signal on the upper connection of a port shall be considered as the parent to a net segment
on the lower connection of the port. The net segment on the lower connection of a port shall be considered as
a child net segment of that parent net segment.

When a signal is being traversed depth-first, this means that the traversal shall start at the bottom (leaf) net
segments of the signal – these are net segments which have no children net segments. It further means that
all the children net segments of a parent net segment shall be traversed before that parent net segment is tra-
versed. This type of depth first traversal is more precisely termed a post-order depth-first traversal.

When a signal is being traversed top-down, this means that the traversal shall start at the top net segment(s)
of the signal – these are net segments which have no parent net segments. It further means that that all the
parent net segments of a child net segment shall be traversed before that child net segment is traversed.

F.2.1 Default discipline resolution algorithm

This default algorithm propagates both continuous and discrete disciplines up the hierarchy to meet one
another. Insertion of interface elements shall occur at each level of the hierarchy where both continuous and
discrete disciplines meet. This results in connection modules being inserted higher up the design hierarchy.
The algorithm is described as follows.

1) Elaborate the design
After this step, every port in the design has both its upper (actual) connection and its lower (formal)
connection defined.

2) Apply all in-context node and signal declarations
For example, electrical sig; makes all instances of sig electrical, unless they have been over-
ridden by an out-of-context declaration.
Copyright © 2014 Accellera Systems Initiative. 404

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
3) Apply all out-of-context node and signal declarations.
For example, electrical top.middle.bottom.sig; overrides any discipline which may be
declared for sig in the module where sig was declared.
More than one conflicting in-context discipline declaration or more than one conflicting out-of-con-
text discipline declaration for the same hierarchical segment of a signal is an error. In this case, con-
flicting simply means an attempt to declare more than one discipline regardless of whether the
disciplines are compatible or not.

4) Traverse each signal hierarchically (depth-first) when a net is encountered which still has not been
assigned a discipline:
a) It shall be determined whether the net is analog or digital. Any net which is used in digital

behavioral code shall be considered digital. Any net whose child nets are all digital shall be con-
sidered digital (discrete domain), any others shall be considered analog (continuous domain).

b) If the net has not yet been assigned a discipline, examine all the child nets of that net and con-
struct a list of all disciplines of the child nets whose domains match the domain of the segment:

— If there are no disciplines in the list apply any `default_discipline directives to the net,
provided their domain is the same as the domain of the net. This is done according to the rules
of precedence for `default_discipline (see 3.8).

— If there is only a single discipline in the list, the signal is of that discipline
— If there is more than one discipline in the list and the contents of the list match the discipline list

of a resolution connect statement, the net is of the resolved discipline given by the statement.
— Otherwise the discipline is unknown. This is legal provided the net has no mixed-port connec-

tions (i.e., it does not connect through a port to a segment of a different domain). Otherwise this
is an error

At this point, connection module selection and insertion can be performed. Insert converters applying the
rules and semantics of the connect statement (7.7) and auto-insertion sections (7.8).

F.2.2 Alternate expanded analog discipline resolution algorithm

This algorithm propagates continuous disciplines up and then back down to meet discrete disciplines. This
may result in more connection modules being inserted lower down into discrete sections of the design hier-
archy for added accuracy. The selection of this algorithm instead of the default shall be controlled by a sim-
ulator option. The algorithm is described as follows.

1) Elaborate the design
After this step, every port in the design has both its upper (actual) connection and its lower (formal)
connection defined.

2) Apply all in-context node and signal declarations
For example, electrical sig; makes all instances of sig electrical, unless they have been over-
ridden by an out-of-context declaration.

3) Apply all out-of-context node and signal declarations.
For example, electrical top.middle.bottom.sig; overrides any discipline which may be
declared for sig in the module where sig was declared.
More than one conflicting in-context discipline declaration or more than one conflicting out-of-con-
text discipline declaration for the same hierarchical segment of a signal is an error. In this case, con-
flicting simply means an attempt to declare more than one discipline regardless of whether the
disciplines are compatible or not.

4) Traverse each signal hierarchically (depth-first) when a net is encountered which has still not been
assigned a discipline:
405 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
a) It shall be determined whether the net is analog or digital. Any net which is used in digital
behavioral code shall be considered digital. Any net whose child nets are all digital shall be con-
sidered digital. If any of the connections are analog, the net shall be considered analog. Any oth-
ers shall still be considered unknown.

b) If the net has not yet been assigned a discipline, examine all the child nets of that net and con-
struct a list of all disciplines of these child nets whose domains match the domain of the seg-
ment:

— If there are no disciplines in the list apply any `default_discipline directives to the net
segment, provided their domain is the same as the domain of the net. This is done according to
the rules of precedence for `default_discipline (see 3.8).

— If there is only a single discipline in the list, the signal is of that discipline
— If there is more than one discipline in the list and the contents of the list match the discipline list

of a resolution connect statement, the net is of the resolved discipline given by the statement.
— Otherwise the discipline is unknown. This is legal provided the net has no mixed-port connec-

tions (i.e., it does not connect through a port to a segment of a different domain). Otherwise this
is an error.

5) Traverse each signal hierarchically (top-down) when a net is encountered which still has not been
assigned a discipline or which has been assigned a digital domain from step 4:
a) It shall be re-determined whether the net is analog or digital. Any net which is used in digital

behavioral code shall be considered digital. Any net whose parent nets are digital shall be con-
sidered digital. Any others shall be considered analog.

b) If the net has not yet been assigned a discipline, examine all the parent nets of that net and con-
struct a list of all disciplines of these parent nets whose domains match the domain of the seg-
ment:

— If there are no disciplines in the list apply any `default_discipline directives to the net,
provided their domain is the same as the domain of the net. This is done according to the rules
of precedence for `default_discipline (see 3.8).

— If there is only a single discipline in the list, the signal is of that discipline
— If there is more than one discipline in the list and the contents of the list match the discipline list

of a resolution connect statement, the net is of the resolved discipline given by the statement.
— Otherwise the discipline is unknown. This is legal provided the net has no mixed-port connec-

tions (i.e., it does not connect through a port to a segment of a different domain). Otherwise this
is an error.

At this point, connection module selection and insertion can be performed. Insert converters applying the
rules and semantics of the connect statement (7.7) and auto-insertion sections (7.8).
Copyright © 2014 Accellera Systems Initiative. 406

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Annex G

(informative)

Change history

This annex lists the changes made to the document for each revision.

G.1 Changes from previous LRM versions

This subclause highlights some of the key differences between versions of the Verilog-AMS HDL reference
manual. The syntax and semantics of this document supersede any syntax, semantics, or interpretations of
previous revisions.

