

This appendix presents some of the practical details that you need to know to be able
to use Verilog-A/MS with the simulators available that support it. It starts by describ-
ing what constructs to avoid with purely digital models in order to retain compatibility
with traditional Verilog-HDL simulators. Then, the issues involved when using SPICE

models from Verilog-A/MS are discussed. Finally, it describes specifically how to use
Verilog-A and Verilog-AMS in the Cadence simulators: Spectre and AMS Designer.
Spectre was the first simulator to support Verilog-A. It is currently the most popular
simulator, and was used to validate each of the Verilog-A models contained in this
book. Similarly, AMS Designer was the first simulator to support Verilog-AMS, is
currently the most popular simulator that does so, and was used to validate each of the
Verilog-AMS models given in this book.

1 Verilog-HDL Compatibility
When describing purely digital modules, it is often desirable to completely avoid the
use of the AMS extensions so that the models can be read by a Verilog-HDL simula-
tor without modification. In these cases, one should consciously avoid the following
constructs.

1. Explicit parameter type declarations

2. Parameter range limits

3. Analog declarations such as disciplines, natures, branches and ground.

4. Analog processes and the various things associated with them (contributions, ana-
log operators, limiting and stimulus functions, etc.)

5. Analog events, such as cross, timer, initial_step and final_step.

6. Analog functions

7. System functions and tasks that were added to support analog or mixed-signal
modeling, such as $abstime, analysis, $bound_step, $discontinuity, the $driver_...
functions, $limexp, the $rdist_... functions, $temperature, and $vt.

8. The wreal wire type

A
Compatibility

kundert
Text Box
Excerpted from "The Designer's Guide to Verilog-AMS" by Kundert and Zinke.
For more information, go to www.designers-guide.org/Books.

Appendix A Compatibility

236

9. Connect modules and connect rules

2 SPICE Compatibility
At some point all circuit simulators such as SPICE will understand Verilog-A, all
device models will be available as Verilog-A modules, and model files and netlists
will be readily available in Verilog formats; but not today. Until that day, simulators
that support Verilog-A/MS must provide the ability to access SPICE primitives from a
Verilog description. This section describes how access to SPICE built-in primitives is
provided from the Verilog-A/MS language.

2.1 Scope of Compatibility

SPICE is not a single language, but rather is a family of related languages. The first
widely used version of SPICE was SPICE2g6 from the University of California at Ber-
keley. However, SPICE has been enhanced and distributed by many different compa-
nies, each of which has added their own extensions to the language and the models.
As a result, there is a great deal of incompatibility even among the SPICE languages
themselves.

Verilog-A/MS makes no judgment as to which of the various SPICE languages should
be supported. Instead, it states that if a simulator that supports Verilog-A/MS is also
able to read SPICE netlists of a particular flavor, then certain objects defined in that
flavor of SPICE netlist can be referenced from within a Verilog-A/MS structural
description. In particular, SPICE models and subcircuits can be instantiated within a
Verilog-A/MS module. This is also true for most of the SPICE primitives that are built
into the simulator.

2.1.1 Degree of Incompatibility

There are four primary areas of incompatibility between versions of SPICE simulators.

1. The version of the SPICE language accepted by various simulators is different and
to some degree proprietary. This issue is not addressed by Verilog-A/MS. So
whether a particular Verilog-A/MS simulator is SPICE compatible, and with which
particular variant of SPICE it is compatible, is solely determined by the authors of
the simulator.

2. Not all SPICE simulators support the same set of component primitives. A particu-
lar SPICE netlist may reference a primitive that is unsupported within a given simu-
lator. Verilog-A/MS offers no alternative in this case other than the possibility that
if the model equations are known, the primitive can be rewritten as a module.

2 SPICE Compatibility

237

3. The names of the built-in SPICE primitives, their parameters, or their ports can dif-
fer from simulator to simulator. This is particularly true because many primitives,
parameters, and ports are unnamed in SPICE. When instantiating SPICE primitives
in Verilog-A/MS, the primitives must, and parameters and ports can, be named.
Since there are no established standard names, there is a high likelihood of incom-
patibility cropping up in these names.