Table G.1—Changes from v1.0 to v2.0 syntax

Feature OVI Verilog-A v1.0 OVI Verilog-AMS v2.0 Change type

Analog time $realtime $abstime new

Ceiling operator N/A ceil(expr) new

Floor operator N/A floor(expr) new

Circular integrator N/A idtmod(expr) new

Expression looping N/A genvar new

Distribution functions $dist_functions()
Integer based functions

$rdist_functions()
Real value equivalents to
$dist_functions()

new

Empty discipline predefined as type wire type not defined default definition

Implicit nodes ‘default_nodetype
discipline_identifier
default: wire

default type: empty disci-
pline, no domain type

default definition

initial_step default = TRAN default = ALL default definition

final_step default = TRAN default = ALL default definition

Analog ground no definition now a declaration state-
ment

definition

$realtime $realtime :timescale =1
sec

$realtime :timescale=
’timescale def=1n,
see $abstime

definition

Array setting aa[0:1] = {2.1 = (1), 4.5 =
(2)

aa[0:1] = {2.1,4.5} syntax

Discontinuity function discontinuity(x) $discontinuity(x) syntax

Limiting exponential func-
tion

$limexp(expression) limexp(expression) syntax

Port branch access I(a,a) I(<a>) syntax
407 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS

Timestep control (maxi-
mum stepsize)

bound_step(const_ex
pression)

$bound_step(expr) syntax

Continuous waveform
delay

delay() absdelay() syntax

User-defined analog func-
tions

function analog function syntax

Discipline domain N/A, assumed continuous now continuous(default)
and discrete

Extension

k scalar (103) N/A, only “K” supported now supported Extension

Module keyword module module or macro-
module

Extension

Modulus operator integers only now supports integer
and reals

Extension

Time tolerance on timer
functions

N/A supports additional time
tolerance argument for
timer()

Extension

Time tolerance on transi-
tion filter

N/A supports additional time
tolerance argument for
transition()

Extension

‘default_nodetype ‘default_nodetyp
e

‘default_discipl
ine

Obsolete

Forever statement forever N/A Obsolete

Generate statement generate N/A Obsolete

Null statement ; Limited to case, condi-
tional, and event state-
ments (see syntax)

Obsolete

Table G.2—Changes from v2.0 to v2.1

Item Description/Issue Clause

1 Clarification on when range checking for parameters is done. Range check will
be done only on the final value of the parameter for that instance.

3.4.2

2 Not to use “max” and use “maxval” instead since max is a keyword 3.6.1.1, 3.6.2.6

3 Support of user-defined attributes to disciplines similar to natures has been
added. This would be a useful way to pass information to other tools reading
the Verilog-AMS netlist

3.6.2, 3.6.1.3

4 LRM specifies TRI and WIRE as aliases. The existing AMS LRM forces nets
with wiretypes other than wire or tri to become digital, but in many cases these
are really interconnect also. If they are tied to behavioral code they will
become digital but if they are interconnected, we should not force them until
after discipline resolution. This is needed if you have configs where the blocks
connected to the net can change between analog and digital. If we force these
nets to be digital we force unneeded CMs when blocks are switched to analog.

3.6.2.4, 3.7

Table G.1—Changes from v1.0 to v2.0 syntax (continued)

Feature OVI Verilog-A v1.0 OVI Verilog-AMS v2.0 Change type
Copyright © 2014 Accellera Systems Initiative. 408

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
5 Setting an initial value on net as part of the net declaration. 3.6.3, 3-6, 3.6.3.2

6 Initial value of wreal to be set to 0.0 if the value has not been determined at
t = 0.

3.7

7 Clarification on the usage of `default_discipline and default disci-
pline for analog and digital primitives. Analog primitives will have default dis-
cipline as electrical, whereas digital primitives shall use the
`default_discipline declaration.
`default_discipline explanation moved to the section along with
other compiler directives and clarification of impact on ‘reset_all on
this. The usage of word ‘scope’ is clarified to be used as the scope of the appli-
cation of the compiler directive, and not as a scope argument.

3.8, 3.9, 3.10, 10.2, 10.3

8 Reference to derived disciplines to be removed as current BNF does not sup-
port the syntax

3.11

9 Reworked discipline and nature compatibility rules for better clarity. 3.11

10 Removed the reference to neutral discipline since wire can be used in the same
context.

3.11

11 absdelay instead of delay 4.5.14

12 Array declaration wrongly specified before the variable identifier. For vari-
ables, array specification is written after the name of the variable.

3.2

13 @(final_step) without arguments should not have parenthesis 5.10.2, Table 5-1

15 @(final_step) for DCOP should be 1 5.10.2, Table 5-1

16 Examples to be fixed to use assign for wreal and use wreal in instantia-
tion, and also add a top level block for example in 7.3.3, and the testbench use
wreal.

6.5.3, 3.7

17 Clarification on the port bound semantics in explaining the hierarchical struc-
ture for a port with respect to vpiLoConn and vpiHiConn and clarification on
driver and receiver segregation

7.2.3

18 Figure should have NetC.c_out instead of NetC.b_out 7.2.3

19 Mixed-signal module examples to use case syntax with X & Z instead of “==”
for value comparison

7.2.3

20 Clarification on accessing discrete nets and variables and X & Z bits in the
analog context.

7.2.3

21 Adding Support for ‘NaN & X’ into Verilog-AMS. Contribution of these val-
ues to a branch would be an error; however, analog variables should be able to
propagate this value. Added a section regarding NaN

7.2.3, 7.3.2.1

22 The diagram corresponding to the bidir model has been reworked, and the
example module shown for bidir will match the corresponding figure.

7.6

23 Rework on connect-resolveto syntax section to clarify the rules 7.7.2.1

24 Use merged instead of merge 7.8.1

25 Support for digital primitive instantiation in an analog block. Port names are
created for the ports of the digital primitives, and these digital port names can-
not be used in child instantiations.

7.8.5.1

26 Net resolution function has been removed and replaced with ‘Receiver Net
Resolution’. Reintroduced the assign statement syntax.

7.10.5 (subclause
deleted in v2.3)

Table G.2—Changes from v2.0 to v2.1 (continued)

Item Description/Issue Clause
409 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
27 Corrections to the connect module example using the driver access function.
The errors in the example have been corrected to make it syntactically and
semantically correct

7.10.6 (subclause
deleted in v2.3)

28 The constraints for supplementary drivers and delays ar clearly stated. 7.11 (subclause deleted
in v2.3)

29 Driver Type function: There should be a driver access function for finding type
of driver.
driver_type_function ::= $driver_type(signal_name, signal_index)

7.11.4 (subclause
deleted in v2.3),
Annex D

30 Clarification on the MS synchronization algorithm: Includes a more detailed
explanation on the analog-digital synchronization mechanism.

Clause 8

31 Truncation versus Rounding mechanism for converting from analog to digital
times.

8.4.3.3

32 Spelling mistake on “boltzmann” and “planck” in constants file Annex D

33 Units for charge, angle and other definitions in disciplines.vams have been
changed to adhere to SI standards.

Annex D

34 Values specified in constants file for charge, light, Boltzmann constant, and so
forth have been changed to adhere to the standard definitions.

Annex D

Table G.3—Changes from v2.1 to v2.2

Item Description/Issue Clause

1 Attributes were added following syntax in 1364-2001. 2.9

2 Output variables were defined. 3.2.1

3 Parameters were extended to include units and descriptions, localparam,
aliasparam, and string parameters.

3.4, 3.4.3, 3.4.5, 3.4.6,
3.4.7, Syntax 6-1

4 Net descriptions allowed by attributes. 3.6.3.1

5 Additional bitwise operators were added. Table 4-2, 4.2.9

6 Modifications to the domains of functions. Table 4-9, Table 4-10

7 Changes to the descriptions of access function examples. Table 4-11

8 Added symbolic derivative operators ddx() 4.5.6

9 Added references to limiting algorithms, cross-reference to $limit() 4.5.13

10 Added entries for above(), ddx(), and $limit() 4.5.14

11 Clarified dc sweep behavior for analysis(), initial_step, and
final_step;added section describing dc analysis.

4.2.1, 4.5.2, Table 5-1

12 Allow multiple return values for analog functions. 4.7

14 Add above event 5.10.3, 5.10.3.2

15 Module descriptions allowed by attributes. 6.2, Syntax 6-1

16 Allow attributes for module item declarations Syntax 6-1

Table G.2—Changes from v2.0 to v2.1 (continued)

Item Description/Issue Clause
Copyright © 2014 Accellera Systems Initiative. 410

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
17 Add $param_given() and $port_connected() 6.3.5, 6.5.6, 9.19

18 Added hierarchical system parameters $mfactor, $xposition,
$yposition, $angle, $hflip, $vflip

6.3.6, Syntax 6-2,
Syntax 6-3, 9.18,
Annex E.4.1

19 Add paramsets 6.4

20 Add $simparam() 9.15

21 Add support for Monte-Carlo analysis to $random and $rdist_ func-
tions; clarify descriptions of arguments.

9.13

22 Add $debug() 9.4

23 Add format specifiers %r and $R Table 9-23

24 Add support for limiting (damped Newton-Raphson) with $limit() and
$discontinuity(-1)

9.17, Annex E.3.4

25 Add interpolation function $table_model() 9.20

26 Add __VAMS_COMPACT_MODELING__ 10.5

27 New keywords: above, aliasparam, ddx, endparamset,
localparam, paramset, string

Annex B

28 Corrected the value of ‘M_TWO_PI, defined Planck’s constant as‘P_H (not
‘P_K, which is Boltzmann’s constant), removed parenthetical value after
‘P_U0

D.3

Table G.4—Changes from v2.2 to v2.3

Item Description/Issue Clause

1 Add string data type and applicable operations 3.3

2 Add apostrophe before opening { in list of values (to distinguish a list of values
from the concatenation operator)

3.4.2

3 Add Verilog function style versions of standard mathematical functions
$ln(), $log10(), $exp(), $sqrt(), $pow(), $floor() and
$ceil()

Table 4-14

4 Add Verilog function style versions of trigonometric and hyperbolic functions
$sin(), $cos(), $tan(), $asin(), $acos(), $atan(),
$atan2(), $hypot(), $sinh(), $cosh(), $tanh(),
$asinh(), $acosh() and $atanh()

Table 4-15

5 Specify atan2(0, 0) as equal to 0 Table 4-15

6 Disallow V(n1, n1) as legal access function usage Table 4-16

7 Add conversion from real to integer 4.2.1.1

8 More strict definition of time-integral operator 4.5.4

9 The noise_table() function accepts a file name as argument to read table
data from file.

4.6.4.3

Table G.3—Changes from v2.1 to v2.2 (continued)

Item Description/Issue Clause
411 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
10 Define use of locally defined parameters and module-level parameters inside
user-defined analog functions

4.7

11 Define semantics of inout arguments for user-defined analog functions 4.7.2.3

12 Allow a user-defined analog function to be called from within another user-
defined analog function

4.7.3

13 Support for the analog initial block 5.2.1

14 Detailed restrictions on conditional statements 5.8

15 Detailed restrictions on looping statements 5.9

16 The cross, above and timer monitored event functions have been
extended with an enable argument

5.10.3, Syntax 5-13

17 Support for null arguments in the cross, above and timer monitored event
functions

5.10.3, Syntax 5-13

18 Support for multiple analog blocks within a single module 6.2

19 Added extra rule on connected ports for paramset selection 6.3.3

20 Support for loop generate constructs and conditional generate constructs 6.6.2

21 Restricted use of out-of-module references (OOMRs) 6.7.1

22 Extended scope definitions to generate blocks 6.8

23 Added elaboration rules for analog and mixed-signal hierarchies 6.9

24 Support for discipline incompatibility declaration 7.7.2

25 Description of mixed-signal DC analysis process 8.4.2

26 Extended definition of $fopen() 9.5.1

27 Support for $fdebug() system task 9.2, 9.5.2

28 Support for the $swrite() and $sformat() system tasks 9.5.3

29 Support for $fatal, $error, $warning, and $info system tasks 9.7.3

30 Renamed the former $random system task to $arandom 9.13.1

31 Added the $simprobe() system task 9.16

32 Extended $table_model() system function to support isoline data,
tables with multiple dependent values, and higher-order data interpolation.

9.20

33 Support for `begin_keywords and `end_keywords compiler direc-
tives; added "VAMS-2.3" version specifier for keywords compiler directive

10.6

34 Support for port declarations in module header A.1.2, Syntax 6-1

35 Optional semicolon following the nature identifier in a nature declaration A.1.6, Syntax 3-4

36 Optional semicolon following the discipline identifier in a discipline declara-
tion

A.1.7, Syntax 3-5

37 Annex C of LRM v2.2 has been split and the section describing the changes
from previous LRM versions has been documented in this Annex

Table G.4—Changes from v2.2 to v2.3 (continued)

Item Description/Issue Clause
Copyright © 2014 Accellera Systems Initiative. 412

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
38 Introduced guard clauses to the driver_access.vams standard definitions D.3

39 Corrected syntax of port_discipline attribute E.3.2.1

40 Added name scoping of analog primitives E.3.3

41 Annex G of version 2.2, Open Issues, removed; this information is now in the
Verilog Mantis data base

42 The keywords in Annex B.2 and Annex B.3 have been merged into the single
table in Annex B.1

Table G.5—Changes from v2.3 to v2.3.1

Mantis
Item Description/Issue Clause

2266 The signal flow discipline for current now uses the flow nature and not poten-
tial

D.1

2391 Clarified semantics for when a branch is treated as a flow source of value zero
(0)

5.4.4, 5.6.1.3

2453 Corrected summation formula for the analog filter function laplace_nd() 4.5.11.4

2458 Added $simparam$str to syntax box Syntax 9-10

2498 Added in keywords: wire, wor, wreal, xnor, xor, zi_nd, zi_np,
zi_zd, and zi_zp which were accidentally deleted in LRM v2.3

Annex B

2535 Corrected definition for multiline strings A.8.8

2536 Corrected examples that were using invalid real numbers 3.6.2.1

2538 Removed redundant string_parameter_declaration and
local_string_parameter_declaration syntax items

A.1.9

2391 Clarified definition of a switch branch 5.6.1, 5.8.1

2581 Clarified restrictions on unnamed branches 3.12

2589 Removed multiple definitions of net_assignment A.2.1.3, A.2.3, A.2.4,
A.8.4

2497 Added in definition of nature_access_identifier syntax item A.9.3

2497 Added in definition of text_macro syntax item Syntax 10-3

2497 Syntax item analog_variable_lvalue was missing in certain places Syntax 5-14, Syntax 7-3

2497 Mathematical function, pow(), was missing from
analog_built_in_function_name syntax item definition

A.8.2

2497 A new syntax item, analog_or_constant_expression, has been created to allow
the use of the analog analysis() function as part of the constant condi-
tional expression of an if-else statement

5.8.1, A.8.3

2537 Corrected example where the parameter_type was specified before the
parameter keyword

5.10.3.1

Table G.4—Changes from v2.2 to v2.3 (continued)

Item Description/Issue Clause
413 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
2537 Missing trailing ";" in analog_function_item_declaration for the
input_declaration, output_declaration, and inout_declaration

A.2.6

2538 Missing trailing ";" in the analog_block_item_declaration for
parameter_declaration

A.2.8

2537 Added in a new syntax item definition, paramset_constant_expression, which
is used as the RHS expresson in the paramset_statement