To avoid this, Verilog-A/MS defines a list of names that must be supported for
common SPICE primitives when made available within Verilog-A/MS. This list is
given in Table 1. However, it is not possible to anticipate all SPICE primitives and
parameters that could be supported; so different implementations can end up using
different names. This level of incompatibility can be overcome by using wrapper
modules to map names.

4. The mathematical description of the built-in primitives can differ. As with the net-
list syntax, incompatible enhancements of the models have crept in through the
years. Again, Verilog-A/MS offers no solution in this case other than the possibil-
ity that if the model equations are known, the primitive can be rewritten as a mod-
ule.

2.2 Accessing SPICE Objects from Verilog-A/MS

If an implementation of a Verilog-A/MS tool supports SPICE compatibility, it is
expected to provide the basic set of SPICE primitives given in Section 2.3 and be able
to read SPICE netlists that contain models and subcircuit statements.

SPICE primitives built into the simulator are treated in the same manner in Verilog-A/
MS as built-in primitives. However, while the Verilog-A/MS built-in primitives are
standardized, the SPICE primitives are not. All aspects of SPICE primitives are imple-
mentation dependent.

In addition to SPICE primitives, it is also possible to access subcircuits and models
defined within SPICE netlists. The subcircuits and models contained within the SPICE

netlist are treated as module definitions.

2.2.1 Case Sensitivity

SPICE netlists are case insensitive, whereas Verilog-A/MS descriptions are case sensi-
tive. From within Verilog-A/MS, a mixed-case name matches the same name with an
identical case as if it were defined in a Verilog description. However, if no exact
match is found, the mixed-case name will match the same name defined within SPICE

regardless of the case.

Appendix A Compatibility

238

2.2.2 Examples

Accessing SPICE models. Consider the following SPICE model file being read by a
Verilog-A/MS simulator.

.model vertnpn npn bf=80 is=1e-18 rb=100 vaf=50
+ cje=3pf cjc=2pf cjs=2pf tf=0.3ns tr=6ns

This model can be instantiated in a Verilog-A/MS module as follows

module diffPair (c1, b1, e, b2, c2);
electrical c1, b1, e, b2, c2;

vertNPN Q1 (c1, b1, e,);
vertNPN Q2 (.c(c2), .b(b2), .e(e));

endmodule

Unlike with SPICE, the first letter of the instance name, in this case Q1 and Q2, is not
constrained by the primitive type. For example, they can just as easily be T1 and T2.
The ports and parameters of the BJT are determined by the BJT primitive itself and
not by the model statement for the BJT. See Table 1 for more details. The BJT has 3
mandatory ports (collector, base, and emitter) and one optional port (the substrate). In
the instantiation of Q1, the ports are passed by order. With Q2, the ports are passed by
name. In both cases, the optional substrate port is defaulted by simply not giving it.

Accessing SPICE Subcircuits. As an example of how a SPICE subcircuit is refer-
enced from Verilog-A/MS, consider the following SPICE subcircuit definition of an
oscillator.

.subckt ecposc (out gnd)
va vcc gnd 5
iee e gnd 1ma
q1 vcc b1 e vcc vertnpn
q2 out b2 e out vertnpn
l1 vcc out 1uh
c1 vcc out 1p ic=1
c2 out b1 272.7pf
c3 b1 gnd 3nf
r1 b1 gnd 10k
c4 b2 gnd 3nf
r2 b2 gnd 10k

.ends ecposc

This oscillator can be referenced from Verilog-A/MS as:

module osc (out, gnd);
electrical out, gnd;

e

b2b1

c1 c2

kundert
Text Box
Excerpted from "The Designer's Guide to Verilog-AMS" by Kundert and Zinke.
For more information, go to www.designers-guide.com/Books.