6.4, A.1.9

Table G.6—Changes from v2.3.1 to v2.4

Mantis
Item Description/Issue Clause

831 Clarified ambiguity in named vector branch indexing 3.12

874 Corrected example to use spice vsine primitive 3.6.2.1

875 Added support for string parameters to $fopen() 9.5.1

876 Clarified ambiguity regarding vector port range specification 6.5.2.2

1638 Modified standard definition file for physical constants to allow for backward
compatibility

D.2

1854 Added support for parameter aliases to the hierarchical system parameters 3.4.7, 9.18

2266 Added additional clarification for signal flownodes 1.3.4

2331 Changed rule from hierarchical_system_parameter_functions to
hierarchical_parameter_system_functions

9.18

2792 Corrected table to indicate that $monitor is supported in the analog context Table 9-1

2806 Corrected rule for last_crossing to allow the direction argument to be
optional

4.5.10

2836 Added support for .module_output_variable_identifier to the paramset defi-
nition

6.4, A.1.9, A.9.3

2843 Modified $monitor description to specify that input arguments $abstime
and $realtime don’t cause it to fire

9.4.1

2860 Re-formatted connect_resolution rule to remove ambiguity 7.7.2, A.1.8

2921 Clarified $random and $arandom support for when the seed argument is a reg
or time variable

9.13.1

2922 Clarified the formal argument requirements for analog user defined functions 4.7.1

3343 Corrected table cross reference 9.5.1

3371 Corrected example with incorrect range specification 4.5.8

3435 Allow $sscanf to also accept string parameters and literals 9.5.4.2

Table G.5—Changes from v2.3 to v2.3.1 (continued)

Mantis
Item Description/Issue Clause
Copyright © 2014 Accellera Systems Initiative. 414

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
3461 Corrected error with incorrect capitalization of the reference to the ttl disci-
pline

3.6.1.1, 3.6.2.6

3462 Modified description of when short-circuit evaluation occurs 4.2.3

3464 Corrected example for $simprobe where the declared nets where separated
by '.' characters and not ','

9.16

3465 Corrected default value for parameter slewrate 8.4.3.3

3466 Corrected range definition for parameter integer dir 5.10.3.1

3527 Removed ambiguities for usage of $table_model 9.20

3570 Corrected net_decl_assignment syntax rule 3.6.3, 6.5.2.1, A.2.4

4064 Removed redundant paragraph 6.7

4170 Corrected examples 6.6.1

4193 Clarified behavior for multiple $bound_step tasks 9.17.2

4259 Corrected syntax for the random seed argument to allow negative numbers 9.13.1, 9.13.2

4308 Added examples showing how to support multiple power regions in a mixed
signal simulation

7.8.6

4320 Added explicit default for the type_string argument to the distribution func-
tions

9.13.1, 9.13.2

4339 Removed several restrictions on the use of out-of-module references 3.12, 5.5.1, 5.5.4,
5.6.8.1, 6.7.1, A.2.1.3,
A.8.9

4348 Specified the minimum data requirements for $table_model 9.20

4349 Added support for $noise_table_log 4.5.1, 4.6.4, 4.6.4.4,
A.8.2

4350 Specified the behavior of the severity system functions when called from an
analog initial block

9.7.1, 9.7.2, 9.7.3

4355 Corrected missing variable declaration in example 7.3.4

4356 Corrected missing ground declaration in example 3.6.2.1, 6.2.2

4441 Added examples for multidimensional arrays 3.2, 3.3, 3.4, 3.4.8,
4.2.14, 4.5.1, 5.7, A.6.2,
A.8.1, A.8.5

4473 Corrected error in timer description with the start_time argument 5.10.3.3

4484 Specified behavior of final_step in conjunction with $finish 5.10.2, 9.7.1

4543 Added support for the anaog node alias system functions
$analog_node_alias() and $analog_port_alias()

7.8.6, Table 9-17, 9.20

4582 Added additional standard attributes: op and multiplicity 2.9, 2.9.2

4689 Added copyright notice for the standard header files to allow distribution Annex D

4713 Clarified probe branch semantics 1.3.1, 5.4.2.1

Table G.6—Changes from v2.3.1 to v2.4 (continued)

Mantis
Item Description/Issue Clause
415 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
G.2 Obsolete functionality

The following statements are not supported in the current version of Verilog-AMS HDL; they are only noted
for backward compatibility.

G.2.1 Forever

This statement is no longer supported.

G.2.2 NULL

This statement is no longer supported. Certain functions such as case, conditionals and the event statement
do allow null statements as defined by the syntax.

G.2.3 Generate

The generate statement is a looping construct which is unrolled at elaboration time. It is the only looping
statement that can contain analog operators. The syntax of generate statement is shown in Figure G-1.

4754 Added support for the branch access functions: potential() and flow() 4.4, 5.5.1, 5.6.1, A.8.2

4792 Corrected problems with discipline propagation algorithm F.2

4795 Added in a chart outlining the analog simulation initialization flow 8.2

4803 Added in support for the absdelta event function 5.10, 5.10.3.4, 8.4.6,
8.4.7, A.6.5

4815 Deprecated support for empty disciplines 3.6.2, 3.6.3, 3.6.5, 3.8,
3.10, 3.11.1, 7.4, 7.4.4,
7.4.5, 10.2

4826 Added in support for the hierarchical identifier prefix $root 6.2.1, 6.7, A.9.3

4833 Corrected description for cross() which was missing the enable argument 5.10.3.1

4834 Ensure that document consistently refers to “dc sweep” in all lower case 5.2.1, 6.6.2.1

4849 Modified document contributor’s table to acknowledge people who have con-
tributed to previous versions of the standard

Table G.6—Changes from v2.3.1 to v2.4 (continued)

Mantis
Item Description/Issue Clause
Copyright © 2014 Accellera Systems Initiative. 416

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014

Figure G-1—Syntax for generate statement

The index shall not be assigned or modified in any way inside the loop. In addition, it is local to the loop and
is expanded when the loop is unrolled. Even if there is a local variable with the same name as the index and
the variable is modified as a side effect of a function called from within the loop, the loop index is unaf-
fected.

The start and end bounds and the increment are constant expressions. They are only evaluated at elaboration
time. If the expressions used for the increment and bounds change during the simulation, it does not affect
the behavior of the generate statement.

If the lower bound is less than the upper bound and the increment is negative, or if the lower bound is greater
than the upper bound and the increment is positive, then the generate statement does not execute.

If the lower bound equals the upper bound, the increment is ignored and the statement execute once. If the
increment is not given, it is taken to be +1 if the lower bound is less than the upper bound, and -1 if the
lower bound is greater than the upper bound.

The statement, which can be a sequential block, is replicated with all occurrences of index in the statement
replaced by a constant. In the first instance of the statement, the index is replaced with the lower bound. In
the second, it is replaced by the lower bound plus the increment. In the third, it is replaced by the lower
bound plus two times (2x) the increment. This pattern is repeated until the lower bound plus a multiple of the
increment is greater than the upper bound.

Example: This module implements a continuously running (unclocked) analog-to-digital converter.

module adc(in,out) ;
parameter bits=8, fullscale=1.0, dly=0.0, ttime=10n;
input in;
output [0:bits-1] out;
electrical in;
electrical [0:bits-1] out;
real sample, thresh;
analog begin

thresh = fullscale/2.0;
generate i (bits-1,0) begin

V(out[i]) <+ transition(sample > thresh, dly, ttime);
if (sample > thresh) sample = sample - thresh;
sample = 2.0*sample;

end
end

endmodule

generate_statement ::=
generate indexr_identifier (start_expr , end_expr [, incr_expr])

statement

start_expr ::=
constant_expression

end_expr ::=
constant_expression

incr_expr ::=
constant_expression
417 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
G.2.4 `default_function_type_analog

The `default_function_type_analog directive is no longer supported. this compiler directive
allowed user-defined functions to be treated as analog functions in Verilog-A if they did not have the key
word analog as part of the definition.
Copyright © 2014 Accellera Systems Initiative. 418

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
Annex H

(informative)

Glossary

A

AMS
See also, Verilog-AMS.

B

behavioral description
A mathematical mapping of inputs to outputs for a module, including intermediate variables and
control flow.

behavioral model
A version of a module with a unique set of parameters designed to model a specific component.

block
A level within the behavioral description of a module, delimited by begin and end.

branch
A relationship between two nodes and their attached quantities within the behavioral description of a
module. Each branch has two quantities, a value and a flow, with a reference direction for each.

C

compact model
A behavioral model or description of a semiconductor device.

component
A fundamental unit within a system which encapsulates behavior and/or structure. Modules and
models can represent a single component or a subcircuit with many components.

constitutive relationships
The essential relationships (expressions and statements) between the outputs of a module and its
inputs and parameters, which define the nature of the module. These relationships constitute a
behavioral description.

control flow
The conditional and iterative statements controlling the behavior of a module. These statements
evaluate arbitrary variables (counters, flags, and tokens) to control the operation of different sections
of a behavioral description.
419 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
child module
A module instantiated inside another, “parent” module. A complete definition of the child module
needs to be defined somewhere. A child module is also known as submodule or instantiated module.

F

flow
One of the two fundamental quantities used to simulate the behavior of a system. In electrical sys-
tems, the flow is the current.

I

instance
Any named occurrence of an component created from a module definition. One module can occur in
multiple instances.

instantiation
The process of creating an instance from a module definition or simulator primitive and defining the
connectivity and parameters of that instance. (Placing the instance in the circuit or system.)

K

Kirchhoff’s Laws
The physical laws defining the interconnection relationships of nodes, branches, values, and flows.
They specify a conservation of flow in and out of a node and a conservation of value around a loop
of branches.

L

level
One block within a behavioral description, delimited by a pair of matching keywords such as
begin-end or discipline-enddiscipline.

M

model
A named instance with a unique group of parameters specifying the behavior of one particular ver-
sion of a module. Models can be used to instantiate elements with parametric specifications different
from those in the original module definition.

module
A definition of the interfaces and behavior of a component.
Copyright © 2014 Accellera Systems Initiative. 420

Accellera
Analog and Mixed-signal Extensions to Verilog HDL Version 2.4.0, May 30, 2014
N

nesting level
One block within a behavioral description, delimited by a pair of matching keywords such as
begin-end or discipline-enddiscipline.

node
A connection point in the system, with access functions for potential and/or flow through an under-
lying discipline.

node declaration
The statement in a module definition identifying the names of the nets associated with the module
ports or local to the module. A net declaration also identifies the discipline of the net, which in turn
identifies the access functions.

NR method
Newton-Raphson method. A generalized method for solving systems of nonlinear algebraic equa-
tions by breaking them into a series of many small linear operations ideally suited for computer pro-
cessing.

P

parameter
A constant for characterizing the behavior of an instance of a module. Parameters are defined in the
first section of a module, the module interface declarations, and can be specified each time a module
is called in a netlist instance statement.

parameter declaration
The statement in a module definition which defines the parameters of that module.

port
An external connection point for a module (also known as a terminal).

potential
One of the two fundamental quantities used to simulate the behavior of a system. In electrical sys-
tems, the potential is the voltage.

primitive
A basic component defined entirely in terms of behavior, without reference to any other primitives.
A primitive is the smallest and simplest portion of a simulated circuit or system.

probe
A branch in a circuit (or system), which does not alter its behavior, but lets the simulator read out the
potential or flow at that point.

R

reference direction

A convention for determining whether the value of a node, the flow through a branch, the value
across a branch, or the flow in or out of a terminal, is positive or negative.
421 Copyright © 2014 Accellera Systems Initiative. All rights reserved.

Accellera
Version 2.4.0, May 30, 2014 VERILOG-AMS
reference node
The global node (which equals zero (0)) against whose potentials all node values are measured. Nets
declared as ground shall be bound to the reference node.

run time binding
The conditional introduction and removal of value and flow sources during a simulation. A value
source can replace a flow source and vice-versa. Binding a source to a specific node or branch pre-
vents it from going into an unknown state.

S

scope
The current nesting level of a block statement, which includes all lines of code within one set of
braces in a module definition.

structural definitions

Instantiating modules inside other modules through the use of module definitions and declarations to
create a hierarchical structure in the module’s behavioral description.

T

terminal
See also, port.

V

Verilog-A
A subset of Verilog-AMS detailing the analog version of IEEE Std 1364-2005 Verilog HDL (see
Annex C). This is a language for the behavioral description of continuous-time systems, which uses
a syntax similar to the IEEE Std 1364-2005 Verilog HDL specification.

Verilog-AMS
Mixed-signal version of IEEE Std 1364-2005 Verilog HDL. A language for the behavioral descrip-
tion of continuous-time and discrete-time systems based on the IEEE Std 1364-2005 Verilog HDL
specification.
Copyright © 2014 Accellera Systems Initiative. 422

	lrm2.4.0
	VAMS-LRM-2-4
	Verilog-AMS Language Reference Manual
	Table of Contents
	1. Verilog-AMS introduction
	1.1 Overview
	1.2 Mixed-signal language features
	1.3 Systems
	1.3.1 Conservative systems
	1.3.1.1 Reference nodes
	1.3.1.2 Reference directions

	1.3.2 Kirchhoff’s Laws
	1.3.3 Natures, disciplines, and nets
	1.3.4 Signal-flow systems
	1.3.4.1 Potential signal-flow systems
	1.3.4.2 Flow signal-flow systems

	1.3.5 Mixed conservative/signal flow systems

	1.4 Conventions used in this document
	1.5 Contents

	2. Lexical conventions
	2.1 Overview
	2.2 Lexical tokens
	2.3 White space
	2.4 Comments
	2.5 Operators
	2.6 Numbers
	2.6.1 Integer constants
	2.6.2 Real constants

	2.7 String literals
	2.8 Identifiers, keywords, and system names
	2.8.1 Escaped identifiers
	2.8.2 Keywords
	2.8.3 System tasks and functions
	2.8.4 Compiler directives

	2.9 Attributes
	2.9.1 Syntax
	2.9.2 Standard attributes

	3. Data types
	3.1 Overview
	3.2 Integer and real data types
	3.2.1 Output variables

	3.3 String data type
	3.4 Parameters
	3.4.1 Type specification
	3.4.2 Value range specification
	3.4.3 Parameter units and descriptions
	3.4.4 Parameter arrays
	3.4.5 Local parameters
	3.4.6 String parameters
	3.4.7 Parameter aliases
	3.4.8 Multidimensional parameter array examples

	3.5 Genvars
	3.6 Net_discipline
	3.6.1 Natures
	3.6.1.1 Derived natures
	3.6.1.2 Attributes
	3.6.1.3 User-defined attributes

	3.6.2 Disciplines
	3.6.2.1 Nature binding
	3.6.2.2 Domain binding
	3.6.2.3 Natureless disciplines and domainless disciplines
	3.6.2.4 Discipline of nets and undeclared nets
	3.6.2.5 Overriding nature attributes from discipline
	3.6.2.6 Deriving natures from disciplines
	3.6.2.7 User-defined attributes

	3.6.3 Net discipline declaration
	3.6.3.1 Net descriptions
	3.6.3.2 Net Discipline Initial (Nodeset) Values

	3.6.4 Ground declaration
	3.6.5 Implicit nets

	3.7 Real net declarations
	3.8 Default discipline
	3.9 Disciplines of primitives
	3.10 Discipline precedence
	3.11 Net compatibility
	3.11.1 Discipline and Nature Compatibility

	3.12 Branches
	3.12.1 Port Branches

	3.13 Namespace
	3.13.1 Nature and discipline
	3.13.2 Access functions
	3.13.3 Net
	3.13.4 Branch

	4. Expressions
	4.1 Overview
	4.2 Operators
	4.2.1 Operators with real operands
	4.2.1.1 Real to integer conversion
	4.2.1.2 Integer to real conversion
	4.2.1.3 Arithmetic conversion

	4.2.2 Operator precedence
	4.2.3 Expression evaluation order
	4.2.4 Arithmetic operators
	4.2.5 Relational operators
	4.2.6 Case equality operators
	4.2.7 Logical equality operators
	4.2.8 Logical operators
	4.2.9 Bitwise operators
	4.2.10 Reduction operators
	4.2.11 Shift operators
	4.2.12 Conditional operator
	4.2.13 Concatenations
	4.2.14 Assignment patterns

	4.3 Built-in mathematical functions
	4.3.1 Standard mathematical functions
	4.3.2 Transcendental functions

	4.4 Signal access functions
	4.5 Analog operators
	4.5.1 Vector or array arguments to analog operators
	4.5.2 Analog operators and equations
	4.5.3 Time derivative operator
	4.5.4 Time integral operator
	4.5.5 Circular integrator operator
	4.5.6 Derivative operator
	4.5.7 Absolute delay operator
	4.5.8 Transition filter
	4.5.9 Slew filter
	4.5.10 last_crossing function
	4.5.11 Laplace transform filters
	4.5.11.1 laplace_zp
	4.5.11.2 laplace_zd
	4.5.11.3 laplace_np
	4.5.11.4 laplace_nd
	4.5.11.5 Examples

	4.5.12 Z-transform filters
	4.5.12.1 zi_zp
	4.5.12.2 zi_zd
	4.5.12.3 zi_np
	4.5.12.4 zi_nd

	4.5.13 Limited exponential
	4.5.14 Constant versus dynamic arguments
	4.5.15 Restrictions on analog operators

	4.6 Analysis dependent functions
	4.6.1 Analysis
	4.6.2 DC analysis
	4.6.3 AC stimulus
	4.6.4 Noise
	4.6.4.1 white_noise
	4.6.4.2 flicker_noise
	4.6.4.3 noise_table
	4.6.4.4 noise_table_log
	4.6.4.5 Noise model for diode
	4.6.4.6 Correlated noise

	4.7 User defined functions
	4.7.1 Defining an analog user defined function
	4.7.2 Returning a value from an analog user defined function
	4.7.2.1 Analog user defined function identifier variable
	4.7.2.2 Output arguments
	4.7.2.3 Inout arguments

	4.7.3 Calling an analog user defined function

	5. Analog behavior
	5.1 Overview
	5.2 Analog procedural block
	5.2.1 Analog initial block

	5.3 Block statements
	5.3.1 Sequential blocks
	5.3.2 Block names

	5.4 Analog signals
	5.4.1 Access functions
	5.4.2 Probes and sources
	5.4.2.1 Probes
	5.4.2.2 Sources

	5.4.3 Accessing flow through a port
	5.4.4 Unassigned sources

	5.5 Accessing net and branch signals and attributes
	5.5.1 Accessing net and branch signals
	5.5.2 Signal access for vector branches
	5.5.3 Accessing attributes
	5.5.4 Creating unnamed branches using hierarchical net references
	5.5.5 Accessing nets and branch signals hierarchically

	5.6 Contribution statements
	5.6.1 Direct branch contribution statements
	5.6.1.1 Relations
	5.6.1.2 Evaluation
	5.6.1.3 Value retention

	5.6.2 Examples
	5.6.2.1 The four controlled sources

	5.6.3 Resistor and conductor
	5.6.4 RLC circuits
	5.6.5 Switch branches
	5.6.6 Implicit Contributions
	5.6.7 Indirect branch contribution statements
	5.6.7.1 Multiple indirect contributions
	5.6.7.2 Indirect and direct contribution

	5.6.8 Contributing hierarchically
	5.6.8.1 Contributions to branches between hierarchical nets
	5.6.8.2 Hierarchical direct contributions to branches

	5.7 Analog procedural assignments
	5.8 Analog conditional statements
	5.8.1 if-else-if statement
	5.8.2 Examples
	5.8.3 Case statement
	5.8.4 Restrictions on conditional statements

	5.9 Looping statements
	5.9.1 Repeat and while statements
	5.9.2 For statements
	5.9.3 Analog For Statements

	5.10 Analog event control statements
	5.10.1 Event OR operator
	5.10.2 Global events
	5.10.3 Monitored events
	5.10.3.1 cross function
	5.10.3.2 above function
	5.10.3.3 timer function
	5.10.3.4 absdelta function

	5.10.4 Named events
	5.10.5 Digital events in analog behavior

	6. Hierarchical structures
	6.1 Overview
	6.2 Modules
	6.2.1 Top-level modules and $root
	6.2.2 Module instantiation

	6.3 Overriding module parameter values
	6.3.1 Defparam statement
	6.3.2 Module instance parameter value assignment by order
	6.3.3 Module instance parameter value assignment by name
	6.3.4 Parameter dependence
	6.3.5 Detecting parameter overrides
	6.3.6 Hierarchical system parameters

	6.4 Paramsets
	6.4.1 Paramset statements
	6.4.2 Paramset overloading
	6.4.3 Paramset output variables

	6.5 Ports
	6.5.1 Port definition
	6.5.2 Port declarations
	6.5.2.1 Port type
	6.5.2.2 Port direction

	6.5.3 Real valued ports
	6.5.4 Connecting module ports by ordered list
	6.5.5 Connecting module ports by name
	6.5.6 Detecting port connections
	6.5.7 Port connection rules
	6.5.7.1 Matching size rule
	6.5.7.2 Resolving discipline of undeclared interconnect signal

	6.5.8 Inheriting port natures

	6.6 Generate constructs
	6.6.1 Loop generate constructs
	6.6.2 Conditional generate constructs
	6.6.2.1 Dynamic parameters

	6.6.3 External names for unnamed generate blocks

	6.7 Hierarchical names
	6.7.1 Usage of hierarchical references

	6.8 Scope rules
	6.9 Elaboration
	6.9.1 Concatenation of analog blocks
	6.9.2 Elaboration and paramsets
	6.9.3 Elaboration and connectmodules
	6.9.4 Order of elaboration

	7. Mixed signal
	7.1 Overview
	7.2 Fundamentals
	7.2.1 Domains
	7.2.2 Contexts
	7.2.3 Nets, nodes, ports, and signals
	7.2.4 Mixed-signal and net disciplines

	7.3 Behavioral interaction
	7.3.1 Accessing discrete nets and variables from a continuous context
	7.3.2 Accessing X and Z bits of a discrete net in a continuous context
	7.3.2.1 Special floating point values

	7.3.3 Accessing continuous nets and variables from a discrete context
	7.3.4 Detecting discrete events in a continuous context
	7.3.5 Detecting continuous events in a discrete context
	7.3.6 Concurrency
	7.3.6.1 Analog event appearing in a digital event control
	7.3.6.2 Digital event appearing in an analog event control
	7.3.6.3 Analog primary appearing in a digital expression
	7.3.6.4 Analog variables appearing in continuous assigns
	7.3.6.5 Digital primary appearing in an analog expression

	7.3.7 Function calls

	7.4 Discipline resolution
	7.4.1 Compatible discipline resolution
	7.4.2 Connection of discrete-time disciplines
	7.4.3 Connection of continuous-time disciplines
	7.4.4 Resolution of mixed signals
	7.4.4.1 Basic discipline resolution algorithm
	7.4.4.2 Detail discipline resolution algorithm
	7.4.4.3 Coercing discipline resolution

	7.4.5 Discipline resolution of continuous signals

	7.5 Connect modules
	7.6 Connect module descriptions
	7.7 Connect specification statements
	7.7.1 Connect module auto-insertion statement
	7.7.2 Discipline resolution connect statement
	7.7.2.1 Connect Rule Resolution Mechanism

	7.7.3 Parameter passing attribute
	7.7.4 connect_mode

	7.8 Automatic insertion of connect modules
	7.8.1 Connect module selection
	7.8.2 Signal segmentation
	7.8.3 connect_mode parameter
	7.8.3.1 merged
	7.8.3.2 split

	7.8.4 Rules for driver-receiver segregation and connect module selection and insertion
	7.8.5 Instance names for auto-inserted instances
	7.8.5.1 Port names for Verilog built-in primitives

	7.8.6 Supply sensitive connect module examples

	7.9 Driver-receiver segregation

	8. Scheduling semantics
	8.1 Overview
	8.2 Simulation initialization
	8.3 Analog simulation cycle
	8.3.1 Nodal analysis
	8.3.2 Transient analysis
	8.3.3 Convergence

	8.4 Mixed-signal simulation cycle
	8.4.1 Circuit initialization
	8.4.2 Mixed-signal DC analysis
	8.4.3 Mixed-signal transient analysis
	8.4.3.1 Concurrency
	8.4.3.2 Analog macro process scheduling semantics
	8.4.3.3 A/D boundary timing

	8.4.4 The synchronization loop
	8.4.5 Synchronization and communication algorithm
	8.4.6 absdelta interpolated A2D events
	8.4.7 Assumptions about the analog and digital algorithms

	8.5 Scheduling semantics for the digital engine
	8.5.1 The stratified event queue
	8.5.2 The Verilog-AMS digital engine reference model
	8.5.3 Scheduling implication of assignments
	8.5.3.1 Continuous assignment
	8.5.3.2 Procedural continuous assignment
	8.5.3.3 Blocking assignment
	8.5.3.4 Non blocking assignment
	8.5.3.5 Switch (transistor) processing
	8.5.3.6 Processing explicit D2A events (region 1b)
	8.5.3.7 Processing analog macro-process events (region 3b)

	9. System tasks and functions
	9.1 Overview
	9.2 Categories of system tasks and functions
	9.3 System tasks/functions executing in the context of the Analog Simulation Cycle
	9.4 Display system tasks
	9.4.1 Behavior of the display tasks in the analog context
	9.4.2 Escape sequences for special characters
	9.4.3 Format specifications
	9.4.4 Hierarchical name format
	9.4.5 String format
	9.4.6 Behavior of the display tasks in the analog block during iterative solving
	9.4.7 Extensions to the display tasks in the digital context

	9.5 File input-output system tasks and functions
	9.5.1 Opening and closing files
	9.5.1.1 opening and closing files during multiple analyses
	9.5.1.2 Sharing of file descriptors between the analog and digital contexts

	9.5.2 File output system tasks
	9.5.3 Formatting data to a string
	9.5.4 Reading data from a file
	9.5.4.1 Reading a line at a time
	9.5.4.2 Reading formatted data

	9.5.5 File positioning
	9.5.6 Flushing output
	9.5.7 I/O error status
	9.5.8 Detecting EOF
	9.5.9 Behavior of the file I/O tasks in the analog block during iterative solving

	9.6 Timescale system tasks
	9.7 Simulation control system tasks
	9.7.1 $finish
	9.7.2 $stop
	9.7.3 $fatal, $error, $warning, and $info

	9.8 PLA modeling system tasks
	9.9 Stochastic analysis system tasks
	9.10 Simulator time system functions
	9.11 Conversion system functions
	9.12 Command line input
	9.13 Probabilistic distribution system functions
	9.13.1 $random and $arandom
	9.13.2 distribution functions
	9.13.3 Algorithm for probabilistic distribution

	9.14 Math system functions
	9.15 Analog kernel parameter system functions
	9.16 Dynamic simulation probe function
	9.17 Analog kernel control system tasks and functions
	9.17.1 $discontinuity
	9.17.2 $bound_step task
	9.17.3 $limit

	9.18 Hierarchical parameter system functions
	9.19 Explicit binding detection system functions
	9.20 Analog node alias system functions
	9.21 Table based interpolation and lookup system function
	9.21.1 Table data source
	9.21.2 Control string
	9.21.3 Example control strings
	9.21.4 Interpolation algorithms
	9.21.5 Example

	9.22 Connectmodule driver access system functions and operator
	9.22.1 $driver_count
	9.22.2 $driver_state
	9.22.3 $driver_strength
	9.22.4 driver_update
	9.22.5 Receiver net resolution
	9.22.6 Connect module example using driver access functions

	9.23 Supplementary connectmodule driver access system functions
	9.23.1 $driver_delay
	9.23.2 $driver_next_state
	9.23.3 $driver_next_strength
	9.23.4 $driver_type

	10. Compiler directives
	10.1 Overview
	10.2 `default_discipline
	10.3 `default_transition
	10.4 `define and `undef
	10.5 Predefined macros
	10.6 `begin_keywords and `end_keywords

	11. Using VPI routines
	11.1 Overview
	11.2 The VPI interface
	11.2.1 VPI callbacks
	11.2.2 VPI access to Verilog-AMS HDL objects and simulation objects
	11.2.3 Error handling

	11.3 VPI object classifications
	11.3.1 Accessing object relationships and properties
	11.3.2 Delays and values

	11.4 List of VPI routines by functional category
	11.5 Key to object model diagrams
	11.5.1 Diagram key for objects and classes
	11.5.2 Diagram key for accessing properties
	11.5.3 Diagram key for traversing relationships

	11.6 Object data model diagrams
	11.6.1 Module
	11.6.2 Nature, discipline
	11.6.3 Scope, task, function, IO declaration
	11.6.4 Ports
	11.6.5 Nodes
	11.6.6 Branches
	11.6.7 Quantities
	11.6.8 Nets
	11.6.9 Regs
	11.6.10 Variables, named event
	11.6.11 Memory
	11.6.12 Parameter, specparam
	11.6.13 Primitive, prim term
	11.6.14 UDP
	11.6.15 Module path, timing check, intermodule path
	11.6.16 Task and function call
	11.6.17 Continuous assignment
	11.6.18 Simple expressions
	11.6.19 Expressions
	11.6.20 Contribs
	11.6.21 Process, block, statement, event statement
	11.6.22 Assignment, delay control, event control, repeat control
	11.6.23 If, if-else, case
	11.6.24 Assign statement, deassign, force, release, disable
	11.6.25 Callback, time queue

	12. VPI routine definitions
	12.1 Overview
	12.2 vpi_chk_error()
	12.3 vpi_compare_objects()
	12.4 vpi_free_object()
	12.5 vpi_get()
	12.6 vpi_get_cb_info()
	12.7 vpi_get_analog_delta()
	12.8 vpi_get_analog_freq()
	12.9 vpi_get_analog_time()
	12.10 vpi_get_analog_value()
	12.11 vpi_get_delays()
	12.12 vpi_get_str()
	12.13 vpi_get_analog_systf_info()
	12.14 vpi_get_systf_info()
	12.15 vpi_get_time()
	12.16 vpi_get_value()
	12.17 vpi_get_vlog_info()
	12.18 vpi_get_real()
	12.19 vpi_handle()
	12.20 vpi_handle_by_index()
	12.21 vpi_handle_by_name()
	12.22 vpi_handle_multi()
	12.22.1 Derivatives for analog system task/functions
	12.22.2 Examples

	12.23 vpi_iterate()
	12.24 vpi_mcd_close()
	12.25 vpi_mcd_name()
	12.26 vpi_mcd_open()
	12.27 vpi_mcd_printf()
	12.28 vpi_printf()
	12.29 vpi_put_delays()
	12.30 vpi_put_value()
	12.31 vpi_register_cb()
	12.31.1 Simulation-event-related callbacks
	12.31.2 Simulation-time-related callbacks
	12.31.3 Simulator analog and related callbacks
	12.31.4 Simulator action and feature related callbacks

	12.32 vpi_register_analog_systf()
	12.32.1 System task and function callbacks
	12.32.2 Declaring derivatives for analog system task/functions
	12.32.3 Examples

	12.33 vpi_register_systf()
	12.33.1 System task and function callbacks
	12.33.2 Initializing VPI system task/function callbacks

	12.34 vpi_remove_cb()
	12.35 vpi_scan()
	12.36 vpi_sim_control()

	Annex A (normative) Formal syntax definition
	A.1 Source text
	A.1.1 Library source text
	A.1.2 Verilog source text
	A.1.3 Module parameters and ports
	A.1.4 Module items
	A.1.5 Configuration source text
	A.1.6 Nature Declaration
	A.1.7 Discipline Declaration
	A.1.8 Connectrules Declaration
	A.1.9 Paramset Declaration

	A.2 Declarations
	A.2.1 Declaration types
	A.2.1.1 Module parameter declarations
	A.2.1.2 Port declarations
	A.2.1.3 Type declarations

	A.2.2 Declaration data types
	A.2.2.1 Net and variable types
	A.2.2.2 Strengths
	A.2.2.3 Delays

	A.2.3 Declaration lists
	A.2.4 Declaration assignments
	A.2.5 Declaration ranges
	A.2.6 Function declarations
	A.2.7 Task declarations
	A.2.8 Block item declarations

	A.3 Primitive instances
	A.3.1 Primitive instantiation and instances
	A.3.2 Primitive strengths
	A.3.3 Primitive terminals
	A.3.4 Primitive gate and switch types

	A.4 Module instantiation and generate construct
	A.4.1 Module instantiation
	A.4.2 Generate construct

	A.5 UDP declaration and instantiation
	A.5.1 UDP declaration
	A.5.2 UDP ports
	A.5.3 UDP body
	A.5.4 UDP instantiation

	A.6 Behavioral statements
	A.6.1 Continuous assignment statements
	A.6.2 Procedural blocks and assignments
	A.6.3 Parallel and sequential blocks
	A.6.4 Statements
	A.6.5 Timing control statements
	A.6.6 Conditional statements
	A.6.7 Case statements
	A.6.8 Looping statements
	A.6.9 Task enable statements
	A.6.10 Contribution statements

	A.7 Specify section
	A.7.1 Specify block declaration
	A.7.2 Specify path declarations
	A.7.3 Specify block terminals
	A.7.4 Specify path delays
	A.7.5 System timing checks
	A.7.5.1 System timing check commands
	A.7.5.2 System timing check command arguments
	A.7.5.3 System timing check event definitions

	A.8 Expressions
	A.8.1 Concatenations and assignment patterns
	A.8.2 Function calls
	A.8.3 Expressions
	A.8.4 Primaries
	A.8.5 Expression left-side values
	A.8.6 Operators
	A.8.7 Numbers
	A.8.8 Strings
	A.8.9 Analog references

	A.9 General
	A.9.1 Attributes
	A.9.2 Comments
	A.9.3 Identifiers
	A.9.4 White space

	A.10 Details

	Annex B (normative) List of keywords
	Annex C (normative) Analog language subset
	C.1 Verilog-A overview
	C.2 Verilog-A language features
	C.3 Lexical conventions
	C.4 Data types
	C.5 Expressions
	C.6 Analog signals
	C.7 Analog behavior
	C.8 Hierarchical structures
	C.9 Mixed signal
	C.10 Scheduling semantics
	C.11 System tasks and functions
	C.12 Compiler directives
	C.13 Using VPI routines
	C.14 VPI routine definitions
	C.15 Analog language subset
	C.16 List of keywords
	C.17 Standard definitions
	C.18 SPICE compatibility
	C.19 Changes from previous Verilog-A LRM versions
	C.20 Obsolete functionality

	Annex D (normative) Standard definitions
	D.1 The disciplines.vams file
	D.2 The constants.vams file
	D.3 The driver_access.vams file

	Annex E (normative) SPICE compatibility
	E.1 Introduction
	E.1.1 Scope of compatibility
	E.1.2 Degree of incompatibility

	E.2 Accessing Spice objects from Verilog-AMS HDL
	E.2.1 Case sensitivity
	E.2.2 Examples
	E.2.2.1 Accessing Spice models
	E.2.2.2 Accessing Spice subcircuits
	E.2.2.3 Accessing Spice primitives

	E.3 Preferred primitive, parameter, and port names
	E.3.1 Unsupported primitives
	E.3.2 Discipline of primitives
	E.3.2.1 Setting the discipline of analog primitives
	E.3.2.2 Resolving the disciplines of analog primitives

	E.3.3 Name scoping of SPICE primitives
	E.3.4 Limiting algorithms

	E.4 Other issues
	E.4.1 Multiplicity factor on subcircuits
	E.4.2 Binning and libraries

	Annex F (normative) Discipline resolution methods
	F.1 Discipline resolution
	F.2 Resolution of mixed signals
	F.2.1 Default discipline resolution algorithm
	F.2.2 Alternate expanded analog discipline resolution algorithm

	Annex G (informative) Change history
	G.1 Changes from previous LRM versions
	G.2 Obsolete functionality
	G.2.1 Forever
	G.2.2 NULL
	G.2.3 Generate
	G.2.4 `default_function_type_analog

	Annex H (informative) Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

